Todhoku Math, Journ.
Vol. 19, No.3, 1967.

NON-COMMUTATIVE EXTENSION OF LUSIN’S THEOREM

KAZUYUKI SAITO

(Received May 22, 1967)

1. Introduction. Many important theorems in measure theory have been
extended to operator algebras by many authors, especially, Dixmier [1], Dye
and Segal. Considered as non-commutative extensions, those are interesting
themselves and provide powerful tools in the further investigations of operator
algebras. The purpose of this paper is to extend Lusin’s theorem which is an
important tool in measure theory into general operator algebra.

Before going into discussions, the author wishes to express his hearty
thanks to Prof. M. Fukamiya and Dr. M. Takesaki for their many valuable
suggestions in the presentation of this paper.

2. Notations and Definitions. Let M be a W*-algebra, namely, C*-algebra
with a dual structure as a Banach space, My be the predual of M, that is, the
Banach space of all bounded normal functionals on MM, and MM,*, the positive
part of My, that is, the set of all functionals @ in M, such that @(x*x) =0
for all x<€ M. We may consider the s*-topology, that is, the topology defined
by a family of semi-norms {a,, a}; @< M,*, where a,(xr)=@(x*x)"*, and aF
() = p(xx*)”? for all xe M}, and the s-topology is that defined by a family
of semi-norms {a,; p € M,*}. In [4, p. 1.64] Sakai shows that whenever M is
represented as a weakly closed algebra of operators on some Hilbert space,
the weak*-topology of M coincides with the weak operator topology on the
bounded sets of M. It follows from this that the s*- topology coincides with
the strong #-operator topology on bounded sets of M, and the s-topology
coincides with the strong operator topology on bounded sets of M.

3. Main theorems. The following theorem corresponds to the Egoroff
theorem in the Lebesgue integration.

THEOREM 1. (Density theorem) Let M be a W*-algebra and My the
predual of DM, moreover, let @ be any positive functional in My. Let N be
any set in S (the unit sphere of M), which is adherent to an element a in
S in the s*-topology. Then for any positive number & and a projection e in

M, there exist a projection e, in M and a sequence {a;};;C N such that
e= e, ple—e,) <& and lim |a,e,—ae,|=0. In particular, for any sequence
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{a.}ne1 in S, which converges to a in s*-topology, there exist a projection
e, € M and a countable subsequence {a,}:; of {a,}r. such that ple—ey) <&,
e=e,, and |a,e,—ae,| — 0 (as i—o0).

As a non-commutative extension of Lusin’s theorem in the usual Lebesgue
integration, we have

THEOREM 2. Let N be a C*-algebra with the identity 1 acting on some
Hilbert space, M the weak closure of N, a be any element in M and e any
projection in M. Then, for any positive functional @ in My and any positive
numbers & and 8 (< 1), there exist a projection f in M, f<e, b in N such
that p(e—f)< & and af=>bf and ||b| = (1 +8)|af]. [5].

Moreover, if a is an hermitian element, then b may be chosen hermitian
element such that |b|| =21 + d)|af|| and |b| = ||la| + 8, moreover, if a is a
unitary operator, then b may be chosen unitary such that |b — 1| < |a
—-1] + 8.

4. Proof of Theorem 1. It is sufficient to prove only the case a =0
and e=1.

By the assumptiont, here is a net {a;}4., in N which is convergent to 0
for s*-topology, and b,=afa, converges to 0 for s-topology and |5 || =1. Then
we can choose a family of projections {e}s., in M such that lime; =1 for
s-topology and ||bees] =1 for each 6. In fact, let x be the chearacteristic
function of the interval (—1, 1), and we define e;=x(b;) for each §. Then we
have bj =1—e;, and we see that the left member of the inequality converges
to 0, for s-topology, so e, converges to 1, for s-topology. It is immediate that
|bees]| =1 for each 6. Then, for a given &> 0, there exists an index 6, such
that @(1—es,) < &/2, and |bges]| =1, so that

Hao,eo, H = ”bﬂxee,“l/z § 1.

Consider the family {a,;0=6,}, then ases, converges to 0 for s*-topology.
Again denoting as b;=e;,bse,( € €,,Me,) and by the same way (but for 27%), we
can choose a projection e, in e, Me;, such that @(e, —es,) < &/2% |bseq| =272
so that | as.es| = ||esbs.es,]" < 1/2.

By the mathematical induction, we can choose a decreasing sequence of
projections f{e;} (6;1) in M such that

ples,_,—es) < &/2" (esp=1) for each 1,

and



334 K.SAITO

lases,|| = 1/2.

M

Putting e, = inf e, we have @(1 —¢,) = @(sup(l —e,)) =sup @(1 —¢,) =

i=1

ples,-,—es) =2 &/2' =& and |ase,| =1/7 for each 7, hence lim |a,e,| =0. This
i=1 P

completes the proof.
For the proof of theorem 2, we need some lemmas.

LEMMA 1. Let N be a C*-algebra wi;th,the identity acting on some
Hilbert space and M the weak closure of N (Note that M is a W*-algebra.).
Let @ be any functional in M. Then for any element a< M, any projection
e in M and any positive numbers & 8, we can choose a; € N and a projection
feM such that f=e, j(a—a)fl <3, |a/| = lae| and ple—f) <e&.

PROOF. Since the unit sphere of N is adherent to the element ae in the
s*-topology by [2, theorem 1] (We may assume lae| =1 without loss of
generality.), it is clear from theorem 1.

5. Proof of Theorem 2. :
Case (i). General case. We may consider the case [ae|=1 without loss of

generality. _

We can take a positive functional @, in M such that @ ((ae)*(ae))?=1—-38
and @4(1)=1. Put ¢=@ +@,. Then, by lemma 1, we can choose a, in N
and a projection e, in M such that [[(a—a,)e |l <38/2, ||a,|| = |ael=1 and @
(e—e,) < min(&/2, 8°/2), and e, =e. For (a—a,)e, in M, again by the same
lemma, there exist a projection e, in M e, =e, and a, < N such that

P(e; —ey) < min(€/2’, §/2%),

| {(a—a)e, —as}e|=|(a—a — as)e,| < 8/2

and

las| = l(a — ae].

By the mathematical induction, we can choose a decreasing sequence of
projections {e;};2; in M and {a;};, in N such that

k-1

[{(a— 2= apec-—aded < 8/2F,

j=1
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lad =l X aecl,
and @le—y—er) < min(g/2%, 8 /2%) (where e,=e).

k-1

Since |a ]| = [(a— 3 a)e.—;I|< 8/2¢" 1 (k = 2), we have i'[lakli =1+ iS/Z"“‘

j=1

<1+8< . If we define b asd_ a; (in N), then be N and [b]| =1+ 3.

j=1
k
Putting f=inf e;, f is a projection in M and [(a— 3_ a;)f| <8&/2% for all k.

j=1
Hence |(a—b)f] =0, that is, af = bf.

As @(e—f)<min (& 8%) <& we have ple—f) <& and |af| =(1—33)|d|; in
fact, we have |af] =g@.((af)*(af)"’ = pi(ae)*(ae)"* — @o({aele — f)}* {aele
~f)}2 Since @e—f)=8" and @,({aele—f)}*{aecle—f)})"* = |ael8=8, we
have |af| =1—28. Noting that |ae|=1 and 1+38=|b}, we obtain |af]
=1-28=(1-3%)[5].

Case (il): a is an hermitian element of M. Firstly we can choose an
hermitian element a, and a projection ¢, in M such that e, =<e, |(a—a,)e,|
<8/2, |lai| = llall, aill =2]aell, and @ple—e,) <min(g/2, &/2).

Case (ii, a) 2||lae|| = ||a| : As {z; x< N, |z| =|a ||,z is hermitian} is adherent
to the element a for s-topology, there exists a net {as}s., such that a,
converges to a for s-topology. Hence ase converges to ae for s*-topology. By
theorem 1, there exist a projection e (e, =e), and an hermitian element
a, in N such that [(a—a)e| <8/2% |a,| = |al =2|ae|, and p(e—e,) < min
(€/2, 8%/2).

Case (ii, b) |a| == 2||lae|| : As {x;x e N|x| = |c,|, = is hermitian} is adherent
to the element ¢, for s-topology (where c,=eae+ (1 —e)ae+ea(l —e) and note that
coe=ae), by [2] and our lemma 1, there are an hermitian element a, ¢ Nand a
projection e (e; =e) in M such that [[(a—a.)e,l| <3/2, [a\| = e, lleoll =2l|ael,
and @(e—e,) <min(§/2, 8%/2). Hence we can choose an hermitian element a,
(in N) and a projection e, in M such that |(a—a)e,| <8/2% |a,| =|a| and
ESE

Putting ¢, =e(a —a)e,;+(1 —e,)(a — a)e, + e;(a — a,)A —e,), ¢; becomes
an hermitian element of M such that (a—a,)e; =c,e, and ||| =2|(a — a))e,|.
For ¢,, by the same reason, there exist an hermitian element a, in N, and a
projection e, in M, e, =e, such that ||a,| =|c,|, {c; — ar)e]| =8/2° and @le,
—e,) < min(&/2?% 8%/2%). Since (¢, —a,)es=(c; —as)ee;=c e.6,— ase;=(a—a, —a,)e,
we have that |[(a—a,—a,)e;|| <8/2%, hence by the same way as in case (i),
we can choose a decreasing sequence of projections {e;};z, in M, a sequencs
of hermitian elements {a;};2; in N and a sequence of hermitian elements

{c;}2: in M such that
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[(cici—aye; || <8/2,

and la;l|=llc;- = 2] (a— ;aj)ei—l”a

i-1 -1

where Ci-i=e;_(a— Z aye; .+ (1—e;._)(a— Z ae;_,
j=1 Jj=1

-1

+e-y(a— Z a)(1—e;-y)

j=1
and

ple;-;—e;) < min(€/2%, 8°/2%), (e,=e).
As |a,l| =2|(a— E a;)e;-.|| <8/24(i=2), we have 5: [a:|=min(|al,2|ael)+8.

Jj=1 i=1

Now we define 4 as ) _ a; (in N), then b ¢ N, and |b|| = min(|a|, 2|ae|)+8.

i=1
i

Further, putting f=inf e, f is a projection in M and as (¢;-;—a,)e;=(a— 2,
'

Jj=1

aye;, we have [(a— > a,)f]|<8/2'*! for all i. It follows [(a—5)f] =0, that is,
af=bf. By the same way as in case (i), we have ||af] = |ae|(1—28). Noting
that |&| =2|ae| +8, we have |af]| = |ae|(1—28) = 2|5 (1—39d).

Case (iii):a=u« and « is a unitary element in M. We need the following
lemma, which we prove by making use of an argument of Riesz-Nagy [3; p.
266 Theorem].

LEMMA 2. Let M be a W*-algebra, e be a projection in M, and
moreover, w be a unitary in M such that |(1—w)e||<1/8, then we can choose
a unitary v in M as follows:

ve = we,
and
1—v| =71 -w)e|.
PROOF. Putting wew* = f, we have |e — f|| = |e — wew*|| =|| e — we + we

— wew*|| = |[(1 — w)e + w{(l — w)e} *| =2||(1 — w)e|| <1/4. Next, putting a=1
+(1—ele—f)1—e) and u=1 — fla '’ (1—e), we have w*u=1—¢, uu*=1
— f- In fact, it follows from our hypothesis that ||(1 — e)(e — f)(1 — ¢)| <1, and
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that consequently the hermitian element a =1+ (1 —e)(e — f)(1 —e) is strictly
positive. Hence a™! and a '*=(a"!)"/? exist. Consider the elements u=(1—f)
a "*(1—e). u*=(1—e)a™"*(1—f). Since we obviously have that 1—e commutes
with a, we also have(l—e)a™*=a " (1—e), and since furthermore (1—e)(1—f)?
l-—e=1—-e)1—fil—e)=1—e)+1—e)e—f)1—e)=(1—e)a, it follows that

wru=_1—e)a*A—f)a*1—e)=a*(1—e)aa™?

=(1—eaYaaV=1—e.

Moreover uu* is a projection majorized by 1—f. If £1 (wu*)$ (we assume that
N acts on some Hilbert space 9), £ €« (1—f)9, that is (§,un)=0 for all < $.
Then w#*£=0; hence (1—e)(1—f)E = a?a™*1 —e)(1 — flE=a"*(1—e)a V(1 —f)E
=a""u*£=0 and, consequently (e—f)(1—f)E=1—f)E. In view of the hypothesis
le—fl <1, this equation is possible only if (1—f)E=0, that is wu*=1—f.
Then we have

1A= w1 = o) = |(L— ) — (1 — Ha) ™1 — o)]
= [A— & = (e— a1 — ) — a1 — o)
= |1 — a1 — &) — (e — a1 — )|
=1 — a3 + a7 e — f].

Noting that if |x|<1/4 (where x is a real number), then |(x + 1)7V?—1]
= |z| and (x+1)"2<2, we have |[A—uw)l—¢)|=|e—f] +2]le—fl=6|1
— w)e|.

Putting v=we + w(l —e), v is a unitary in M such that ve = we.
Combining the above estimations, we have inequalities

M—v]|=l—we—ul—e)| =le+1—e— we—ul—e)|
= (1~ wle + (1~ )1 - ) 7|~ w)e].

Thus the lemma follows.

LEMMA 3. Let N be a C*-algebra with the identity acting on some
Hilbert space, M be the weak closure of N (Observe that M becomes a W*-
‘algebra.). Let ¢ be any positive functional in M. Then for any unitary u
in M, any projection e in M, and any positive number €, 8, we can choose
unitary v in N and a projection f in M, f=e such that

[ —)fl <8, [1~ | =[1—u| and gle—f)<e.

PROOF. By [2], {v;v is unitary in N, |1 —v| =1 —u«|} is s*-dense in
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{w; w is unitary in M, |1 — w| = |1 —u«|}. Hence, it is clear from lemma 1.

LEMMA 4. Let {w,}i2, be a family of unitary operators on some Hilbert

space such that Z 1=l <oo, then hm H u; exists for uniform operator
1=1 =1
totology and the limit is also a unitary operator.

n+p n

PROOF. Since, for each pair of positive integers n and p, [] u;— [[u;= I

i=1 i=1 i=1

n+p ’ n+p n+p
Ui (L=t Uy — U aU iy F U Uy — * * + — H u)we have, H Uy — H U | = Z
i=n+1 ’ i=1 i=n+1

11—l .
By the hypothesis, the left side of the above inequality converges to 0 as

n

n— oo, Hence lim [[ #; exists for uniform operator topology and the limit

n—o0

i=1
is also a unitary. The lemma follows.

Proof of case (iii). We may assume e=1 without loss of generality.
For any unitary element » in M, any positive functional @ in My, and any
given €>0 and 1 > 8 > 0, we can choose families of unitary elements {«;}:,
in N, {v;}2, in M, and a decreasing sequence of projections {f;};2; in M
such that

wfi= Il woify, |Q—wfvi)fill = (i —w)fi] <8/8:2'
o(fi-1—f1) < &/2¢ (fo=1) for each i,

and
1—w] = 1=v;|| = 7A—f1vi-0)fi1|(E = 2), (vo=wu).

In fact, by lemma 3, there exists a unitary element %, in N, and a
projection f; in M such that |1—u,|| = |1—u«|, ¢(1—f1)<&/2, and ||(u—u,)f\|
<< 8/8. For ui'u (unitary in M), by lemma 2, there exists a unitary v, in M
such that v, fi=uiuf; and ||1—v,| =7|QA—u'w)fi]| < (7/8)8 < 8. Then for
unitary v,in M, and a projection f; in M, by lemma 3, there exist a unitary
u, in N and a projection f, in M, f, = f, such that||l—u,[|= |1 —v,|, (fi—Ff2)
< &/2°, and |(v,—uy)f3|<8/8+2. For wu;'v,, (unitary in M), by lemma
2, we can choose a unitary v, in M such that v,f,, =u;'v,f, and |1—v,]
= 7|Q—u'v)f] < 8/2. Thus, by mathematical induction, we can choose
families of unitary elements {«;}2,CN, {v,};2,C M and a decreasing sequencz
of projections {f;};, in M as follows ;
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uf,= jIL uvifs, |A—utv )i Sl (viei—u)fill < 8/8:2074

o(fi-i—J 1) < &/2' (fo=1) for each i,

339

and

l!l—uillé\il—vi_lﬂ = 7H1_u2k—lvi—2).fi—l“ @

= 2).
Putting f=inf f;, we have that

uf =ufif = Muwifuf = 1L wwns

Moreover, as |1 —u;| = 7|1 —uf v, 0)fi] <(7/8)(8/2!7%) <8/2'% and
S l—uw| = || 1—u| + 28 <oco, it follows from Lemma 4 that lim J[ », exists
i=1

n—oo i1

or uniform operator topology (we denote it by @, @ is a unitary in N).
Moreover, we have

et =api =1 (1L wyouf— (I w i+ (L a)r—af]
< /2" 4| ﬁ u;—da | for each n,

hence, |uf —af]| =0, that is, uf = af, and

11— T will=11—u, +ou, —wus +wuy—wusu s+ - -

T H uill
i=1 i=1
n—1
=l-w|+|1-uf+ .-+ Ill u(1—u,)|

<=+ Lt -+ [Ty - -
<1 —ul +28,

for all n. Therefore, |1—a| <|1—ul +28. This completes the proof of
theorem 2.
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