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1. Introduction. Many important theorems in measure theory have been
extended to operator algebras by many authors, especially, Dixmier [1], Dye
and Segal. Considered as non-commutative extensions, those are interesting
themselves and provide powerful tools in the further investigations of operator
algebras. The purpose of this paper is to extend Lusin's theorem which is an
important tool in measure theory into general operator algebra.

Before going into discussions, the author wishes to express his hearty
thanks to Prof. M. Fukamiya and Dr. M. Takesaki for their many valuable
suggestions in the presentation of this paper.

2. Notations and Definitions. Let M be a T7*-algebra, namely, C*-algebra
with a dual structure as a Banach space, M* be the predual of M9 that is, the
Banach space of all bounded normal functional on M, and M**, the positive
part of Mjf, that is, the set of all functional <p in M& such that <p(x*x) ^ 0
for all x € M. We may consider the s^-topology, that is, the topology defined
by a family of semi-norms [av, a%\ (pzM*+, where ap(x) = ̂ >(x^x)1/2

9 and a*
(x) = <p(xx*)1/2 for all xzM}, and the s-topology is that defined by a family
of semi-norms \a9\ <p e M*+}. In [4, p. 1.64] Sakai shows that whenever M i s
represented as a weakly closed algebra of operators on some Hilbert space,
the weak^-topology of M coincides with the weak operator topology on the
bounded sets of M. It follows from this that the s*- topology coincides with
the strong ^-operator topology on bounded sets of M, and the 5-topology
coincides with the strong operator topology on bounded sets of M.

3. Main theorems. The following theorem corresponds to the Egoroff
theorem in the Lebesgue integration.

THEOREM 1. (Density theorem) Let M be a W*-algebra and M* the
predual of Al, moreover, let q> be any positive functional in M#. Let N be
any set in S {the unit sphere of M), which is adherent to an element a in
S in the s*-topology. Then for any positive number 8, and a projection e in
M, there exist a projection e0 in M and a sequence {a^™=xcN such that
e~i^eQ,<p(e—e0)<8 and lim ||a^0 —^̂ o!l =0. In particular, for any sequence



NON-COMMUTATIVE EXTENSION OF LUSIN'S THEOREM 333

{tfn}n=i in S, which converges to a in s*-topology, there exist a projection
eoeMand a countable subsequence [anf}r=iof {an}~=i such that <p(e—e0) <£ ,
e^e0, and ||<zni2o"—d#oll —*0 (as i—^oo).

As a non-commutative extension of Lusin's theorem in the usual Lebesgue
integration, we have

THEOREM 2. Let N be a C*-algebra zvith the identity 1 acting on some
Hilbert space, M the weak closure of N, a be any element in M and e any
projection in M. Then, for any positive functional <p in M* and any positive
numbers 8 and 8 (< 1), there exist a projection f in M, f^e, b in N such
that <p(e-f)<£, and af=bf and \\b\\ ̂  (l + 8)||a/||. [5].

Moreover, if a is an hermitian element, then b may be chosen hermitian
element such that ||&|| ^ 2 ( 1 + 8)||a/|| and \b\ ^ ||a|! + 8, moreover, if a is a
unitary operator, then b may be chosen unitary such that \b — 1|| < \a
-111+8.

4. Proof of Theorem 1. It is sufficient to prove only the case a — 0
and e = l.

By the assumptiont, here is a net {a^}^€e in N which is convergent to 0
for 5*-topology, and be = a*ae converges to 0 for s-topology and \\b || 5^1. Then
we can choose a family of projections {ee}e*9 in M such that l im^ = l for

e
5-topology and \beee\ ^ 1 for each 6. In fact, let % be the characteristic
function of the interval ( — 1,1), and we define e3 = x(be) for each 6. Then we
have bo^l—ee, and we see that the left member of the inequality converges
to 0, for s-topology, so e& converges to 1, for 5-topology. It is immediate that
|| bdee || ^ 1 for each 6. Then, for a given 8 > 0, there exists an index 6X such
that (p(l-edx)<8/2, and \\beiedi\\ ^ 1, so that

Consider the family {aQeel',d~^dl}, then aeeei converges to 0 for s*-topology.
Again denoting as b0=e0lbeedl( z e01Me0J) and by the same way (but for 2~2), we
can choose a projection e$2 in edlMedl such that (p(eei—ed^ <€/22, ||^2e^|| 5g 2~2,
so that \\a02ee2\\ = \eeb^e6^ < 1/2.

By the mathematical induction, we can choose a decreasing sequence of
projections {e0i} (0t t ) in M such that

<p(e0i-x — e0t) <£/2* (eM = l) for each i,

and



334 K.SAITO

Putting e0 = inf edl, we have <p(l — e0) = <£>(sup(l — <̂ 4)). = sup £>(1 — ^J =.]jn

-^—edy= 2^.£/2*-=.8, and ||a^0|| ^ 1/ffor each *, hence lim \ae4eQ1| =0.This

completes the proof.

For the proof of theorem 2, we need some lemmas.

* ' . • * ' . .

LEMMA 1. Let N be a O'T-algebra with , the identity acting on some
Hilbert space and M the weak closure of N (Note that M is a W* -algebra.).
Let cp be any functional in M* .Then for any element azM, any projection
e in M' and any positive numbers £, 8, we can choose at £ N and a projection
fe M such that / ^ e, jKa-aO/ll < 8, ||aL|| ^ \\ae\\ and <p(e-f) < S.

PROOF. Since the unit sphere of N is adherent to the element ae in the
5*-topology by [2, theorem 1] (We may assume !|ae|| =1 without loss of
generality.), it is clear from theorem 1.

5. Proof of Theorem 2.
Case (i). General case. We may consider the case ||ae|[=l without loss of

generality.
We can take a positive functional <p0 in M* such that (po((ae)*(ae))1/2 §̂  1 — 8

and <po(l) = l. Put tp=cp + (p0. Then, by lemma 1, we can choose ax in N
and a projection ex in M such that l|(a — a^)ex\ < 8/2, ||̂ x̂|j ^ l|ae||=l and q>
(e—ex) < min(£/2, 82/2), and ex ^ e. For (a — a^ex in M, again by the same
lemma, there exist a projection e2 in M e2 ̂  ex and a2 € N such that

I! {(a - a,M -ai}el\\ - j|(a - a, - a2)e2|| < 8/22

and

By the mathematical induction, we can choose a decreasing sequence of
projections {et}Z=i in M and {at}T^i in AT such that
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and y{ek.x-ek) < min(£/2*, S2/2k) (where *0=e).

Since M ^ || (a- E ai)ek^\\<h/2^{k ^ 2), we have £'||afc|| ^ 1+ £ 8 / 2 ^
. 7 = 1

< 1 + 8 < oo. If we define b a s £ a, (in N), then & € N and ||6|| ̂ 1 + 8.

k

Putting / = inf eu f is a projection in M and ||(a — 2Za;)/ll <§/2fc for all £.
* . 7 = 1

Hence \\{a-b)f\\ = 0, that is, af=bf.
As ^>- / )<min (£, 82) <€, we have ^ - / ) <£ and \\af\\ ^(1-38)||6||; in

fact, we have || af\\ ^ <po((af)*(af))1/2 ^ <p»({ae)*{ae)y* - cpo( [ae{e - f)} * {oe(e
-/)})1/2. Since <Po(e-f)^S2 and ^0({a^-/)}^{a<^-/)})1/2^ ||ad|8=8, we
have | |a / | |^ l -28. Noting that ||ae'||=l and l + 8^||6j|, we obtain \\af\\

Case (ii): a is an hermitian element of M. Firstly we can choose an
hermitian element ax and a projection ex in M such that ex^ey ||(a —fl^ej
<8/22, H^ll^llall, 11̂ 11̂ 211̂ 11, and^-^)<min(^/2,8V2).

Case (ii, a) 2\ae\ ̂  ||a||: As {x; x e N, \\x\\ ̂  \\a \\,x is hermitian} is adherent
to the element a for s-topology, there exists a net {ae]e^» such that ae
converges to a for s-topology. Hence a0e converges to ae for s*-topology. By
theorem 1, there exist a projection el(e1^e), and an hermitian element
ax in N such that \\(a-al)el\\<h/2\ \\a.\\ ^\\a\\ ^2\\ae\\, and y{e-ex) < min

Case (ii,b) ||a|| ̂ 2| |ae| | : As {j:;j:e iV||o:|| ̂  ||co||, x is hermitian} is adherent
to the element c0 for s-topology (where co=eae + (l— e)ae+ea(l— e) and note that
cQe = ae), by [2] and our lemma 1, there are an hermitian element ax € Arand a
projection el{el^e) in M such that IKa-aO^IKS/22 , ||ai|| ^ |ko||, ||co|| ^2||ae||,
and ^(^—^i) < min(£/2, 82/2). Hence we can choose an hermitian element ax

(in N) and a projection ^ in M such that ||(a — a^^H <8/22 , H^J ̂ \\a\\ and
lk,||^2||ae|i.

Putting Ci = ex(a — a j ^ + (1 — ex)(a — a^^! + ex(a — ^0(1 — e^)y cx becomes
an hermitian element of M such that (a—a,x)ex = c^ and H Ĵ ̂ 2\\(a — a^e^l.
For ^!, by the same reason, there exist an hermitian element a2 in N, and a
projection e2 in M, £ 2 ^ i such that |U2|| ̂  HcJ, |J(ci — a2)e2\\ ^ 8 / 2 3 and ^(e1

—e2) < m i n ( 6 / 2 2 , 82/22). Since (c1 — a2)e2 = (c1 — a2)e1e2 = c1e1 e2 — a2e2 = (a—a1 — a2)e2,

we have that ||(a—ax — ̂ 2)̂ 2!! <8/23 , hence by the same way as in case (i),
we can choose a decreasing sequence of projections fe}jli in M, a sequence
of hermitian elements {tfjjli in N and a sequence of hermitian elements
[ct] T=i in M such that
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and ll«ill^.|ki

where ci.1=ei.1(a- ]T ̂ K - i + ( l - e i - i ) ( 0 -

and

^fo- i -eO < min(£/2*, 82/2*), (eo=e).
i-1 oo

As ||aj^2||(a- X" aj)ei-1\\<h/2i(i^2\ we have £ \\at

oo

Now we define b as ]P â  (in JV), then b z N, and ||&|| ^min(||a||,

Further, putting f=iniei,f is a projection in M and as (ci-l — ai)ei = (a— ̂ Z

a X we have ||(a— ^ a ^ / I ^ S ^ ^ 1 for all z. It follows \\(a — b)f\\=0, that is,

af=bf. By the same way as in case (i), we have \\af\\ ^ ||ae||(l — 28). Noting
that ||&||^2||a*||+8, we have \\af\\ ^ ||ae[|(l-28) ^2| |6 | | ( l -38) .

Case (iii):a=w and u is a unitary element in M. We need the following
lemma, which we prove by making use of an argument of Riesz-Nagy [3; p.
266 Theorem].

LEMMA 2. Let M be a W*-algebra, e be a projection in M, and
moreover, w be a unitary in M such that ||(1 — w)e\\<l/S, then we can choose
a unitary v in M as follows:

ve = we,

and

PROOF. Putting wew* — f, we have \e — f\\ = \\e — wew*\\ =\\e — we + we
- wew*\\ = ||(1 - w)e + w{(l - w)e}*\\ ^2 | | (1 - w)e\\ < l / 4 . Next, putting a = l
+ (1 — e)(e—f)(l — e) and u = (1 — f)a~1/2(l— e), we have u*u = 1 — e, uu* = l
— f. In fact, it follows from our hypothesis that ||(1 — e)(e—f)(l — e)\\ < 1, and
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that consequently the hermitian element a = 1 + (1 — e)(e — f)(l — e) is strictly-
positive. Hence a'1 and a~1/2 = (a~1)l/2 exist. Consider the elements u = (l—f)
a~l/2(l — e). u* = (1 — e)a~1/2(l —f). Since we obviously have that 1 — e commutes
with a, we also have(l — e)a~V2 = a~v\l —e), and since furthermore (1 — e)(l— ff
(l-e) = (l-e)(l-f)(l-e) = (l-e) + (l-e)(e-f)(l-e) = (l-e)a, it follows that

u*u = (1 - e)a-1 / 2( l -f)2a~1/2(l - e) = a~1/2(l - e)aa~1/2

Moreover uu* is a projection majorized by 1—/. If %±.(uu*)$ (we assume that
AT acts on some Hilbert space <£)), | ^ ( 1 — f)$), that is (^,UT}) = 0 for all r)^$).
Then u*%=0; hence (1 -e)(l - / ) ? = a1/2a~1/2(l - e)(l - / ) f = a1/2(l - e)a"1/2(l - / ) |
= a1/2u*!; = 0 and, consequently (e—f)(l—f)!; = (!—/)!;. In view of the hypothesis
||e—jf||<l, this equation is possible only if (1—/)£ = 0, that is uu^ — X—f.
Then we have

||(1 - «)(1 - e)\ = ||(1 - e) - (1 - / j a m i - e)\

= i|(1 - e) - (e-f)a-x'\l - e) - a'"\l ~ e)\\
- ||(1 - a-^)(l - e) - (e-f)a-^(l - e)\\

Noting that if \x\ < l / 4 (where x is a real number), then \(x + 1)"1/2 — 1 |
^ 1 ^ 1 and Gr + l ) - 1 / 2 <2 , we have ||(1 - u)(l - e)\\ ̂  \\e-f\\ + 2||^ - / | | ^ 6 | | ( 1
— w)e\\.

Putting v = we + u(l — e), v is a unitary in M such that ve = we.
Combining the above estimations, we have inequalities

||1 - v\\ = ||l -we- u(l - e)\\ = \\e + l-e-we-u(l- e)\\

^ ||(1 - w)e+(l-u)(l-e)\\ ^7||(1 - «;>||.

Thus the lemma follows.

LEMMA 3. Let N be a C*-algebra with the identity acting on some
Hilbert space, M be the weak closure of N (Observe that M becomes a W*-
algebra.). Let cp be any positive functional in Af*+. Then for any unitary u
in M, any projection e in M, and any positive number 8, 8, we can choose
unitary v in N and a projection f in M, f^e such that

\\(u-v)f\\<B, | | l-r| |^| |l-tt | | and <p(e-f)<e.

PROOF. By [2], {v;v is unitary in N, ||1 - v\\ ̂  ||1 - u\\] is ^-dense in
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[wyw is unitary in M, ||1 — w\\ ^ ||1 — u\\}. Hence, it is clear from lemma 1.

LEMMA A. Let {u^^Li be a family of unitary operators on some Hilbert

space such that ^2 \\1 — Ui\\<oo9 then lim II ut exists for uniform operator

tocology and the limit is also a unitary operator.

n + p n

PROOF. Since, for each pair of positive integers n and p,TL ut~ Jlui= II

ut0-*-un+l+un+1—un+1un+2 + un+lun+2— II ut)we have n«.-
By the hypothesis, the left side of the above inequality converges to 0 as

n

n —> oo. Hence lim II u% exists for uniform operator topology and the limit

is also a unitary. The lemma follows.
Proof of case (iii). We may assume e=l without loss of generality.

For any unitary element u in M, any positive functional <p in M#, and any
given £ > 0 and 1 > 8 > 0, we can choose families of unitary elements {w4} T=1

in N, {z;£} Jt=i in M, and a decreasing sequence of projections [/i}4°li in M
such that

and

«%lVi.1)/,-i||(*^2), (vo=u).

In fact, by lemma 3, there exists a unitary element ux in J\£ and a
projection/t in M such that H l - ^ J ^ ||l-w||, <p(l—f1)<8/2, and ||(M—Mi)/i||
<8/8 . For wr1^ (unitary in Ai), by lemma 2, there exists a unitary t^ in ilf
such that vj^u^uf and H l - ^ J ^ 7|1(1—z/r1 )̂/!II < (7/8)8 < 8. Then for
unitary z/Jn JVf, and a projection / in M, by lemma 3, there exist a unitary
w2 in N and a projection f2 in M, f2 =f\ such thatj| 1—ẑ 2II = ]|1 ~^ill> (p{f\~f^)
<6/22 , and l(vy-u2)f2\\< 8/8 • 2. For wj1^, (unitary in M), by lemma
2, we can choose a unitary ?;2 in M such that v2f2,=U2lvlf2 and ||1 —1/2||
fg 7||(1 — M^il^ll < 8/2. Thus, by mathematical induction, we can choose
families of unitary elements {u.t}r=i^N, {v^f^cM and a decreasing sequence
of projections {ft} Jlx in M as follows ;
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<p(fi-i-fi) < */? do = 1) for each i,

and

Hi-Ktll^lli-^-j ^in-uuv^f^w (

Putting f=inf fi9 we have that
i

n n

Uf=ufnf= J[uiVnfnf= II UtVnf.

Moreover, as ||1 - ut\\ ̂  7||(1 - uf^v^f^W <(7/8)(8/2'-«) <8/2 i"2 , and

y"i|l—Will ^ l|l — w|| +28 <oo, it follows from Lemma 4 that lim H u% exists

for uniform operator topology (we denote it by u, u is a unitary in iV).
Moreover, we have

w(uf-uf)\\^\\ ( n «,)f */•-(& «,)/II

<8/27l"1+ || II Mi-wH /or

hence, \uf — uf\ =0, that is, uf=uf> and

H I - n wiii=iii-w1+M1-w1w2+M1M2-M1M2w3+— n
i=l i=l

^ I I I - « 1 I I + I I I - « , I I + • • • - * - i i n «,(i-«»)ii

for all n. Therefore, ||1 - M|1 < | |1-«| | + 28. This completes the proof of
theorem 2.
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