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Introduction. It is well known that in a 2m-dimensional compact
Kihlerian space, any harmonic p-form (p=m) can be written uniquely in
terms of effective harmonic forms and the fundamental 2-form of the space.
When we consider the analogy in a compact Sasakian space, it is insigni-
ficant as far as we are concerned about harmonic forms, because any harmonic
form is effective. S. Tachibana [1] has ‘introduced the notion of C-harmonic
forms in a compact Sasakian space, which is wider than that of harmonic
forms, and succeeded to prove the analogy of the decomposition theorem for
C-harmonic forms. In this paper we try to make the definition of C-harmonic
forms a little- looser than that of Tachibana’s original one. On the other
hand, S. Tanno has drawn the relation of Betti numbers between the base
space and the bundle space in the fibering of a regular K-contact Riemannian
space. It is shown that a p-form (p= m) on the bundle space is C-harmonic
if and only if it is induced from a harmonic p-form on the base space.
Thus we can obtain the theorem of Tanno again. Lastly we investigate the
C*-harmonic forms which are dual to the C-harmonic forms, and in connection
with them, we observe Killing forms and give one of its example on a
Sasakian space. .

Manifolds are assumed to be connected and the differentiable structures
on them are assumed to be of class C~.

I should like to express my hearty gratitude to Prof. S. Tachibana for his
kind suggestions and many valuable advices.
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1. Preliminaries. An #n-dimensional Riemannian space M" is called a
Sasakian space if it admits a unit Killing vector field 5" such that

(1. 1) vl V‘L T — nuglv /) gly )
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where gy, is the metric tensor of M". Then n is necessarily odd (= 2m+1)
and M™ is orientable. With respect to a local coordinates system {2}, A=1,
«+o,m, if we define a 2-form @ = (1/2) pr,dz* A\ dx* by

Pr = Vam,
then we have dyp=2¢ and it holds

(1. 2) V1¢,w = MG — MGru -

On a Sasakian space, the following identities are well known (cf. [2]):

(1.3) Von = —(n—1)n,,

(1.4) Rawo 1 = M Guw = v

1.5 | @ Repo = @’ Rerve + P Jou — éun gor + Ponfir = PorGou s
(i- 6) R\f oo Pos = Ripas + ProPua — PraPus + GraGus — Gre Jue ,.
.7 (1/2) " Ragr = Racp® + (n—2) oo,

.8 Rip = —Rug Ripl = Riop.

In the following, we consider always an n(=2m+1)-dimensional Sasakian
space M". If M™ is compact, then we denote the global inner product of
any p-forms » and v by

o) = [ @A),

P

where v is a dual form of v. The dual operator * satisfies the relation
1.9 *HU = U

for any p-form ». The adjoint operator & of d is given by

(1.10) du = (—1)? xd *u

for a p-form u.
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Next we define the operators e(y), i(p) and L, A for any p-form u as
follows :

(1.11) e(mu =gAu, i(pu=(=1)"""xe(y) *u,
(1.12) Lu=dnyA\Nu, Au=ildnpu=x+Lxu,
and for O-form a and 1-form & we define
ima=0, Aa=Ab=0.
Then we have for any forms » and v |
dng A\ tup_s \ %0, = ty_y \ #(xLxv,),
7 Aty N\ ¥0p = (=177 oy N #(xe(n) *v,),
where the subscripts of % and v denote the degree of them. Therefore if
M™ is compact, then e(n) (resp. L) and i(y) (resp. A) are adjoint operators

with respect to the global inner product. We shall call a form « to be
effective if it satisfies Au = 0.

LEMMA 1.1. In a Sasakian space, the following relations hold (cf.[9)):

(1.13) L =elp)d + deln),
(1.14) A =1i(n)d+ 8i(n).
PROOF. For any p-form u, we have

Lu=dy Nu=dnA\u)— (—n A\ du)
=de(n)u + e(n) du.
(1. 14) is obtained easily from (1.10, 11, 12).

LEMMA 1.2. In a Sasakian space, the operator L (resp. A) commutes
with the operators i(y), e(n) and d (resp. i(n), e(n) and 8). (cf. [9)).

PROOF. As i(y) dp=0, we have for any form «

i(t)(dn N\ w) = (i(n) dn) \ u + dn A\ (i(n) u)
= Li(pu.
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From (1.11) and (1.12), we obtain Ae() = e(n) A. The other relations are
obtained by virtue of Lemma 1.1 and

i) =e()p=d =8 =0.

We denote the Lie derivative with respect to #* by 6(y). It is well
known that it holds

6(p) = di(n) + i(n) d .
LEMMA 1.3. In a Sasakian space, we have (cf. [9))
(1.15) %6(n) = 6(n) * .
or equivalently
(1.16) 0(n) = —3e(n) — e(n)8.

PROOF. Since 7 is a Killing form, it satisfies 0(5) g=0, 8p=0, where ¢
is the metric tensor of M" Then it follows that for a p-form u« of
coefficients ua,...,

((0(’7) - *0(’7) *) u)A,...A,=8')) Up,..a, + (P ) Z g""(@('))) g),,;h u;t,...z...,\,,

=1

= 0.

Therefore we have 6(n) = #6(y) ». While from (1.10) and (1.11) it is shown
that 3e(n)+e(n) = —*6(n) %, hence we have (1. 16).

Next we introduce some -operators ‘on the graded algebra of differentiable
forms on a Sasakian space. Let # be a p-form and its coefficients #y,...a,.
Then the p-forms ®u, VYu, V,u, (p—1)-form Du, and (p+1)-form Tz are
defined by the following forms with coefficients respectively : -

p

(Puh,..a, = Z /7% u;\,..},...l,, (p=1)
i=1

(‘I’u);\,...a,, =@ P Ui, »=1)

(Vo =1 Vo thryea, ®=0)

(Du)Az...A, = ¢W Vp Ughsei oy (Pg 1)
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»
Twh..a, = Z (=1)* ol Vethry.don, (p=1)

a=0

where uy,...5..., means that the subscript o« appears at the i-th position
and #,..A4..1, means that the a-th subscript A, is omitted.

LEMMA 14. For any p-form u in a (2m+1)-dimensional Sasakian
space, we haue

1.17) (AL*— L*A) u = 4k[(m— p—k+1) L' u + e(n)i(n) L*'u]
where k is a non-negative integer and L~'u=0.

PROOF. We take the induction with respect to the integer k. For
k=0, (1.17) is trivially valid. Now suppose that it is true for all £=0,1,.--,%
and consider the (k£+1)-case. Then we have

(AL¥*'—L¥*'A)u = (AL*— L*A) Lu+ L*(AL—LA)u
= 4k[(m— p—2—k+1) L*~*« Lu-+e(n)i(p) L*~*+ Lu]
+ LE-Al(m—p) u + e(n) i(n) u]
= 4(k+1)[(m— p—k) L*u + e(n) i(q)L*u)

for any p-form u, which asserts that the lemma is true for all non-negative
integer k.

2. C-harmonic forms. We consider an n(=2m+1)-dimensional Sasakian
space. A p-form u on the space ‘ is called to be C-harmonic if it satisfies

(i) du=0,
(ii) Su = e(n) Au.

As a form of degree 1 or 0 is effective, a C-harmonic 1- or O-form is
harmonic. As a harmonic p-form (p=m) is necessarily effective, in compact
case, soit follows that a p-form (p=m) is harmonic if and only if it is
effective C-harmonic.

In defining the C-harmonic forms S. Tachibana [1] imposed the condition
i(mp)u=0 in addition to (i) and (ii). In the following we prove that this
relation follows necessarily from (i) and (ii).
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LEMMA 2.1. In a Sasakian space, we have (cf. [9])
2.1 Ae(n) — e(n) A = 8L — L3,
(2.2 Ai(p) — i) A =dA — Ad.
PROOF. By virtue of Lemma 1.1, we get

Ae(n) — e(n) A = &de(n) + e(n) d) — (e(n) d + de(n)) 8
— (3e(n) © e(y) 8) d + d(Be(n)+e(n) 3)
=38L — L3 + 6(n) d — db(n)
=8L — L3.
(2.2) is obtained in the same way.

THEOREM 2.1. In a compact Sasakian space, we have for any
C-harmonic form u

2.3) b(m)u=0.
PROOF. We put « = i(g) #. Since
Au = ddu = LAu — e(n) dAu,
we have taking account of (2.2) and Lemma 1.2

Au = i(g) LAu — i(n) e(n) dAu + dAu
= LAu + e(n)i(y) dAu .

Therefore we have
(W, Auw') = (&, LAw) + (&, e(n) i(n) dAw)
= (A, AW).

On the other hand, it holds that
S = Au — i(n) du = e(n) i(y) Au,

hence we obtain
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@', 8u’) = (e(n) A’ , e(n) Aw') = (Aed, Au) .
Therefore we get (du', du’) = 0, which means that du’ = 0. Then
b(n)u = di(p)u + i(n) du =0,
and the theorem is proved.

LEMMA 2.2. In a compaclt Sasakian space, we have for any C-harmonic
form u,

de(mu) =0.
PROOF. From Lemma 1.3 and (2. 3), we have
demu)=—0(nu—endu = —e(neln Au=0.

LEMMA 23. In a compact Sasakian space, u =i(n)u is C-harmonic
for any C-harmonic form u.

PROOF. From (2.3), it is evident du'=0. Making use of (1.14) and
Lemma 1.2 we have

du' = Au — i(n) e(n) Au = e(n) i(n) Au = e(n) Au’ .
LEMMA 24. In a Sasakian space, we have for any p-form u(cf. [9])

2.4 Du =8V,u — V,0u + (n—p)i(n) u
= (-1/2)(dA—Ad)u + (p—1)i(n) u,

(2.5) Tu =d<,u — V,du — pe(n) u
= 1/2)QL—Ld)u — (n—p—1)e(n) u.
PROOF. Let u,..a, be the coefficients of the p-form #. Then we have
@V, = — VM Vptha,..n,)
= é””‘ Vothrioa, = (Vo Vatd,en, + Rapl e, — iRh,phf’ u"'h...,é...l,)

i=2

= (Du);.,..;ta + (V,,Su%,...}tp + (A—n+p-1) 1 Upryen, -
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Next we have

D .
. 1
(dAu)A,...;L, = V;\T(??“Buam,...;\,) - Z Va,(¢aﬁuagx,...i,...An)
i=3
P i . Ld i
= 29° Ughgeed, — 2 z N Uarpger Ryt T ¢aﬁ(v;\, Uaprge-r, — Z tham,...i,..d,)
i=3 i=3

» .
=2(p—1) N Uaryeon, T+ ¢‘xﬁ(vh Uaprye-d, — Z tham-',..i,...x,) ,

i=3

p .

1
(Adu);t,...;\, = (p"‘ﬁ(vaum,...z,— Vlhary 2, — Z Va, um,..fa..-x,)
i=2
d i
= 29", Ugryeod, — @**(V1, Ugadge ity — Z VA Uty hgeeety) «
i=3

Herce (2.4), is obtained. For (2.5),, we have

P
(dvﬂu)Ao"'A, = Z (—‘ 1)“ VAa(ﬂpvpqu.u&...A,)
a=0
14 P : s
= Z (=1 oL Vot + Z (=1L VoV Ungersbioriry, — Z Rlaplﬂgula...g...&...A,]
a=0 a=0 Bxa
' B
= Turgn, + (Vodt)a,..n, + Z (=1~ n”gAaAﬂulo...g..;...;\, - Z (- 1)“7)A3u7t.,...i“...&...;\,
axf axf
= (Fu)lo-"l, + (v"l du>A0"'A‘p + P(e("') u)}tn"'lp >
and the last formula (2.5), is the result of the following calculation ;
L 4 2 i i g
(SLu)M,...A, = ——2?7"[<p,,,u1,...1, — Z Por, Urjeeipenid, — thmu;\,...;...a, + Z ¢A‘1,u7t,...3...3...)\,,]
i=1 i=1 i<j
? i ? [
= 2(n—p—1)(n,u;h...x, - Z m‘ua,...;...a,,) — 2@y VU 2, — Z Por, VUL D2,
i=1 i=1
L i i g
— 2 P, Vo trfen, + > Pan, Vo Ung gt
i=1 i<i
2 g
(L8 prseny, = —2A@pr, Vo Usrgeet, — 2 Por, Vo Ugtgehyent,
Jj=2
2 - ] . i g
— P Vo thorspt, + 2 Paa, VT Uy Rye,]
j=2 2si<y’
P . . .
- i - i j
= —2[— > @1, Vi, + 2 Paa, Vot bp,]

i=1" i<j
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Thus the lemma 2.4 is proved.

LEMMA 25. In a Sasakian space, the operator \/, commutes with the
operators i(n), e(n), L and A.

PROOF. For the forms 7 and @, we have
(Vo =0, (Va3 =0,
and hence the lemma follows easily.

THEOREM 2.2. In a compact (2m++1)-dimensional Sasakian space, any
C-harmonic p-form (p= m) is orthogonal to 7, that is

(pu=0.

PROOF. If we set « =i(pu, @ =e(p)u and B =u—a, then it holds
(B = 0. According to Lemmas 2.2 and 2.3, we have 8a =0, hence

38 = du
holds good. As # and «’ are C-harmonic, we have
dB = — de(pu’ = — (L—e(n)d)u
= — Lu.
Furthermore we have from (2.1) and (2.5)
Aa = e(n)(Au + Am—p+1)u') + 2dV 0,
therefore using Lemma 2.5 we get

B, Ad) = (B,2dV.u) = 2038, Vu)
= 2.(8“7 vnu,) = Z(e(")) Au', V,,u’) =0.
Thus we have

(8, A8) = (B, Au) = (38, 88),

and consegently we get (dB, dB)=0, which shows d8=0. Therefore we have
Lu'=0. Applying. Lemma 1.4 for the case £=1, we have
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— LAY = 4(m—p+D)u’
because ()’ =0, and hence
(W, —LAw) = — (A, Aut)) = 4(m—p+1)(u', u).

Therefore if u is of degree p= m, both sides of this equation must be zero,
and we have «'=0. This proves the theorem.

COROLLARY 221. In a compact (2m+1)-dimensional Sasakian space,
we have

i(g) Lu =0, i) Au =20
for any C-harmonic (m+1)-form u.
Next we study some properties of C-harmonic forms.

LEMMA 2.6. In a (2m+1)-dimensional Sasakian space, for any p-farm
u we have (cf. [9])

(2.6) (AL—LA)u = 4(m—p—1) Lu + 4de(np)u,

2.7) (AA—AA) u = —4(m— p+2) Au + 48i(n)u .
PROOF. First we verify the formula for any p;form u (p=2)

(2.8 3Du + Ddu = (n—p+1) Au — di(n)u .

In fact, making use of (2.4),, we have

8Du = —8V,%u + (n—p)di(n u,
Déu =8 ,%u + (n—p+1)i(y) du,
and hence we get

8Du + Ddu = (n— p+1)(i(n)8 + di(n)u — di(n) .
On the other hand, by virtue of (2.4), we see that

3Du + Déu = (—1/2)(AA—AA) u + (P,_.l) dilg) u + (p—2) i(n) du
= (—1/2) (AA—AA)u + (p—2) Au + di(p) u.
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Comparing the above two relations, we have
(—1/2)(AA—AA)u = (n—2p+3) Au — 28i(np) u,
which  shows (2:7). The formula- (2. 6) is only dual to (2. 7).

THEOREM 2.3. ((1]) In a compact 2m~+1)-dimensional Sasakian space,
if a p-form wu is C-harmonic and p=m, then Au is C-harmonic, too.

PROOF. As the operator A commutes with & and e(s), we have
SAu = Ae(n) Au = e(n) AAu,
hence we have only to show that dAx=0. Since C-harmonic form u satisfies
Au = LAu — e(n) dAu,
with the aid of Lemma 2.6, 1.4, and Theorem 2.2, we have

AAu = AAu — 4(m—p+2) Au
= LA*u — e(n) AdAu,

if p=m. Hence we obatain
(Au, AAw) = (Au, LA*u — e(np) AdAu) = (N’u, Nu).
From 8Au=e(n) A’u, we again have
(OAu, 8Au) = (A’u, A’u).
These equations show that (dAu, dAx)=0, and hence we have dAu=0.
From this proof of the theorem, we see that dAx = 0 for a C-harmonic
p (= m)-form u. Thus we have
2.9 Au = LAu,

(2.10) Du =0

by taking account of (2.4),. Regarding to (2.9), we can give the following
necessary and sufficient condition for a form to be C-harmonic.
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THEOREM 2.4. In a compact (2m-+1)-dimensional Sasakian space, a
p-form u (p=m) is C-harmonic if and only if it satisfies i(p)u =0 and
Au = LAu.

PROOF. Let # be a C-harmonic p(=m)-form. Then Theorem 2.2 and
(2.9) imply the necessary condition of the theorem. Conversely let « be a
p-form satisfying i()#=0. Then we have

(u, Au— LAw) = (du, du) + (Su, du) — (Ax, Ax),

(Su—e(n) Au, Su — e(n) Au) = (u, 1) — 2(3u, e(q) Aw) + (e(n) Au, e(n) Az)
= (du, Su) — 2(Au — 8i(n) u, Aw) + (Au, Aw)
= (Ou, 8u) — (Au, Aw).

Hence we have the following integral formula for a p-form # orthogonal to 7:
(2.11) (u, Au— LAu) = (du, du) + Su—e(n) Au, du—e(n) Au) .

Therefore if Au—LAu=0, then we have du=0, Su=e(y) Au, which proves
our theorem.

THEOREM 25. In a compact (2m+1)-dimensional Sasakian space, if
a p-form u is C-harmonic and p=m, then Lu is also C-harmonic.

PROOF. As L commutes with i(), we know that Lu is orthogonal to
7. As we have from (2. 6)

ALu = LAu + 4(m—p) Lu
= LLAu + 4m—p) Lu = LALu,

Lu is also C-harmonic, because of Theorem 2.4.

COROLLARY 251. In a compact (2m+1)-dimensional Sasakian space,
if a p-form u is C-harmonic and p=m, then Au is also C-harmonic.

This is a consequence of (2.9). Next we consider the operators ®, ¥ and
V, for a C-harmonic form. For this purpose we give some lemmas.

LEMMA 2.7. In a Sasakian space, the operator ® commutes with the
operators i(n), e(n), L and A, and the operator ¥ commutes with the
operators L and A. (cf. [9])



ON C-HARMONIC FORMS IN A COMPACT SASAKIAN SPACE 279

PROOF. Since it is easily shown that the Lie derivative 6(5) commutes
with i(), e(n), L and A, the first part of the lemma comes from Lemma 2.5
and the formula

(2.12) Qu =0(pu — V,u.

For the second part, we calculate directly, for any p-form u
AVuhy.n, = PRI P PP+ + + ) Ugrooo, = PV P+ 2+ P Ug o,
(\I,Au)ﬂruh = (q’l(:‘ °cc ¢7l?)(¢dla uﬂ'xd's"'dr> .

Hence we obtain AP=%A. Next

»
(3
(1/2) (¥ Lt)apr,on, = PLPE PAT + + » PrT [ PooUrrennoy — 2 Py Yigyoriionrnory

i=1

D
i i J
= Powlorninay T O Pogy Uy, )

i=1 i<j

» i .
A %
= ¢0¥/8(¢7t:7‘ s o0 ¢A:"u¢,...¢,) + Z?’A‘a(@tf‘ es e ¢B¢r cee q’/\:ﬁua,.-.é...o-,)

i=1

dp)

3
0]

D)
§
°>

§>.

T2 Paa(Pa e L P e
i<j

= (1/2)(LY®Wer,.., »

which proves our lemma.
LEMMA 2.8. In a Sasakian space we have for any p-form u (cf. [9])
(2.13) (AD—DPA) u = 2(e(n) du + di(n) u) .

PROOF. By virtue of Lemma 2.4 and (2.12), we have the following four
relations operating to any p-form u

dDu = d®du — dddu + (n— p) di(n) u = (—1/2)(—dAdu) + (p—1) di() u,
Ddu = ®ddu — 50du + (n—p—1)i(n) du = (—1/2)(dAdw) + pi(n) duc,
ST = 0du — 5dDu — pde(n) w = (1/2)(—SLu) — (n—p—1) de(n)

TSu = Oddu — dbSu — (p—1) e(n) du = (1/2)BL8w) — (n—p) e(n) bz .
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Adding sides by sides of these relations it follows that
(PA—AD) u = 2(6(n) + Be(y) — di(n) u,
from which our lemma is easily deduced.

COROLLARY 2.81. (2]) In a compact (2m+1)-dimensional Sasakian
space, Pu is harmonic for any harmonic p-form u (p=m).

LEMMA 29. In a Sasakian space we have for any p-form u
(2.14) Vu = (—1)7 (i(n) e(n) u)
(2.15) (AV —VA) u = 2dVi(n) u + e(n) Tu).
PROOF. Let uy,..1, be the coefficients of the p-form «. Then
(Wuh,on, = @27+ QL Pl + * Pof Uy,

»
= (=17 e, + 2 (=17 g nPtr, b,

i=1

= (=1)? (ur,...a, — (e(n) i(n) wh,...n,)

which shows (2.14). The second formula is obtained by a little complicated
and straightforward computation, so we only point out the outline. At first
we have

i=1 i<j

and we put A,, A, A, the three terms of the right hand side respectively.
Then '

Al = —¢A:’l e ¢)\:ﬂ vapua.-..a,,

P ~
+ 2[P¢Md‘ L ¢A:’u¢l-..gn + Z¢A,m ceegece ¢;\:”lf‘ vl‘u‘,l...g‘...y’]

=1

D
o - N J
— ZZ ¢A,ﬁ ceegene QA:’ m‘V”‘uu...-a, + ZZ ¢A,¢l ceefeccgoce q;,g'%q"u,l...ig...%
i=1

iy

»
[t Z SRR~ S VAR VS 22(—1)i ’I]}L‘(‘I’Bu)a,...i...;\,

=1
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i ~ )
+22 (=D e ie e @ i) Woyeia,

i=1

~ o~ )
F 23 (=1 @t e e g e e @7 (i) W .

ixj

= =@ e P VPV U, + 2[(e(n) WU, 2, + (AWi(n) wh,..n,] -

<>

“op

Next we calculate

D
i
(AU, = = P17+ o 1T VPV plhgroo, + D @2 o AT RoP Ul s,

i=1

T g
+ Z?’Af' R (PA:’RU‘,,’” Uspoopooena, s

i<j

and we see by virtue of (1.7) and (1.8) the latter two terms of the right
hand side are equal to A,, A, respectively. Therefore we have (2.15).

COROLLARY 29.1. In a compact (2m+1)-dimensional Sasakian space,
Yu is harmonic for any harmonic p-form u (p= m).

THEOREM 2.6. In a compact (2m+1)-dimensional Sasakian space, if

a p-form u is C-harmonic and p= m, then ®u, Yu and V,u are C-harmonic,
too.

PROOF. Since p=m, it holds that i(y) Pu = 0, using Theorem 2.2 and
Lemma 2.7. Then we have

Adu = PAu + 2(e(n) du + di(n) w)
= OLAu = LADu,

hence we see that ®u is also C-harmonic by virtue of Theorem 2.4. Next
for Yu, it is evident from the definition of the operator W that i(s) ¥« and
We(n)u are zero. From (2.15) we have also

AVu = VAu + 2dVi(p)u + e(n) Ve(n) Aw)

= VLAu = LAYVu,

and W« is again C-harmonic. As 6(p)u=0 for a C-harmonic form u, we
know that ®u = — ,u. Therefore if « is a C-harmonic form, then so is V,u.
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Owing to the relation (2.14), it follows that if p(=m) is odd, then ¥ is
a complex structure of the vector space of all C-harmonic (or harmonic) p-
forms, hence we have

THEOREM 2.7. In a compact (2m+1)-dimensional Sasakian space, if
P(=m) is odd, then the dimension of the wvector space of all C-harmonic
(or harmonic) p-forms is even.

3. The decomposition theorem. S. Tachibana has showed the following
theorem for a C-harmonic p-form analogous to the Kihlerian space.

THEOREM 3.1. (1) In a compact (2m+1)-dimensional Sasakian space,
any C-harmonic p-form u, (p=m) can be written uniquely in the form:

”
Uy = Z LF o
k=0

where ¢,_s, is a harmonic (p—2k)-form and r is the integral part of p/2.
Conversely any p-form writlien as in the right hand side is C-harmonic.

The assumption of p in Tachibana’s original theorem is p=m+1. This
difference is due to the definition of C-harmonic forms. Our theorem 2.3 and
2.5 require the assumption p=m, and the theorem can be proved with the
aid of these theorems. If p satisfies p= m, then our definition of C-harmonic
p-forms coincides with that of [1], therefore the proof of Theorem 3.1 is
completely the same as [1], and we omit it.

Let C, and H, be the vector space of C-hamonic p-forms and harmonic
p-forms, and put ¢,=dim C,, b,=dim B, (=p-th Betti number). As any 0- or
1-form is effective, and a C-harmonic form is harmonic if and only if it is
effective, we have b,=c, (=1), b, =c,. Next we show that the forms (dp)*=L*-1
(0 =< %k = m) are C-harmonic. Since d commutes with L, we see easily that
dL¥.1=0. We want to calculate 8(L*-1). Making use of Lemma 2.5 we
have V,(L*-1)=0. Therefore by virtue of (2.5) it holds

SLk1 — LSL*'+1 = 4(m—2k+2) e(n) L*1-1,

and hence we can obtain

8LF+1 = dk(m—Fk+1) e(n) L+ 1.

On the other hand we have by virtue of (1.17)
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e(n) A(L¥-1) = e(n)(L*A -1 + dk(m—k+1) L¥=*+1 + e(y) i(np) L*'-1)
= 4k(m—k+1)e(n) L*t-1,

hence it holds
S3L%-1 = e(n) A(L*-1).

This shows that L*.1 is C-harmonic for £=0, ..., m. Hence we have ¢,, = 1
for all £=0,---,m. Thus

THFOREM 3.2. In a (2m+1)-dimensional Sasakian space, we have

CZkgly k:‘O""ym’

co=b,=1, ¢, =0b,.
As a corollary of Theorem 3.1, we have the following

THEOREM 3.3. (11) In a compact (Zm+1)-dimensional Sasakian space,
we have

b,=cp— Cps,

G =b,+b, s+ - +b,_,,
where r denotes the integral part of p/2, and p= m.

PROOF. From Theorem 3.1, the vector space C, and H, satisfy the
relation

szHp@LH—2@"’@LTI{p—2r’

where @ denotes the direct sum and p=m. We assume p=m—2. Then
for p+2(=m) we have

Cp+2 = Hp+2 D LHp (CEERNS LT+1Hp+2—-2(r+1) .
Since L:C,— C,,, is into isomorphic, we have

LC,=LH,® L*H, ,®--- @ L™*H,_,,,

and comparing these two relations we have
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Cp+2 = Hp+2 (&) LCp,

this proves the theorem.

4. Regular Sasakian structure. Suppose that a compact n-dimensional
Sasakian space M™ has regular structure. Then we have a principal circle
bundle (M™, p, B*"') over the Kihlerian space B*'=M"/5, and p: M"— B!
is the projection. S.Tanno has showed that (in the case of regular K-contact
space M™) the Betti numbers of M™ and B"~! have the relation

bp(M ) =b(B) — bp—2(B)> (Pé m)

and if p=1, then the vector space H;(B) of harmonic 1-forms on B"!is
isomorphic to the vector space H;(M). We shall show that in a Sasakian
space the vector space H,(B) is isomorphic to the vector space C, (M) for
p=m.

As the 1-form # on M™ is an infinitesimal connection of (M, p, B), there
exists a lift L: T(B) —» T(M) with respect to this connection. (7(B) and
T(M) denote the tangent bundles of the spaces B"~! and M™.) Let g = (ga.)
be the metric tensor of M™, then the metric ¢° of B! is defined by

4.1 g = L*g.

We investigate the relation between Riemannian connections of these metrics
g and ¢. We fix a point x, in M™ and u,=p(x,) in B"!, and take local
coordinate systems (x!) at x, and (#*) at %,, We denote the right translation
M™ — M™ of the structural group by

(xl,'°"xn,t)—) A(xl"",;tn’t)

for sufficiently small ¢ with respect to the local coordinates system. Since
each fibre of M™ is a trajectory of the vector field 2", we get

(4.2) r@ =(%)

Next we construct some local cross-section over the neighbourhood of #, as
follows: let X be a vector at u, and u(s) be the geodesic starting at %, and
having the tangent vector X. Take a lift LX at x,, and the geodesic Z(5)
starting at x, and having the tangent vector LX. The curve Z(5) is projected
to the curve u(s). Thus there exists a local cross-section over a sufficiently
small neighbourhood of #, as every point can be united to the original
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point %, by a unique geodesic. In the local coordinate systems, we represent
it by

xl:lA(ul 5%y un——l) 5 -’1307L = ll(uo) 5
and we call this local cross-section an adapted one at x,. Then the equation

x =@, -+, u"") of the adapted local cross-section at x*=¢@"(x,, £) can bz
written by

i) = '), 1),

because the right translation of the group on M™ is an isometry. Hence we
have

(4.3) 9;;5‘;) - 3%:; if’ DLW o=t

In particular, we have

ws (), -5

‘We express the projection p: M™ — B"! by
wt = pi(at, e, 7).
Then for sufficiently small #, we have
(4.5) u® = p@'((w), 1), - - + , "), 1)),

and therefore we get differentiating it

2p(z) oI .
(4.6) D D _ g,z i),

: L
(4‘17)] o1 Ui 0 N

where the latter equation is nothing but the projection of the vector 7' to
the base space and it holds good at every point in the neighbourhood of z,.
We denote oM u)/ou® (resp. 2p%(x)/ox") by Ii(u) (resp. pi(x)).

The lift L: T(B) —»T(M) is a differentiable distribution in M" and a
linear mapping at each point of B"-!. We denote it by
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Ly: T.(B) — Tyo(M)

with respect to the local coordinates systems. Then from the construction of
the adapted local cross-section, we have

(4. 8) Lg(uo) = lé(uo) -

The lift at the point @*({(«), f) is given by (0¢*({(), t)/0x*) Li(u), hence it
holds

(4.9) m(@ U, ) PO 1) =
Corresponding to (4.6), we have

(4.10) i) Ly(w) = 8%.

Let X* be any vector at the point @"({(«),t), then we see that the vector
X*— 9, X"7" is horizontal and has the projection p$X*. Thus we have

2D, Latw) piepltt), 1) X = X = n X

and especially,
(4.11) La(w) pil(w) = & — n'(Uw)) n.(Uw))

holds good. Differentiating (4.9) at £=0, we have
3um glb Lim I, =0

where L}, = 0L/ou*. Hence the following equation

oL ol
(4.12) m(Lap—Li.) = u"n( 20 Ly - oub Lz)
is valid at the point x=I[(x). Similarly we have from (4.11)
P‘}{(Lic - Lg,;) = P%,u(l'g Lg - lg I})

and therefore we get by virtue of (4.11) and (4. 12)
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(4.13) oo — Lbo = (f Qumy + LE L)Ly — B L2).
In particular, at the points %, and z,, it follows
(4.14) L o(wo) = Li,a(tto) + 7 (dn)n(0) L Li(uto) -
Now the metric tensor ¢4, is, by definition, given by
(4.15) 9 a(w) = Li(w) Li(u) g,((w)) .

As the metric ¢ and the 1-form 5 are invariant on the trajectory of 5, we
have at an arbitrary point x* = @*({(«), t)

(4.16) gu(x) = PUE) Pu(x) § u(P(x)) + Mm(2) (),
(4.17) g*¥(x) = La(p(x)) Li(p(x)) g “*(p(x) + () n*(x) -
From them we can investigate the relation between the Christoffel symbol

{ 7\'”} at the point x, with respect to the metric gy, and that { Ijlc} at the

U
point u,= p(x,) with respect to the metric ¢'s;. From (4.15), we have at the
points x, and %,

@18 o) = e Liw) L {2} + piGe) L)

U

While we have 7" p7=0 at every point on M™", hence it follows that

ol L b = aorps + st
If we differentiate p§({(w)) L§(u) = 8% and consider it at w=u,, then we get
pelbe = —pr. L LS.
Thus we have at the points x, and %, = p(x,)
@19 sl ) =B n] + pte+ T+ Tura pt

Let u=(u,,....,) be a p-form on the base space B™', and put 7 = p*u.
Then the p-form % on M™ has the coefficients
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(4. 20) Unier, = PRI+ o * P2 UGa, -

It is well known that % satisfies

(4.21) imz =0, du= p*du.

We calculate 8z in the following. At the points x, and %, we see
»

V”ﬁll...%(xo) = auﬁ;\l...;\, — Z {#oy;i} ﬁh,...z...xy

i=1 - X

V4
=3 (PR Pl P2 Uayea, (o) + (PR -+ ¢ PR2) DOy Ua,..a, (o)

i=1

p . A~
i=1 Zo

D .
= phie-- PA‘:’ y2 Va ua.---a,(uo) - Z(Vpﬂp"})\‘"‘ me"m)ﬁl,. .,9...7\’7(.710).
i=1
Contracting this by ¢**, we have

p .
@@y, = (P¥8When, + 2 P™@EM, + P2F ) Trpenfor,

i=1

p .
= (P*Bu)xg...% + ‘(/M¢,Lp’mﬁp;\2...hp + Zg’”%{’mﬁm,..z”%

i=2

+ g‘“ P Mgy, + ig“htpﬁ mﬁu,...f:...;\n
= (p*8u,.a, + (€(PAL),tp - —
Thus we have
(4.22) 3 = p*du + e(n) Au.
at every points x in M" and p(x) in B™L.

For any harmonic p-form « on the base space, we see from (4.21) and
(4. 22) that the p-form % = p*u satisfies

du =0, 8 = e(n) A7,

and hence #% is a C-harmonic p-form. Conversely, for any C-harmonic p-form
w on M", i(p)w =0 and 6(p)w =0 are valid if p=m. Therefore there
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exists a p-form w’ on B"! such that w=p*w'. Then from (4.21) and (4. 22)
again we see that w must be harmonic. Consequently we have proved

THEOREM 4.1. In a compact regular Sasakian space M™*™*, let B™
be the base space of the fibering of Boothby-Wang. Then the vector space
of C-harmonic p-forms on M®™*' is isomorphic to the vector space of
harmonic p-forms on B™ if p= m.

Thus we have dim H,(B)(=b,B))=dimC,(M), if p=m. Taking account

of Theorem 3.3, we can obtain Tanno’s theorems again.
COROLLARY 4.1.1. In the same condition as Theorem 4.1, we have
b(M) =b,(B) — b,_o(B), 2=p=m.

COROLLARY 4.1.2. In the same condition as Theorem 4.1, the vector
space of harmonic 1-forms of M*™*' and that of B®™ is isomorphic.

5. C*-harmonic forms. Let M" be an n(=2m+1)-dimensional compact
Sasakian space. As a dual form of a harmonic form in a Riemannian space
is also harmonic, it is natural to ask for the properties of a dual form of a
C-harmonic form in a Sasakian space.

We shall call a form « to be C*-harmonic if it satisfies

du = i(n) Lu,
du =0.
From the definition, the following theorem is evident.

THEOREM 5.1. In a Sasakian space, a p-form u is C-harmonic if and
only if the (n— p)-form *u is C*-harmonic.

Therefore the dual form ce() L™ *-1 (where ¢ is a constant) of L*.1 is a
C*-harmonic form. By virtue of Theorem 2.2 we see that for any C*-harmonic
p-form u (p=m+1) it holds

e(nu=20.

Moreover we see from Theorem 2.1 and Lemma 1.3,

(5.1) b()u=0,
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for any C*-harmonic p-form u (p is arbitrary). In the proof of Theorem 2.2
we have Li(p) u=0 for any C-harmonic p-form u, and therefore we have
Ae(n) u=0 for any C*-harmonic form #. We denote by C¥*, the vector space
of all C*-harmonic p-forms.

LEMMA 5.1. In a compact Sasakian space, we have
H,=C,nC}
Jfor an arbitrary p.
PROOF. It is evident from the definition that C,NC} is included in H,.

Conversely let # be a harmonic p-form. If p= m, then we have i(p)u =0,
and Az = 0. Therefore

(5.2) e(mpAu=0, i(pLu=20

hold good. Hence u is both C-harmonic and C*-harmonic. If p= m+1, then
we have e(n)u = 0, from which (5. 2) follows too, and H,C C,NC} is proved.

LEMMA 5.2. Let ube a p-form in C,uC}. Then e(n)u is a C¥-harmonic
Sform, and i(p)u is a C-harmonic form. The mapping e(n)|C, is an into
isomorphism and i(n)|C},, is a homomorphism onto C,, if p=m.

PROOF. Let # be a C-harmonic p-form, then we have by virtue of

Lemma 2.2 8(e(n)u) = 0. We have Li(p)u=0. As du=0 we get d(e(r)u)=Lu,
and we have

Lu = Li(n) e(n) u = i(r) Lle(n) u) .
Hence e(np)w is C*-harmonic. If v is C*-harmonic, then we have
d(e(n) v) = —e(n dv =0,
d(e(n) v) = Lv — e(n) dv = Lv — e(n)(i(y) Lv)
= i(y) L(e(n) v),

which shows that e(g)v is also C*-harmonic. Moreover if e(p)u =0 for a
C-harmonic p-form u (p= m), then we have

u=e(m)i(n)u+ i(n)enu=0.



ON C-HARMONIC FORMS IN A COMPACT SASAKIAN SPACE 291

Therefore e(n) is an isomorphism of C, into C¥,,, (p=m). In the same way,
we can prove the statement with respect to i(z).

THEOREM 5.2. In a compact (2m+1)-dimensional Sasakian space, it
holds

C;r = HpGB e(ﬂ)c-—l

if p=m.

PROOF. The vector space H, and e(y)C,_, are the subspaces of C¥ and
H,ne(n)C,., = (0) if p=m. For any C*-harmonic form # we decompose it
as

u = i(n)(e(n)u) + e(n)(i(nwu).

Then e(p)u is a C*-harmonic (p+1)-form, and we see i(n)e(n)# belongs to C,.
Similarly, as i(p)u is a C-harmonic (p—1)-form, e(y)i(p)u is C*-harmonic.
Therefore i(n)e(p)u = u — e(n) i(n)u is at the same time C-harmonic and
C*-harmonic, hence belongs to H,. Thus the theorem is proved.

COROLLARY 52.1. In a compact (2m+1)-dimensional Sasakian space,
the relation

H, = i(n) e(n) C;
is valid for p=m. Hence b, =0 if and only if e(n)Ci =0 for p= m.
COROLLARY 5.2.2. In a compact (2m++1)-dimensional Sasakian space,

if uis a C-harmonic form (p=m), then du is C*-harmonic. If u is a
C*-harmonic p-form (p= m), then du is C-harmonic.

PROOF. The first half is an easy result from Theorem 2.3 and Lemma
4.2. Let u be a C*-harmonic p-form (p= m), then there exsits a harmonic
p-form ¢ and a C-harmonic (p—1)-form w such that w=+r+e(n)w. Hence
we have du=de(y)w=Lw, which is C-harmonic.

COROLLARY 5.23. In a compact (2m+1)-dimensional Sasakian space,
if a p-form u (p=m+1) is C¥-harmonic, then Au is also C*-harmonic.

COROLLARY 5.2.4. In a compact (2m+1)-dimensional Sasakian space,
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we suppose that a p-form u (p=m—2) is C*-harmonic. Then Lu is also
C*-harmonic if and only if e(n)u=0.

PROOF. Let u be a C*-harmonic p-form (p=m—2). If e(p)u = 0, then
Lu=e(n)du is also C*-harmonic by virtue of Corollary 5.2.2 and Lemma 5.2.
Conversely we assume that Lx is a C#*-harmonic form. There exist a
harmonic p-form +» and a C-harmonic (p—1)-form w such that u=+r+e(n) w.
Hence we have Lr=Lu—e{n)Lw is C*-harmonic. Since a harmonic form
v is C-harmonic, Iy is also C-harmonic. Therefore L+ is again a
harmonic (p+2)-form. As p+2=m, we have ALYy =0. Now AL is an
automorphism of the vector space which consists of the p-forms v such
that i(n)v=0 if p=m—1 (see [1]). Consequently we have 4r=0. This shows
that u=e(y)w and hence e(n)u=0.

By virtue of Theorem 3.1 and Theorem 4.2, we can set the following
decomposition theorem for the C*-harmonic form.

THEOREM 5.3. In a compact (2m+1)-dimensional Sasakian space, any
C*-harmonic p-form wu, (p=m) can be wrilten uniquely in the form:

Uy =Y, + Ze(W)Lk‘l"p—l—gk,
k=0

where \r, and r,_,_,, are harmonic forms and r is the integral part of
(p—1)/2. Conversely any form written as in the right hand side is
C*-harmonic.

Yano-Bochner [8] has defined the Killing p-form which can be considered
as a natural extension of Killing 1-form. We show in the following an example
of a Killing p-form where p is odd and ask for some relations between
Killing forms and C*-harmonic forms in a Sasakian spacs.

A p-form )., in a Riemannian space is called to be Killing if its
covariant derivative WV, v,..a, is skew-symmetric in the indices (g, Ay, =+ -, N)).
Therefore a p-form wy,..a, is a Killing form if and only if it satisfies

(5 3) (d‘v),xo...;\’ = (P-l-l) VM‘U;\,...AD .
In the first place we show the following
THEOREM 5.4. In a Sasakian space, the (2k+1)-form

u® = e(n) L*-1
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are Killing forms, where k=0,1,+«-,m.
To prove this we prepare some lemmas.

LEMMA 53. In a Sasakian space, the (p+2)-tensor (p= 2k k=1)

»
i
Af;’?h,...;\p = Z¢,A‘¢'X,...a...;\p
i=1
is skew-symmetric in the indices (a, p), where @i..., is the coefficients of the
k

2k-form T .
form @ A-AP

PROOF. For k=1, @, P, + Por, @1, is clearly skew-symmetric in (s, p).
We assume that the lemma is true for 2 =1,...,%.2—1, then

L .
k-1 — k-1,
A‘(TPM-)"M = E Pors Phyee-peedy s
j=3

h J h
n _ k-12 4 k-1
B,(,p);u\.‘..;\ﬂ = E Pory Phyedeepeed, T Por Phgiepenr, for h= 3,
3<jxh
h 1 4 h 1 ko1
n — k-1 ro1 k-1
C‘(rpfuls--%, = E Poty Phgrhenfinpeor, T Par@Pagifefn, T Pop PrAp 2

J=h,1=3

for bl B=h<l]
are all skew-symmetric in (o, p). Calculating A® directly we have
z j
Afy'?x,...x, = Por, Pirged, = Pory Py, + Z¢,7\,¢Iil...p‘...x,

Jj=3

V4 »
—_ (k-1) — (%) (h) hl)
= Pa, AT, Z¢A|AhBap13...1, + Z¢A,Athpx,A,-uA, + Z ¢Ah1,C.(yp/1.m1,

' h=3 h=3 3=h<i

»
— -1
+ (¢0‘7¢|¢PM - ¢7A2¢PAI) ¢]X.'}.Ap - Z (¢¢7M¢pl, - Pory ¢a'l,) ¢7’i,..1.i,...1,
; . =3 i .

? 7 ;o
+ 20 (Pora®Pors — P Por,) Pt A, — > (Por,Por, — Por, Pory) Phrtivedeeea, -

J=3 3=j<h

The latter four terms are clearly skew-symmetric in (o, p), hence so is

APha,-
LEMMA 5.4. In a Sasakian space, we have

vp(Lu(k)) = L.(vpu(k)) ’
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where the form N u is defined by (Vuh,..a, = Vla,..a, for a p-form u.
PROOF. Put ¢ = (1/2)dn. For p(=2k+1)-form u®, we have e(n)u®=0.

Hence it follows that

p .
Vol @AUD)prreor, = (@ AVt )grrer, + Vo@ortidon, — D Vp@or 2 a,

i=1

i i g
- z V,,rpmul,...;...l + Z Vo@n, Mulv"t;"-‘?"-lp

i=1 i<j

= gorle(m) u®)or,...1, — ool u®)mr,..0,

¥4
— 2 g (e uP)r b, + (@A V™) pereen,
i=1

= (@A V"o, -
PROOF OF THEOREM 5.4. We prove it by the induction again. In

case k=0,u® =4 is a Killing form. Assuming that the theorem is true for
k=0,1,---,k we set p=2k+1. Then the p-form u«® satisfies

(5. 4) (du("’)%...% = (p+1) V;tou;é,") A, = 2¢§:—17q' .

We have by virtue of Lemma 5.4

i=1

»
J
— Z(phf Vpu;f‘.)..:,...; + Z‘Pl A \7,u( 9.5 ..".. Ay

i=1 1<J

then the latter two terms in the right hand side is skew-symmetric in (o, p)
by the assumpticn. Considering (5. 4), we have

k K &
¢47'r pul(.) l - Z¢a7\¢ (-)--¢~- Ay

2
s —1)+ i—" [q)o-r(ppl. Ay T Z¢¢A ¢Pa,...?-...7tp]

i=1

]D+1
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where we set Ny = 7. This is skew-symmetric in (o, p) from Lemma 5.3.
Hence we see that ,(u**"),,..., is also skew-symmetric in the indices (p, o),
and the theorem is proved.

Now the Killing form «® = e(n) L® -1 satisfies e(p)u® = 0. Though how
many of the Killing forms satisfy this condition is not clear, we next only
concern about such Killing forms in a Sasakian space. Then we can see
that there exists a relation between Killing forms and C*-harmonic forms.

Let # be a Killing form and assume that it satisfies e()#=0. From the
definition of Killing form, we have easily

Su =0,
(pdu=(p+1) Vu.
We get v
6.5 6(mu =0

for such a Killing form from (1.18). Then we see

THEOREM 5.5. In a Sasakian space, if a Killing p-form u lsatisﬁes
e(n)u=0, then u is C*-harmonic and i(g)u is C-harmonic for all p.

PROOF. We have from (5.5)
dipu = —i(pdu = —(p+1) V,u.
As e(pu = 0, it holds « = e(n) i(n)u. Then
du = Li(n) u — e(n)(—(p+1) V,u) = Li(n) u.
This shows with 8«=0 that « is a C¥*-harmonic p-form. We have, therefore,

—i(n)du=di(p)u = 0. Moreover we get 8(i(p)u) = Au and e(n) A(i(n)w) = Ax,
hence i(n) # is a C-barmonic (p—1)-form.

COROLLARY 5.5.1. In a Sasakian space, if a Killing form u satisfies
e(nu=0, then

Vu=0, du=0

are valid.
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COROLLARY 5.5.2. In a Sasakian space, we assume that a Killing form
u satisfies e(n)u=0. Then u is effective if and only if i(p)u is harmonic.
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