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Introduction. It is well known that in a 2m-dimensional compact
Kahlerian space, any harmonic ^>-form (pt===. nt) can be written uniquely in
terms of effective harmonic forms and the fundamental 2-form of the space.
When we consider the analogy in a compact Sasakian space, it is insigni-
ficant as far as we are concerned about harmonic forms, because any harmonic
form is effective. S. Tachibana [1] has introduced the notion of C-harmonic
forms in a compact Sasakian space, which is wider than that of harmonic
forms, and succeeded to prove the analogy of the decomposition theorem for
C-harmonic forms. In this paper we try to make the definition of C-harmonic
forms a little looser than that of Tachibana's original one. On the other
hand, S. Tanno has drawn the relation of Betti numbers between the base
space and the bundle space in the fibering of a regular i^-contact Riemannian
space. It is shown that a ^>-form (p^ m) on the bundle space is C-harmonic
if and only if it is induced from a harmonic ^>-form on the base space.
Thus we can obtain the theorem of Tanno again. Lastly we investigate the
C*-harmonic forms which are dual to the C-harmonic forms, and in connection
with them, we observe Killing forms and give one of its example on a
Sasakian space.

Manifolds are assumed to bs connected and the differentiable structures
on them are assumed to be of class C°°.

I should like to express my hearty gratitude to Prof. S. Tachibana for his
kind suggestions and many valuable advices.

Contentes are as follows:
1. Preliminaries
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5. C*-harmonic forms

1. Preliminaries. An ^-dimensional Riernannian space Mn is called a
Sasakian space if it admits a unit Killing vector field T/X such that

(1.1)
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where gXv, is the metric tensor of Mn. Then n is necessarily odd (= 2m+ 1)
and Mn is orientable. With respect to a local coordinates system {•£*}, \ = 1 ,
• • •, tiy if we define a 2-form <p = (1/2) cpx^do^ A f̂o^ by

then we have dij=2(p and it holds

(1- 2) V*?v

On a Sasakian space, the following identities are well known (cf. [2]):

(1.3) \7x<px»= -(n-l)Vll,

(1. 4)

(1. 5) <P

(1 . 6) R\,

(1. 7) (1/2) ^ i ? a ^ = i?xe^e + (n-2) ^ ,

(1.8)

In the following, we consider always an n(=2m + 1)-dimensional Sasakian
space Mn. If M n is compact, then we denote the global inner product of
any ^>-forms u and v by

A(u, v)= [ (u

where *t; is a dual form of v. The dual operator * satisfies the relation

(1. 9) **# —u

for any />-form u. The adjoint operator 8 of d is given by

(1.10) $u = (

for a />-form u.
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Next we define the operators e(rj), i(rj) and L, A for any ^>-form u as
follows:

(1.11) e(v) u = vAu, i(rj) u = (+1)*'x *e(rj) *u ,

(1.12) Lu — dr)[\u, Au = i(drj) u = *

and for 0-form a and 1-form b we define

Then we have for any forms u and v

drj A up_2 A *vp = up_2 A *(*L*vp),

V A up_x A *vP = (-I)2 '"1 Wp-i A *(*e(v) *Vp),

where the subscripts of w and't; denote the degree of them. Therefore if
Mn is compact, then e(rj) (resp. L) and i(rj) (resp. A) are adjoint operators
with respect to the global inner product. We shall call a form u to be
effective if it satisfies Au..= 0,

LEMMA 1.1. In a Sasdkian space, the following relations hold (cf. [9]):

(1.13) L = e{rj) d + <feGy),

(1.14) A = i(fj) 8 + 8/(77) -

PROOF. For any ^-form u, we have

Lu = drj /\ u = d(r]f\u) — (—7) A d#)

= de{rj) u -f (̂77) Jw .

(1.14) is obtained easily from (1.10, 11, 12).

LEMMA 1.2. In a Sasdkian space, the operator L (resp. A) commutes
with the operators i(rj), e(rf) and d (resp i(rj), e(rj) and 8). (cf. [9]).

PROOF. AS i(rj)dij = O9 we have for any form u

i(tj)(dfi A u) = (i(rj) drj) Au + drj f\ (i(rj)u)

= Li(rj)u.
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From (1.11) and (1.12), we obtain A.e(rj) = e(rj) A. The other relations are
obtained by virtue of Lemma 1.1 and

= d% =8 2 = 0 .

We denote the Lie derivative with respect to tf by 6{rj). It is well
known that it holds

6(v) = di(

LEMMA 1.3. In a Sasakian space, we have (cf. [9])

(1.15)

or equivalently

(1.16)

PROOF. Since r) is a Killing form, it satisfies d(rj)g = O, Srj=O, where g
is the metric tensor of Mn. Then it follows that for a p-iorm u of
coefficients U\r..\p

((6(v) - *d(v)*)u)Xl...Xp=SvuXl...Xp + (p\) Efl^(^)^U^,...p i...A,

= 0,

Therefore we have d(rj) = *6(rj)*. While from (1.10) and (1.11) it is shown
that §e(r}) + e(rj)8=— *6(rj)*, hence we have (1.16).

Next we introduce some operators on the graded algebra of differentiable
forms on a Sasakian space. Let u be a p-ioxra and its coefficients U\r..\p.
Then the ^>-forms <fru, ^w, V^w, (p — l)-form Du, and (£ + l)-form Yu are
defined by the following forms with coefficients respectively: *

(p^

^ 0)
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P

(Tu)K...x, = £ (-1)" <pxf V.UX....Z...*, (p^ 1)

where U\l...£...\p means that the subscript a appears at the z-th position
and u\0...\a...\p means that the tf-th subscript X« is omitted.

LEMMA 1.4. For any p-form u in a (2m+ 1)-dimensional Sasakian
space, we haue

(1.17) (A£*-L*A) u = 4k[(m-p-k + l)L*-lu + e(v)i(v) Lk~lu\

where k is a non-negative integer and L~1u=0.

PROOF. We take the induction with respect to the integer k. For
£=0, (1.17) is trivially valid. New suppose that it is true for all k=0,1, • • •, k
and consider the (k-t-1)-case. Then we have

(ALk+1-Lk+1A)u = (AL*-ZM.) Lu + Lk(AL-LA.)u

= 4k[(m-p-2-k + l) Lk~l • Lu+eirfiiitiL*-1. Lu]

+ Lk • A[(m-p) u + e(rj) i{tj) u]

- p- k) Uu + e(v) i(<n)Lku]

for any p-iorm u, which asserts that the lemma is true for all non-negative
integer k.

2. C-harmonic forms. We consider an n(=2m + 1) -dimensional Sasakian
space. A ^>-form u on the space is called to be C-harmonic if it satisfies

( i ) du = 0,

(ii) Zu = e(rj) AM .

As a form of degree 1 or 0 is effective, a C-harmonic 1- or 0-form is
harmonic. As a harmonic p-iorm (p^ m) is necessarily effective, in compact
case, so it follows that a ^-form (p^m) is harmonic if and only if it is
effective C-harmonic.

In defining the C-harmonic forms S. Tachibana [1] imposed the condition
i(rj)u=0 in addition to (i) and (ii). In the following we prove that this
relation follows necessarily from (i) and (ii).
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LEMMA 2.1. In a Sasakian space, we have (cf. [9])

(2.1) Ae(rj) - e(v) A - 8L - Lt,

(2.2) Atfa) - £(17) A = dA - Ad.

PROOF. By virtue of Lemma 1.1, we get

Ae(rj) - e(v) A = 8(^(7;) + e(rj) d) - (e{r}) d + de(rj)) 8

= 8L - L8 + 5(ij) rf - dd(fj)

= 8 L - L 8 .

(2. 2) is obtained in the same way.

THEOREM 2.1. In a compact Sasakian space, we have for any
C-harmonic form u

(2. 3) O(fj)u = 0.

PROOF. We put u — t(rj)u. Since

Au = d$u = LAu — e(rj) dAu,

we have taking account of (2. 2) and Lemma 1.2

Au = i{rj) LAu — z(^) e(v) dAu 4-

= LAu 4- ̂ (^) t*(̂ ) <iAw .

Therefore we have

(V, Au) = (u, LAu) 4- (w', e(?;

= (Au, Au) .

On the other hand, it holds that

Su = Au — £(77) Su = e(rj) i(rj) Au,

hence we obtain
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(§u, Bu) = (e(rj) Au , e(rj) Au) = (Au, Au) .

Therefore we get (du, du) = 0, which means that du = 0. Then

6(rj) u = di(rj) u + i(rj) du = 0,

and the theorem is proved.

LEMMA 2.2. In a compact Sasakian space, we have for any C-harmonic
form u,

h(e(v)u) = 0.

PROOF. From Lemma 1.3 and (2. 3), we have

800?) u) = -6(rj) u - e(rj) hu = -e(rj) e(rj) Au = 0 .

LEMMA 2.3. /n a compact Sasakian space, u—i{r))u is C-harmonic
for any C-harmonic form u.

PROOF. From (2.3), it is evident du =0. Making use of (1.14) and
Lemma 1.2 we have

hu = Au — i(rj) e(rj) Au = e(rj) i{fj) Au = <?(?;) Aw'.

LEMMA 2.4. /w a Sasakian space, xve have for any p-form u(cf [9])

(2. 4) Dw - SV^w - V^8w + (n-p) i(rj) u

= (-l/2)(dA-Ad) u + (p-1) i(v) u,

(2. 5) Tw = dVvu - \/vdu- pe(v) u

= ( 1 / 2 ) ( 8 L - L 8 ) M - (n-p-l)e(v)u.

PROOF. Let u\r..%p be the coefficients of the ̂ >-form u. Then we have
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Next we have

p

(dAu)Xz...Xp = Vx,(<pa0ua0jiv..x9) -

V .

= 2V
auaXz...Xp -2J£V

<xuaXixt...H2...Xp

Hence (2. 4)2 is obtained. For (2.5)!, we have

= (Tu)Xo...Xp + (\7vdu)Xo...Xp + p(e(7J) u)Xo...Xp,

and the last formula (2. 5)2 is the result of the following calculation;

(8L#)pAj—Ap = —2Va[<PapUXl..ap—^<PaXiUXl...$..ap~^<PxtpUXl...£...Xp+^^

r> V

= 2(n—p — l)(rjpuXl...Xp — 2 2 ^A1^A1...J...AP) -

(Lhu)pXl...Xp = -2[<ppXlV
(ru(7Xi...Xp - 52<ppxj V°XA 2 . . .A 1 . . .AP
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Thus the lemma 2.4 is proved.

LEMMA 2.5. In a Sasakian space, the operator Vv commutes with the
operators i(rj), e(rj), L and A.

PROOF. For the forms rj\ and <p\^ we have

( V ^ = 0, (V,9>K = 0,

and hence the lemma follows easily.

THEOREM 2.2. In a compact (2m + l)-dimensional Sasakian space, any
C-harmonic p-form (p^m) is orthogonal to r), that is

PROOF. If we set u = i(rj)u, a = e(rj)u and B — u—cL, then it holds
— 0- According to Lemmas 2.2 and 2.3, we have 8a = 0, hence

8/9 = hu

holds good. As u and u are C-harmonic, we have

d/3 = — de(rj)u = — (L — e(rj)d)u

= - Lu.

Furthermore we have from (2.1) and (2. 5)

Act = e(v)(Au + A(m-p + l)u) + 2dV

therefore using Lemma 2.5 we get

(A Atf) = 08, 2dVnu) = 2(8/3, Vvu)

= 2(8«, Vvu) = 2(e(v) Au, Vvu) = 0.

Thus we have

(& MS) - (A Au) - (8A 8/8),

and conseqently we get (d@,d@) = 0, which shows d&=0. Therefore we have
Lit—0. Applying Lemma 1.4 for the case k = l, we have
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- LAu = 4(m-p + l)u

because i(rj)u' = O, and hence

(u, —LAu) = — (Au\ Au) = 4(m—p-{-l)(u, u).

Therefore if u is of degree p^m, both sides of this equation must be zero,
and we have u = 0. This proves the theorem.

COROLLARY 2.2.1. In a compact (2m + 1)-dimensional Sasakian space,
we have

for any C-harmonic (m + l)-form u.

Next we study some properties of C-harmonic forms.

LEMMA 2.6. In a (2m + l)-dimensional Sasakian space, for any p-form
u we have (cf. [9])

(2. 6) (AL-LA) u = 4(m-p-l) Lu + 4de(rj)u,

(2. 7) (A A - A A) u = - 4 (m - p + 2) Au + 48*0?) u -

PROOF. First we verify the formula for any ̂ >-form u (p^2)

(2. 8) SDu + Dhu = (n-p + l) Au - U(rj)u .

In fact, making use of (2. 4)l5 we have

hDu = - 8 V,8w + (n-p)hi(rj)u,

Dhu = 8 V^8w + (w-/> + l) z(̂ ) 8w,

and hence we get

hDu + DSu = (n-p + l)(i(rj)'$ + hi{rj))u - hi(tj) u.

On the other hand, by virtue of (2. 4)2 we see that

8w - (-1/2)(AA-AA)« + (/>

= (-1/2) (AA-AA) tf + (/>-2) Aw.



ON C-HARMONIC FORMS IN A COMPACT SASAKIAN SPACE 277

Comparing the above two relations, we have

(-l/2)(AA-AA)w = (n-2p + 3)Au - 2U(rj)u,

which shows (2; 7). The formula- (2. 6) is only dual to (2. 7).

THEOREM 2.3. ([1]) In a compact (2mA-l)-dimensional Sasakian space,
if a p-form u is C-harmonic and p^ m, then Au is C-harmonic, too.

PROOF. AS the operator A commutes with 8 and e(rj), we have

SAw = Ae(rj) Au = e(rj) AAu,

hence we have only to show that dAu = 0. Since C-harmonic form u satisfies

Au = LAu — e(rj) dAu,

with the aid of Lemma 2.6, 1.4, and Theorem 2.2, we have

AAw = AAu — 4(m — p + 2) Au

= LA2u — e(rj) AdAu,

if p-^m. Hence we obatain

(Au, AAu) = (Au, LA2u - e(v) AdAu) = (A2u, A2u).

From SAu=e(rj) A2u, we again have

(SAw, SAw) = (A2u, A2u) .

These equations show that (dAu, dAu)=0, and hence we have dAu = 0.
From this proof of the theorem, we see that dAu — 0 for a C-harmonic

p ( g m)-form u. Thus we have

(2.9) Au = LAu,

(2.10) Du = 0

by taking account of (2.4)2. Regarding to (2.9), we can give the following
necessary and sufficient condition for a form to be C-harmonic.
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THEOREM 2.4. In a compact (2m-\-l)-dimensional Sasakian space, a
p'form u (p^m) is C-harmonic if and only if it satisfies i(rj)u = 0 and
Au = LAu.

PROOF. Let u be a C-harmonic p(^m)-iorm. Then Theorem 2.2 and
(2.9) imply the necessary condition of the theorem. Conversely let u be a
/>-form satisfying i(rj)u = 0. Then we have

(M, Au-LAu) = (du, du) + (8M, 8M) - (Au, Au),

(§u-e(rj) Au, 8M - e(rj) Au) = (8M, 8M) - 2 (8M, e(iy) AM) + « T ; ) AM, <T;) AM)

= (8M, 8M) - 2(AM - U{rj) u, Au) + (AM, AM)

= (8M, 8M) - (AM, AM) .

Hence we have the following integral formula for a ^>-form u orthogonal to tj:

(2.11) (M, AU-LAU) = (du, du) + (hu-e(rj) Au, Zu-effj) Au).

Therefore if AM —LAM = 0, then we have du^O, Zu=e(rf) Au, which proves
our theorem.

THEOREM 2.5. In a compact Qm + ̂ -dimensional Sasakian space, if
a p-form u is C-harmonic and p^m, then Lu is also C-harmonic.

PROOF. AS L commutes with i(rj), we know that Lu is orthogonal to
7). As we have from (2. 6)

ALu = LAu + A(m — p) Lu

= LLAu + 4(?n — p) Lu = LALu,

Lu is also C-harmonic, because of Theorem 2.4.

COROLLARY 2.5.1. In a compact (2m + l)-dimensional Sasakian space,
if a p'form u is C-harmonic and p^m, then Au is also C-harmonic.

This is a consequence of (2. 9). Next we consider the operators <£, ̂  and
V77 for a C-harmonic form. For this purpose we give some lemmas.

LEMMA 2.7. In a Sasakian space, the operator <3> commutes with the
operators i(rj), e(rj), L and A, and the operator ^ commutes with the
operators L and A. (cf [9])
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PROOF. Since it is easily shown that the Lie derivative 6(TJ) commutes
with i{rj), e(rj), L and A, the first part of the lemma comes from Lemma 2.5
and the formula

(2.12) <&u = d(7J) u - \7vu .

For the second part, we calculate directly, for any ^>-form u

Hence we obtain A^=^A. Next

i 3

which proves our lemma.

LEMMA 2.8. In a Sasakian space we have for any p-form u (cf. [9])

(2.13) (AO-OA) u = 2«iy) lu + di(rj) u).

PROOF. By virtue of Lemma 2.4 and (2.12), we have the following four
relations operating to any ^?-form u

dDu = d$>lu - dZ<$>u + (n-p) di(rj) u = (-l/2)(-dAdu) + (/>-l) di{^ u,

Ddu =• <I>8<̂  - 8̂ E)(iw + (n-p-I) i(rj) du = (-l/2)(dAdu) + pi(rj) du,

- p%e(rj) u = (l/2)(-8L8w) - (n - /> - l ) he(v) u,

- (p-l)e(7])Bu = (l/2)(8L8w) - (n-p) e(v)8w.
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Adding sides by sides of these relations it follows that

(3>A- A<£) u = 2{6(rj) + he(rj) - di(rj)) u,

from which our lemma is easily deduced.

COROLLARY 2.8.1. ([2]) In a compact (2m+ 1)-dimensional Sasakian
space, <&u is harmonic for any harmonic p-form u (p^m).

LEMMA 2.9. In a Sasakiati space we have for any p-form u

(2.14) V*u = (-iy

(2.15) ( A ^ - ^ A ) u = 2{d^i(rj) u + e(rj)

PROOF. Let uXv..\p be the coefficients of the ̂ >-form u. Then

(P*u)Xl...i, = q>xV ' ' * f O ^ , ' 1 • • ' <P*P
pJ)uP,~PP

= {-\yUXl...Xp + £ (-i)"-1 vn. i'«x...|..».

= (~iy (uXl...Xp - (e(tj) i(V) u)Xl...Xp),

which shows (2.14). The second formula is obtained by a little complicated
and straightforward computation, so we only point out the outline. At first
we have

and we put Au A2, A3 the three terms of the right hand side respectively.
Then
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PuOl...V9 + 2[(e

Next we calculate

and we see by virtue of (1. 7) and (1. 8) the latter two terms of the right
hand side are equal to A2, A3 respectively. Therefore we have (2.15).

COROLLARY 2.9.1. In a compact (2m + 1)-dimensional Sasakian space,
*$?u is harmonic for any harmonic p-form u (p^ m).

THEOREM 2.6. In a compact (2m-\-l)-dimensional Sasakian space, if
a p-form u is C-harmonic and p^m, then <E>#, tyu and V'vu are C-harmonic,
too.

PROOF. Since pf=^m, it holds that i(rf)Q}u = 0, using Theorem 2.2 and
Lemma 2.7. Then we have

2(e(rj) hu + di(rj) u)

= LA&u,

hence we see that <&u is also C-harmonic by virtue of Theorem 2.4. Next
for ^u, it is evident from the definition of the operator W that i(r))^u and

)u are zero. From (2.15) we have also

-f 2{d^i(i))u + e(rj) Ve(<rj) Au)

= LAVu,

and tyu is again C-harmonic. As d(rj)u = 0 for a C-harmonic form u, we
know that <&u — — \7vu. Therefore if u is a C-harmonic form, then so is Vvu.
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Owing to the relation (2.14), it follows that if X = m) ls °dd, then ^ is
a complex structure of the vector space of all C-harmonic (or harmonic) p-
forms, hence we have

THEOREM 2.7. In a compact (2m-{-l)-dimensional Sasakian space, if
pi^ni) is odd, then the dimension of the vector space of all C-harmonic
(or harmonic) p-forms is even.

3. The decomposition theorem. S. Tachibana has showed the following
theorem for a C-harmonic ^?-form analogous to the Kahlerian space.

THEOREM 3.1. ([1]) In a compact (2m + l)-dimensional Sasakian space,
any C-harmonic p-form up (p^m) can be written uniquely in the form:

where cf>p-2k is a harmonic (p — 2k)-form and r is the integral part of p/2.
Conversely any p-form written as in the right hand side is C-harmonic.

The assumption of p in Tachibana's original theorem is p^m + 1. This
difference is due to the definition of C-harmonic forms. Our theorem 2.3 and
2.5 require the assumption p^m, and the theorem can be proved with the
aid of these theorems. If p satisfies p^m, then our definition of C-harmonic
^>-forms coincides with that of [1], therefore the proof of Theorem 3.1 is
completely the same as [1], and we omit it.

Let Cp and Hp be the vector space of C-hamonic ^>-forms and harmonic
p-iorms, and put cp=dimCp, bp=dimBp (=/>-th Betti number). As any 0- or
1-form is effective, and a C-harmonic form is harmonic if and only if it is
effective, we have bo = co ( = 1), b1=c1. Next we show that the forms (drj)k = Lk • 1
(0 ^S k rg m) are C-harmonic. Since d commutes with L, we see easily that
dLk -1 = 0. We want to calculate 8(Lfc-l). Making use of Lemma 2.5 we
have V ^ f c - l ) = 0. Therefore by virtue of (2.5) it holds

1 • 1 = 4(m-2£ + 2) e(v) L
k~l• 1,

and hence we can obtain

8L*. 1 = 4k(m-k + l) e(v) L"-1-1.

On the other hand we have by virtue of (1.17)
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e(v) A(Lk • 1) = e(v)(L
kA• 1 + 4k(m-k + l) Lk~l• 1 + e(v) i(v) L

k~l. 1)

hence it holds

This shows that Lk • 1 is C-harmonic for k = 0, • • •, m. Hence we have c21c 2^ 1
for all ^=0, • • •, m . Thus

THFOREM 3.2. In a (2m + 1)-dimensional Sasakian space, we have

c2k ^ 1 , k = 0, • • • , m ,

c0 — bQ — 1 , cx — bx.

As a corollary of Theorem 3.1, we have the following

THEOREM 3.3. ([1]) In a compact (2m + iydimensional Sasakian space,
we have

cp = bp + &p_2 + • • • +&p_2r,

where r denotes the integral part of p/2, and p^m.

PROOF. From Theorem 3.1, the vector space Cp and Hp satisfy the
relation

Cv = Hp © LHP_2 © . . . © LrHp_2r,

where © denotes the direct sum and p^m. We assume p^m — 2. Then
for p + 2(^m) we have

• • • \B -L* J~ip+'z-z(r+i) •

Since L:Cp-*Cp+2 is into isomorphic, we have

LCP - LHP © L2KP_2 © . . . © Z/+1H,_2r,

and comparing these two relations we have
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n — 7J ch JC
K-yp+2 — 1J-p+2 W J - ' ^ p j

this proves the theorem.

4. Regular Sasakian structure. Suppose that a compact w-dimensional
Sasakian space Mn has regular structure. Then we have a principal circle
bundle (Mn, p, Bn~l) over the Kahlerian space Bn-l=Mn/r), and p:Mn-*Bn~x

is the projection. S. Tanno has showed that (in the case of regular iC-contact
space Mn) the Betti numbers of Mn and Bn~x have the relation

bp(M) = bp(B) - bp-lB), (p^ m)

and if p = l, then the vector space HY(B) of harmonic 1-forms on Bn~l is
isomorphic to the vector space Hx(M). We shall show that in a Sasakian
space the vector space HP(B) is isomorphic to the vector space CP(M) for
p^ m.

As the 1-form rj on Mn is an infinitesimal connection of (M, p, B), there
exists a lift L : T(B) -+ T{M) with respect to this connection. (TQS) and
T(M) denote the tangent bundles of the spaces Bn~l and Mn.) Let g = (gXp)
be the metric tensor of Mn, then the metric g of Bn~l is defined by

(4.1) g' = L*g,

We investigate the relation between Riemannian connections of these metrics
g and g. We fix a point x0 in Mn and uo — p(xo) in Bn~l, and take local
coordinate systems (xx) at x0 and (wa) at u0. We denote the right translation
Mn -> Mw of the structural group by

for sufficiently small t with respect to the local coordinates system. Since
each fibre of Mn is a trajectory of the vector field ij\ we get

(4. 2) v\x) =

Next we construct some local cross-section over the neighbourhood of u0 as
follows: let X be a vector at u0 and ^(5) be the geodesic starting at ua and
having the tangent vector X. Take a lift LX at x0, and the geodesic x(s)
starting at x0 and having the tangent vector LX. The curve x(s) is projected
to the curve u(s). Thus there exists a local cross-section over a sufficiently
small neighbourhood of u0 as every point can be united to the original
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point uQ by a unique geodesic. In the local coordinate systems, we represent
it by

and we call this local cross-section an adapted one at xQ. Then the equation
xl = l\{ux, • • •, un~l) of the adapted local cross-section at xx = <px(x0, t) can be
written by

because the right translation of the group on Mn is an isometry. Hence we
have

In particular, we have

We express the projection p: Mn-^Bn~1 by

ua = pa(x\ • • •, xn) .

Then for sufficiently small t, we have

(4. 5) u" = pa(<p\l(u), * ) , . . . , ^»(/(

and therefore we get differentiating it

( 4 6 )

where the latter equation is nothing but the projection of the vector rjx to
the base space and it holds good at every point in the neighbourhood of x0.
We denote dl\u)/dua (resp, dpa(x)/dxx) by lx(u) (resp. pl(x)).

The lift L: T(B)-+T(M) is a differentiate distribution in Mn and a
linear mapping at each point of Bn~l. We denote it by
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Lx:Tu(B)-»Tl{u)(M)

with respect to the local coordinates systems. Then from the construction of
the adapted local cross-section, we have

(4.8) Lx(u0) = lx(u0) .

The lift at the point <p\l(u\ t) is given by (dtp\l(u), t)/da?) L£(u), hence it
holds

(4. 9) *(*>(/(«), *)) Mm^L Lliu) = 0.

Corresponding to (4. 6), we have

(4.10) pl(l(u)) U(u) = 8% .

Let Xx be any vector at the point cpx{l(u), t\ then we see that the vector
Xk — r)llX

ilr)X is horizontal and has the projection p\Xx. Thus we have

and especially,

(4.11) U(u) /£(/(«)) = SJ - v\l(u

holds good. Differentiating (4. 9) at 2=0, we have

~ a/"

where Lx
a^ = dLl/dub. Hence the following equation

(4.12)

is valid at the point x — l{u). Similarly we have from (4.11)

and therefore we get by virtue of (4.11) and (4.12)
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(4.13) L\,t - U,a = tfd^ + Lx
cplv)(llU - It LI).

In particular, at the points u0 and xQ, it follows

(4.14) Lx
a,b(u0) = Lita(u0) + fKdffiJxo) ULl(u0).

Now the metric tensor gab is, by definition, given by

(4.15) g'ab(u) = Lx
a{u) U(u) gUKu)).

As the metric g and the 1-form rj are invariant on the trajectory of rj, we
have at an arbitrary point xx = <px(l(u), t)

(4.16) gXil{x) = pi(x) pl(x) gah(p(x))

(4.17) g*(x) = Ll(p(x)) U(p(x)) g'a\p(x)) + V\x) v\x).

From them we can investigate the relation between the Christoffel symbol

\ I at the point x0 with respect to the metric gXll and that \? I at the

point uo=p(xo) with respect to the metric g'ab. From (4.15), we have at the
points x0 and uQ

While we have if pl = 0 at every point on Mn, hence it follows that

If we differentiate pp(l(u)) L%{u) — 8a
6 and consider it at u = u0, then we get

pa
PU>c= -plrUU.

Thus we have at the points x0 and u0 = p(x0)

(4.19)

Let u = (uai...ap) be a ^>-form on the base space Bn~l, and put u =
Then the ^>-form î  on Mn has the coefficients



288 Y- OGAWA

(4. 20) UXX~.X9 = Pl\ • • • pXP
pUai...ap .

It is well known that u satisfies

(4. 21) i(rj) u = 0, du — p* du .

We calculate 8w in the following. At the points x0 and u0, we see

Contracting this by g^1, we have

(8*) w , = (£*8") w , + I V

Thus we have

(4. 22) 8£ = />*8w +

at every points x in Mn and />(.r) in Bn~l.
For any harmonic />-form u on the base space, we see from (4.21) and

(4.22) that the ^-form u—p*u satisfies

du = 0, hu = ^ ) Aw ,

and hence M is a C-harmonic ^?-form. Conversely, for any C-harmonic ^>-form
xv on Mn, £(̂ ) w = 0 and O(rj) w = 0 are valid if >̂ ̂  m. Therefore there
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exists a p-iorm w on Bn~l such that w=p*w'. Then from (4.21) and (4.22)
again we see that w must be harmonic. Consequently we have proved

THEOREM 4.1. In a compact regular Sasakian space M2m+\ let B2m

be the base space of the fibering of Boothby-Wang. Then the vector space
of C-harmonic p-forms on M2m+1 is isomorphic to the vector space of
harmonic p-forms on B2m if p^m.

Thus we have dim Hp(B)(=bp(B))=dim CP(M), if p^m. Taking account
of Theorem 3.3, we can obtain Tanno's theorems again.

COROLLARY 4.1.1. In the same condition as Theorem 4.1, we have

bp(M) = bp(B) - bp_lB), 2 fg p^ m .

COROLLARY 4.1.2. In the same condition as Theorem 4.1, the vector
space of harmonic 1-forms of M2m+l and that of B2m is isomorphic.

5. C*-harmonic forms. Let Mn be an «( = 2m + l)-dimensional compact
Sasakian space. As a dual form of a harmonic form in a Riemannian space
is also harmonic, it is natural to ask for the properties of a dual form of a
C-harmonic form in a Sasakian space.

We shall call a form u to be C^-harmonic if it satisfies

du = i(rj) Lu,

From the definition, the following theorem is evident.

THEOREM 5.1. In a Sasakian space, a p-form u is C-harmonic if and
only if the (n — p)-form *u is C*-harmonic.

Therefore the dual form ce(7J)Lm~k'l (where c is a constant) of Lk»l is a
C*-harmonic form. By virtue of Theorem 2.2 we see that for any C*-harmonic
^>-form u (p^m-\-\) it holds

e(v) u = 0 .

Moreover we see from Theorem 2.1 and Lemma 1.3,

(5.1)
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for any C*-harmonic ^>-form u (p is arbitrary). In the proof of Theorem 2.2
we have Li(rj)u = 0 for any C-harmonic ^-form u, and therefore we have
Ae(rj)u=0 for any O-harmonic form u. We denote by C*p the vector space
of all C*-harmonic p-iorms.

LEMMA 5.1. In a compact Sasakian space, we have

Hp = Cpn C*

for an arbitrary p.

PROOF. It is evident from the definition that CPC\CP is included in Hp.
Conversely let u be a harmonic p-iorm. If p^m, then we have i(rj) u = 0,
and Aw = 0. Therefore

(5.2) e(rj) Au = 0y i(v) Lu = 0

hold good. Hence u is both C-harmonic and C^-harmonic. If p^m + 1, then
we have e(rj)u — 0, from which (5.2) follows too, and Hp(ZCpnCp is proved.

LEMMA 5.2. Let ube a p-form in CpuCp. Then e(rj)u is a C*-harmonic
form, and i(rj)u is a C-harmonic form. The mapping e(rj)\Cp is an into
isomorphism and i(rj)\Cp+1 is a homomorphism onto Cp, if p^m.

PROOF. Let u be a C-harmonic ^>-form, then we have by virtue of
Lemma 2.2 8(e(^)#) = 0. We have LZ(T;)M = 0. AS du=0 we get d(e(rj) u) = Lu,
and we have

Lu = Li(rj) e{rj) u — i(r) L(e(rj) u) .

Hence e{rj)u is C^-harmonic. If v is C^-harmonic, then we have

d(e(rj) v) = Lv — e(rj) dv — Lv — e(rj)(i(rj) Lv)

= i(v)L(e(fj)v),

which shows that e{r))v is also C^-harmonic. Moreover if e(rj)u = 0 for a
C-harmonic ^-form u (pt=k tn), then we have

u = e(rj) i(rj) u + i(rj) e(rj) u = 0 .
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Therefore e(rj) is an isomorphism of Cp into C*p+1 (p^m). In the same way,
we can prove the statement with respect to i(rf).

THEOREM 5.2. In a compact Qm + X)-dimensional Sasakian space, it
holds

if p^km.

PROOF. The vector space Hp, and e(rj)Cp_l are the subspaces of C* and
Hvne(rj)Cv_l = (0) if p^m. For any C*-harmonic form u we decompose it
as

u = i(rj)(e(rj)u) + e(fj)(j(rj) u) .

Then e(^)w is a C*-harmonic (̂ > + l)-form, and we see i(rj) e(ij) u belongs to Cp.
Similarly, as i(rj)u is a C-harmonic (/> —l)-form, e(rj)i(rj)u is C*-harmonic.
Therefore i(^) e(v) u = u — e{rj) i(rj) u is at the same time C-harmonic and
C*-harmonic, hence belongs to Hv. Thus the theorem is proved.

COROLLARY 5.2.1. In a compact (2m + l)-dimensional Sasakian space,
tfie relation

is valid for p^m. Hence bp = 0 if and only if e(rj)C$ = 0 for p^m.

COROLLARY 5.2.2. In a compact (2m + 1)-dimensional Sasakian space,
if u is a C'harmonic form (pt=k m\ then hu is C*-harmonic. If u is a
C* -harmonic p-form (p^ m), then du is C-harmonic.

PROOF. The first half is an easy result from Theorem 2.3 and Lemma
4.2. Let u be a C*-harmonic ^>-form (p^m), then there exsits a harmonic
^>-form yfr and a C-harmonic (p — l)-form w such that u=ty+e(rj)zu. Hence
we have du = de(7J)w = Lw, which is C-harmonic.

COROLLARY 5.2.3. In a compact (2m + l)-dimensional Sasakian space,
if a p-form u (p-^rn + l) is C*-harmonic, then Au is also C*-harmonic.

COROLLARY 5.2.4. In a compact (2mJtl)-dimensio?ial Sasakian space,
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we suppose that a p-form u (p^m — 2) is C*-harmonic. Then Lu is also
C*-harmonic if and only if e(rj)u = O.

PROOF. Let u be a C*-harmonic ^-form (p^ m — 2). If e(ij)u = 0, then
Lu — e(rj)du is also C* -harmonic by virtue of Corollary 5.2.2 and Lemma 5.2.
Conversely we assume that Lu is a C* -harmonic form. There exist a
harmonic ^>-form ty and a C-harmonic (p — l)-form w such that u=ty + e(rj)w.
Hence we have L^ — Lu — eir^Lvo is C^-harmonic. Since a harmonic form
yjr is C-harmonic, Lty is also C-harmonic. Therefore Z/i/r is again a
harmonic (̂ > + 2)-form. As p+2f^m, we have AZ/*J/» = 0. Now AL is an
automorphism of the vector space which consists of the />-forms v such
that i(rj)v=0 if pt^m — 1 (see [1]). Consequently we have -^ = 0. This shows
that u=e(rj)w and hence e(rj)u = 0.

By virtue of Theorem 3.1 and Theorem 4.2, we can set the following
decomposition theorem for the C^-harmonic form.

THEOREM 5.3. In a compact (2m + l)-dimensional Sasakian space, any
C*-harmonic p-form up (p^m) can be written uniquely in the form:

where typ and typ_1_2k are harmonic forms and r is the integral part of
(p — l)/2. Conversely any form written as in the right hand side is
C*-harmonic.

Yano-Bochner [8] has denned the Killing ^-form which can be considered
as a natural extension of Killing 1-form. We show in the following an example
of a Killing ^>-form where p is odd and ask for some relations between
Killing forms and C*-harmonic forms in a Sasakian space.

A p-iorm v\v..xp in a Riemannian space is called to be Killing if its
covariant derivative VM ̂ ...A.,, is skew-symmetric in the indices (//•, A,1? • • •, Xp).
Therefore a ^>-form v\v..\p is a Killing form if and only if it satisfies

(5. 3) (dv\...Xt = (p+l) V*. VM...», •

In the first place we show the following

THEOREM 5.4. In a Sasakian space, the (2k + l)-form
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are Killing forms, where k = 0,1, • • •, m.

To prove this we prepare somo lemmas.

LEMMA 5.3. In a Sasakian space, the (p + 2)-tensor (p= 2k, k^l)

is skew-symmetric in the indices (<r, p), where q>\x...\p is the coefficients of the
2k-form <p ^ ^ <p .

PROOF. For k — \, (pa^cppx* + q>a\9(pxl9 is clearly skew-symmetric in (<r, />).
We assume that the lemma is true for k = 1, • • •, k — 1, then

for A,/ (3

are all skew-symmetric in (<r, /?). Calculating A(A:) directly we have

k i ^~"x k *

7 = 3

V

-v~\ + l^VxtxJB$?\lxt->*9+ XI

l\\

The latter four terms are clearly skew-symmetric in (<r, />), hence so is
, . . .v

LEMMA 5.4. In a Sasakian space, we have
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where the form S7fu is defined by (V ?u)\x...\p = Vp^.-.x, for a p-form u.

PROOF. Put <p = (1/2) dq. For />(=2*+l>form w(A;), we have e(rj)u™
Hence it follows that

+

PROOF OF THEOREM 5.4. We prove it by the induction again. In
case k =0, #(0) = 7] is a Killing form. Assuming that the theorem is true for
&=0,1, • • •, k, we set p=2k + l. Then the p-iorm u{k) satisfies

(5. 4) {du^\...K

We have by virtue of Lemma 5.4

then the latter two terms in the right hand side is skew-symmetric in (<r, />)
by the assumpticn. Considering (5. 4), we have
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where we set Xo = T. This is skew-symmetric in (<r, p) from Lemma 5.3.
Hence we see that VP(u{k+1))a\0..,\p is also skew-symmetric in the indices (/>, a),
and the theorem is proved.

Now the Killing form u{k) = e(rj)L{k)*l satisfies e(r})u{k) = 0. Though how
many of the Killing forms satisfy this condition is not clear, we next only
concern about such Killing forms in a Sasakian space. Then we can see
that there exists a relation between Killing forms and C*-harmonic forms.

Let u be a Killing form and assume that it satisfies e(rj)u = 0. From the
definition of Killing form, we have easily

§u = 0,

We get

(5.5) d(v)u = 0

for such a Killing form from (1.18). Then we see

THEOREM 5.5. In a Sasakian space, if a Killing p-form u satisfies
e(rj)u = 0, then u is C*-harmonic and i(rj)u is C-harmonic for all p.

PROOF. We have from (5. 5)

di(rj) u = -i(rj) du= ~(p + l) S7vu .

As e(rj) u = 0, it holds u = e(rj) i(rj) u. Then

du = Li(rj) u - e(V)(-(p + l) Vvu) = Li(v) u .

This shows with 8w=0 that u is a C^-harmonic ^>-form. We have, therefore,
— i(rj)du = di(rj)u = 0. Moreover we get $(i(rj)u) = Au and e(rj) A.(i(rj) u) = A.u,
hence i(rj)u is a C-harmonic (p — l)-form.

COROLLARY 5.5.1. In a Sasakian space, if a Killing form u satisfies
e(rj)u=0, then

are valid.
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COROLLARY 5.5.2. In a Sasakian space, we assume that a Killing form
u satisfies e{rj)u = 0. Then u is effective if and only if i(rj)u is harmonic.
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