ON PARALLEL HYPERSURFACES OF AN ELLIPTIC HYPERSURFACE OF THE SECOND ORDER IN E^{n+1}

Tominosuke $\overline{\text { Otsumi }}$
(Received February 10, 1967)

In [1] M. Berger stated a theorem which is equivalent to the following :
Let M be a complete Riemannian manifold whose sectional curvature K satisfies the inequality

$$
\begin{equation*}
0<A \leqq K(\Pi) \leqq B \tag{1}
\end{equation*}
$$

where A and B are positive constants and Π is any tangent plane to M. Let X be any Jacobi field along a geodesic $x=\gamma(s)$ parameterized with arclength s such that

$$
\begin{equation*}
\|X(0)\|=1, \quad X^{\prime}(0)=0,<X(0), \gamma^{\prime}(0)>=1 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\|X(s)\| \leqq \cos \sqrt{A} s \quad \text { for } \quad 0 \leqq s \leqq \frac{\pi}{2 \sqrt{ } B} \tag{3}
\end{equation*}
$$

This statement is made sure of its truth in the case $\operatorname{dim} M=2$ or M is locally symmetric, using their properties. Regarding this theorem, the author will investigate the curvature of the following elementary spaces which are generally non-symmetric.

An elliptic hypersurface Q of order 2:

$$
\begin{equation*}
\sum_{\lambda=1}^{n+1} \frac{1}{a_{\lambda}^{2}} x_{\lambda}^{j}=1 \quad\left(a_{1}, \cdots, a_{n-1}>0\right)^{1)} \tag{4}
\end{equation*}
$$

in the $(n+1)$-dimensional Euclidean space E^{n+1} with the orthogonal coordinates x_{1}, \cdots, x_{n+1}, is, as well known, an n-dimensional compact Riemannian manifold with positive sectional curvature. The parallel hypersurface Q_{c} of Q which is the locus of the points with distance c from each point on

1) In this paper, Greek indices run from 1 to $n+1$ and Latin indices from 1 to n.
the normal inner half line through it has the same property as Q for a suitable value c. If Q is not a sphere, these parallel hypersurfaces are not symmetric. In this paper, the author will mainly prove the following theorems.

THEOREM A. Let Q be an elliptic hypersurface given by (4) with $0<a_{1} \leqq a_{2} \leqq \cdots \leqq a_{n+1}$. Then, for any constant c such that

$$
\begin{equation*}
0 \leqq c \leqq \frac{a_{1}{ }^{2}}{2 a_{n+1}} \tag{5}
\end{equation*}
$$

the sectional curvature $\bar{K}(\Pi)$ of the parallel hypersurface Q_{c} of Q satisfies the inequality:

$$
\begin{equation*}
\frac{a_{1}{ }^{2}}{\left(a_{n}{ }^{2}-c a_{1}\right)\left(a_{n+1}{ }^{2}-c a_{1}\right)} \leqq \bar{K}(\Pi) \leqq \frac{a_{n+1}{ }^{2}}{\left(a_{1}{ }^{2}-c a_{n+1}\right)\left(a_{2}{ }^{2}-c a_{n+1}\right)}, \tag{6}
\end{equation*}
$$

where Π is any tangent plane element of Q_{c}.
We call any section curve of Q or Q_{c} by the coordinate planes of E^{n+1} a principal section.

THEOREM B. Along any principal section γ of Q or Q_{c}, where $c \leqq \frac{a_{1}{ }^{2}}{2 a_{n+1}}$, the inequality (3) holds for any Jacobi field X satisfying the condition (2).

1. Parallel hypersurfaces of a convex hypersurface in \boldsymbol{E}^{n+1}. Let Q be any closed hypersurface in E^{n+1}. At each point x of Q, we take all orthonormal ($n+1$)-frame $\left(x, e_{1}, \cdots, e_{n}, e_{n+1}\right)$ of E^{n+1} such that (x, e_{1}, \cdots, e_{n}) is an orthonormal n-frame of Q at $x, e=e_{n+1}$ is the inner unit normal vector of Q at x. The set of these $(n+1)$-frames is a submanifold B of the orthonormal frame bundle of E^{n+1}. On B, we have the 1 -forms $\omega_{1}, \cdots, \omega_{n}$, $\omega_{\lambda \mu}=-\omega_{\mu \lambda}, \lambda, \mu=1,2, \cdots, n+1$, such that

$$
\left\{\begin{array}{l}
d x=\sum_{i} \omega_{i} e_{i}, \quad d e_{i}=\sum_{j} \omega_{i j} e_{j}+\omega_{i n+1} e_{n+1} \tag{1.1}\\
d e_{n+1}=-\sum_{i} \omega_{i n+1} e_{i}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
d \omega_{i}=\sum_{j} \omega_{j} \wedge \omega_{j i}, \quad \sum_{i} \omega_{i} \wedge \omega_{i n+1}=0 \tag{1.2}\\
d \omega_{\lambda \mu}=\sum_{\nu} \omega_{\lambda \nu} \wedge \omega_{\nu \mu} .
\end{array}\right.
$$

From the second of (1.2), we put

$$
\begin{equation*}
\omega_{i n+1}=\sum_{j} A_{i j} \omega_{j}, \quad A_{i j}=A_{j i} \tag{1.3}
\end{equation*}
$$

and we have the 2 nd fundamental form of Q

$$
\begin{equation*}
\Phi=\sum_{i} \omega_{i} \omega_{i n+1}=\sum_{i, j} A_{i j} \omega_{i} \omega_{j} . \tag{1.4}
\end{equation*}
$$

Now, for a constant c, we define Q_{c} by

$$
\begin{equation*}
\vec{x}=x+c e, \quad x \in Q, \tag{1.5}
\end{equation*}
$$

then $\left(\vec{x}, e_{1}, \cdots, e_{n+1}\right)$ is an orthonormal ($n+1$)-frame for the immersed submanifold Q_{c} as $\left(x, e_{1}, \cdots, e_{n+1}\right)$ for Q. The set B_{c} of all ($\bar{x}, e_{1}, \cdots, e_{n+1}$) is also a submanifold of the orthonormal frame bundle of E^{n+1}, when Q_{c} is an imbedded submanifold. In such case, we may identify B_{c} with B by (1.5). Then, for Q_{c} we have from (1.1) and (1.2)

$$
\begin{equation*}
d \vec{x}=\sum_{i} \omega_{i} e_{i}=\sum_{i}\left(\omega_{i}-c \omega_{i n+1}\right) e_{i}, \tag{1.6}
\end{equation*}
$$

$$
\bar{\omega}_{i}=\omega_{i}-c \omega_{i n+1}=\sum_{j}\left(\delta_{i j}-c A_{i j}\right) \omega_{j}
$$

The line element $d \bar{s}^{2}$ of Q_{c} is given by

$$
\begin{equation*}
d \bar{s}^{2}=\sum_{i} \omega_{i} \bar{\omega}_{i}=\sum_{i j}\left(\delta_{i j}-2 c A_{i j}+c^{2} \sum_{k} A_{i k} A_{k j}\right) \omega_{i} \omega_{j} . \tag{1.7}
\end{equation*}
$$

As (1.3), we put for Q_{c}

$$
\begin{equation*}
\omega_{i n+1}=\sum_{j} \bar{A}_{i j} \bar{\omega}_{j}, \quad \bar{A}_{i j}=\bar{A}_{j i}, \tag{1.8}
\end{equation*}
$$

then we get from (1.6)

$$
\begin{equation*}
A_{i j}=\bar{A}_{i j}-c \sum_{k} \bar{A}_{i k} A_{k j} \tag{1.9}
\end{equation*}
$$

In matrix form, (1.9) can be written as

$$
\begin{equation*}
A=\bar{A}(1-c A) \tag{1.9'}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{A}=\frac{A}{1-c A} \tag{1.10}
\end{equation*}
$$

except the case $1 / c$ is one of the eigen values of A. The 2nd fundamental form $\bar{\Phi}$ of Q_{c} is given by

$$
\begin{equation*}
\bar{\Phi}=\sum_{i} \omega_{i} \omega_{i n+1}=\sum_{i, j} \bar{A}_{i j} \omega_{i} \omega_{j} \tag{1.11}
\end{equation*}
$$

and we have from (1.6)

$$
\begin{equation*}
\bar{\Phi}=\Phi-c \sum_{i} \omega_{i n+1} \omega_{i n+1}=\Phi-c d \sigma^{2} \tag{1.12}
\end{equation*}
$$

where $d \sigma^{2}$ denotes the line element of the spherical representation of $Q \subset E^{n+1}$ or the 3rd fundamental form of Q.

The components of the curvature tensor of Q at x with respect to the frame (x, e_{1}, \cdots, e_{n}) are

$$
\begin{equation*}
R_{i j h k}=A_{i k} A_{j h}-A_{i h} A_{j k} \tag{1.13}
\end{equation*}
$$

and the ones of Q_{c} at $\bar{x}=x+c e_{n+1}$ with respect to $\left(\bar{x}, e_{1}, \cdots, e_{n}\right)$ are

$$
\begin{equation*}
\bar{R}_{i j h k}=\bar{A}_{i k} \bar{A}_{j h}-\bar{A}_{i h} \bar{A}_{j k} . \tag{1.14}
\end{equation*}
$$

Now, we take two orthogonal unit tangent vectors $X=\sum_{i} X_{i} e_{i}$ and $Y=\sum_{i} Y_{i} e_{i}$ at $\bar{x} \in Q_{c}$, then the sectional curvature for the tangent plane element Π of Q_{c} spanned by X and Y is given by

$$
\begin{equation*}
\bar{K}(\Pi)=\bar{K}(X, Y)=\left(\sum_{i, j} \bar{A}_{i j} X_{i} X_{j}\right)\left(\sum_{i, j} \bar{A}_{i j} Y_{i} Y_{j}\right)-\left(\sum_{i, j} \bar{A}_{i j} X_{i} Y_{j}\right)^{2} . \tag{1.15}
\end{equation*}
$$

In the following, we will express the right hand side of (1.15) by X_{i}, Y_{i}, c and $A_{i j}$. For simplicity, for any vectors $X=\sum_{i} X_{i} e_{i}, Y=\sum_{i} Y_{i} e_{i}$, we introduce the notations as follows

$$
<X, Y>=\sum_{i} X_{i} Y_{i}, \quad\|X\|=\sqrt{<X, X>}, \quad A(X)=\sum_{i, j} A_{i j} X_{j} e_{i}
$$

Then, by (1.4), (1.7) and (1.12) we have

$$
\bar{K}(\Pi)=P / G,
$$

where

$$
\begin{gather*}
P=\left\{<A(X), X>-c\|A(X)\|^{2}\right\}\left\{<A(Y), Y>-c\|A(Y)\|^{2}\right\} \tag{1.16}\\
-\{<A(X), Y>-c<A(X), A(Y)>\}^{2}
\end{gather*}
$$

and

$$
\begin{align*}
G= & \left\{\|X\|^{2}-2 c<A(X), X>+c^{2}\|A(X)\|^{2}\right\} \tag{1.17}\\
& \times\left\{\|Y\|^{2}-2 c<A(Y), Y>+c^{2}\|A(Y)\|^{2}\right\} \\
& -\left\{<X, Y>-2 c<A(X), Y>+c^{2}<A(X), A(Y)>\right\}^{2} .
\end{align*}
$$

In these equations, as well known, we may consider X and Y as independent vectors on the plane element Π. As in (1.15), we assume

$$
\|X\|=\|Y\|=1, \quad<X, Y>=0
$$

then we have

$$
\begin{align*}
P=K(X, & Y) \\
& -c\left\{\|A(X)\|^{2}<A(Y), Y>+\|A(Y)\|^{2}<A(X), X>\right. \\
& +c^{2}\left\{\|A(X)\|^{2}\|A(Y)\|^{2}-<A(X), A(Y)>^{2}\right\} \\
G=1-2 c\{ & <A(X), X>+<A(Y), Y>\} \tag{1.17'}\\
& +c^{2}\left\{\|A(X)\|^{2}+\|A(Y)\|^{2}+4 K(X, Y)\right\} \\
& -2 c^{3}\left\{\|A(X)\|^{2}<A(Y), Y>+\|A(Y)\|^{2}<A(X), X>\right. \\
& -2<A(X), Y><A(X), A(Y)>\} \\
& +c^{4}\left\{\|A(X)\|^{2}\|A(Y)\|^{2}-<A(X), A(Y)>^{2}\right\}
\end{align*}
$$

where $K(X, Y)$ denotes the sectional curvature of Q at x corresponding to X and Y.

Lastly, we choose such a frame $\left(x, e_{1}, \cdots, e_{n}\right)$ that

$$
A=\left(A_{i j}\right)=\left(\begin{array}{llll}
\alpha_{1} & & & 0 \\
& \alpha_{2} & & \\
& & \cdot & \\
& & \cdot & \\
0 & & & \alpha_{n}
\end{array}\right)
$$

then we have easily from (1.16) and (1.17)

$$
\begin{align*}
P & =\sum\left(1-c \alpha_{i}\right) \alpha_{i} X_{i}^{2} \sum_{j}\left(1-c \alpha_{j}\right) \alpha_{j} Y_{j}^{2}-\left(\sum_{i}\left(1-c \alpha_{i}\right) \alpha_{i} X_{i} Y_{i}\right)^{2} \tag{1.16}\\
& =\sum_{i<j}\left(1-c \alpha_{i}\right)\left(1-c \alpha_{j}\right) \alpha_{i} \alpha_{j}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)^{2}
\end{align*}
$$

(1. 17")

$$
\begin{gathered}
G=\sum_{i}\left(1-2 c \alpha_{i}+c^{2} \alpha_{i}^{2}\right) X_{i}{ }^{2} \sum_{j}\left(1-2 c \alpha_{j}+c^{2} \alpha_{j}^{2}\right) Y_{j}^{2} \\
-\left\{\sum_{i}\left(1-2 c \alpha_{i}+c^{2} \alpha_{i}^{2}\right) X_{i} Y_{i}\right\}^{2} \\
=\sum_{i<j}\left(1-c \alpha_{i}\right)^{2}\left(1-c \alpha_{j}\right)^{2}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)^{2}
\end{gathered}
$$

Hence

$$
\begin{equation*}
\bar{K}(X, Y)=\frac{\sum_{i<j}\left(1-c \alpha_{i}\right)\left(1-c \alpha_{j}\right) \alpha_{i} \alpha_{j}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)^{2}}{\sum_{i<j}\left(1-c \alpha_{i}\right)^{2}\left(1-c \alpha_{j}\right)^{2}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)^{2}} \tag{1.18}
\end{equation*}
$$

Here, assuming that Q is convex at x and

$$
\begin{equation*}
\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n}, \tag{1.19}
\end{equation*}
$$

then we have for

$$
\begin{gather*}
0 \leqq c \leqq \frac{1}{2 \alpha_{1}} \tag{1.20}\\
\left(1-c \alpha_{1}\right)\left(1-c \alpha_{2}\right) \alpha_{1} \alpha_{2} \geqq P \geqq\left(1-c \alpha_{n-1}\right)\left(1-c \alpha_{n}\right) \alpha_{n-1} \alpha_{n}, \\
\left(1-c \alpha_{1}\right)^{2}\left(1-c \alpha_{2}\right)^{2} \leqq G \leqq\left(1-c \alpha_{n-1}\right)^{2}\left(1-c \alpha_{n}\right)^{2},
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\alpha_{1} \alpha_{2}}{\left(1-c \alpha_{1}\right)\left(1-c \alpha_{2}\right)} \geqq \bar{K}(\Pi) \geqq \frac{\alpha_{n-1} \alpha_{n}}{\left(1-c \alpha_{n-1}\right)\left(1-c \alpha_{n}\right)}, \tag{1.21}
\end{equation*}
$$

where the both equalities hold for $X=e_{1}, Y=e_{2}$ and $X=e_{n-1}, Y=e_{n}$ respectively.
2. The range of the sectional curvature of parallel hypersurfaces of an elliptic hypersurface. In this section, we assume that Q is an elliptic hypersurface of the 2 nd order in E^{n+1} given by (4) and $0<a_{1} \leqq a_{2} \leqq \cdots \leqq a_{n+1}$. At a point $x \in Q$, we take a unit tangent vector $X=\sum_{i} X_{i} e_{i}$, then for the
section of Q by the plane through x and parallel to the normal unit vector e_{n+1} and X, we have

$$
\begin{equation*}
<\frac{d^{2} x(s)}{d s^{2}}, e_{n+1}(s)>_{s=0}=-<X, \frac{d e_{n+1}(s)}{d s}>_{s=0}=\sum_{i, j} A_{i j} X_{i} X_{j}, \tag{2.1}
\end{equation*}
$$

where $x(s)$ denotes the point of the section, s is the arclength of the section measured from $x=x(0)$, and $e_{n+1}(s)$ is the unit inner normal vector at $x(s)$. The components of e_{n+1} are clearly

$$
\begin{equation*}
l_{\lambda}=-p(x) \frac{x_{\lambda}}{a_{\lambda}^{\grave{\lambda}}} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
p(x)=1 / \sqrt{\sum_{\lambda} \frac{x_{\lambda}^{2}}{a_{\lambda}^{4}}} . \tag{2.3}
\end{equation*}
$$

Considering x in (2.2) as the coordinates of $x(s)$, we have

$$
\frac{d l_{\lambda}}{d s}=-p(x) \frac{1}{a_{\lambda}^{2}} \frac{d x_{\lambda}}{d s}+l_{\lambda} \frac{d}{d s} \log p(x) .
$$

Since $\left(\frac{d x_{\lambda}}{d s}\right)_{s=0}$ are the components of X with respect to the canonical coordinates of E^{n+1}, we get from (2.1)

$$
\begin{equation*}
\sum_{i, j} A_{i j} X_{i} X_{j}=p(x) \sum_{\lambda} \frac{1}{a_{\lambda}^{2}}\left(\frac{d x_{\lambda}}{d s}\right)_{s=0}^{2} \tag{2.4}
\end{equation*}
$$

Denoting the length of the radius of Q with the same direction of X by $r(X)$, we have easily

$$
\begin{equation*}
(r(X))^{2} \sum_{\lambda} \frac{1}{a_{\lambda}^{2}} \xi_{\lambda}^{2}=1 \tag{2.5}
\end{equation*}
$$

where ξ_{λ} are the components of X with respect to the canonical coordinates of E^{n+1}. Hence, from (2.4), we have

$$
\begin{equation*}
\sum_{i, j} A_{i j} X_{i} X_{j}=\frac{p(x)}{(r(X))^{2}} \tag{2.6}
\end{equation*}
$$

The section of Q by the hyperplane through the center of Q and parallel to the tangent hyperplane at $x \in Q$ is also an elliptic bypersurface of the 2 nd order in this hyperplane. We denote the principal radii of this section by

$$
0<r_{1}(x) \leqq r_{2}(x) \leqq \cdots \leqq r_{n}(x) .
$$

Since we may consider that the directions of these principal radii are orthogonal to each other, we choose a frame (x, e_{1}, \cdots, e_{n}) such that e_{1}, \cdots, e_{n} are parallel to these directions. Then, we have

$$
\begin{equation*}
\alpha_{i}=\frac{p(x)}{\left(r_{i}(x)\right)^{2}}, \quad i=1,2, \cdots, n, \tag{2.7}
\end{equation*}
$$

and

$$
\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n}>0 .
$$

By means of (2.7), (2.8) and (1.21), for

$$
\begin{equation*}
0 \leqq c \leqq \frac{r_{1}(x)^{2}}{2 p(x)} \tag{2.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\overline{\left(r_{n-1}(x)^{2}\right.} \frac{p(x)^{2}}{c p(x))\left(r_{n}(x)^{2}-c p(x)\right)} \leqq \bar{K}(\Pi) \leqq \frac{p(x)^{2}}{\left(r_{1}(x)^{2}-c p(x)\right)\left(r_{2}(x)^{2}-c p(x)\right)}, \tag{2.10}
\end{equation*}
$$

where Π denotes any tangent plane element to Q_{c} at $\overline{\bar{x}}=x+c e_{n+1}$.
Ncw, in connection with (2.1), we take an auxiliary function

$$
f(p)=\frac{p^{2}}{\left(\alpha^{2}-c p\right)\left(\beta^{2}-c p\right)}
$$

of p, where α, β, c are constants such that $0<\alpha \leqq \beta, 0 \leqq c$. Then, we have easily

$$
f^{\prime}(p)=\frac{p\left\{2 \alpha^{2} \beta^{2}-c p\left(\alpha^{2}+\beta^{2}\right)\right\}}{\left(\alpha^{2}-c p\right)^{2}\left(\beta^{2}-c p\right)^{2}} .
$$

Hence, for

$$
0 \leqq c \leqq \frac{2 \alpha^{2} \beta^{2}}{a_{n+1}\left(\alpha^{2}+\beta^{2}\right)}
$$

$f(p)$ is a non-decreasing function of p in the interval $a_{1} \leqq p \leqq a_{n+1}$. Thus, we get for c in (2.11)

$$
\begin{equation*}
\frac{a_{1}{ }^{2}}{\left(\alpha^{2}-c a_{1}\right)\left(\beta^{2}-c a_{1}\right)} \leqq \frac{p^{2}}{\left(\alpha^{2}-c p\right)\left(\beta^{2}-c p\right)} \leqq \frac{a_{n+1}{ }^{2}}{\left(\alpha^{2}-c a_{n+1}\right)\left(\beta^{2}-c a_{n+1}\right)} \tag{2.12}
\end{equation*}
$$

Let us come back to the situation in (2.10). We have

$$
\begin{equation*}
\min _{x \in Q} \frac{r_{1}(x)^{2}}{2 p(x)}=\frac{a_{1}{ }^{2}}{2 a_{n+1}} . \tag{2.13}
\end{equation*}
$$

On the other hand, we suppose that $r_{1}(x)$ and $r_{2}(x)$ correspond to two unit vectors X and Y with components ξ_{λ} and r_{λ} with respect to the canonical ccordinates of E^{n+1} which are orthogonal to each other. Then, we have

$$
\begin{equation*}
\frac{1}{r_{1}(x)^{2}}+\frac{1}{r_{2}(x)^{2}} \geqq \frac{1}{r_{n-1}(x)^{2}}+\frac{1}{r_{n}(x)^{2}} . \tag{2.14}
\end{equation*}
$$

From (2.5)

$$
\begin{aligned}
\frac{1}{a_{1}{ }^{2}} & +\frac{1}{a_{2}{ }^{2}}-\frac{1}{r_{1}(x)^{2}}-\frac{1}{r_{2}(x)^{2}} \\
& =\frac{1}{a_{1}{ }^{2}}+\frac{1}{a_{2}{ }^{2}}-\sum_{\lambda} \frac{1}{a_{\lambda}^{2}} \xi_{\lambda}{ }^{2}-\sum_{\lambda} \frac{1}{a_{\lambda}^{2}} \eta_{\lambda}{ }^{2} \\
& \geqq \frac{1}{a_{1}{ }^{2}}\left(1-\xi_{1}^{2}-\eta_{1}^{2}\right)+\frac{1}{a_{2}{ }^{2}}\left(1-\xi_{2}^{2}-\eta_{2}^{2}\right)-\frac{1}{a_{3}{ }^{2}} \sum_{3 \leqq \lambda}\left(\xi_{\lambda}^{u}+\eta_{\lambda}^{2}\right) \\
& =\left(\frac{1}{a_{1}{ }^{2}}-\frac{1}{a_{3}{ }^{2}}\right)\left(1-\xi_{1}^{2}-\eta_{1}^{2}\right)+\left(\frac{1}{a_{2}{ }^{2}}-\frac{1}{a_{3}{ }^{2}}\right)\left(1-\xi_{2}^{2}-\eta_{2}^{2}\right) \geqq 0,
\end{aligned}
$$

hence we have

$$
\begin{equation*}
\frac{1}{r_{1}(x)^{2}}+\frac{1}{r_{2}(x)^{2}} \leqq \frac{1}{a_{1}{ }^{2}}+\frac{1}{a_{2}{ }^{2}}, \tag{2.15}
\end{equation*}
$$

making use of the relations $\sum_{\lambda} \xi_{\lambda}^{\lambda}=\sum_{\lambda} \eta_{\lambda}^{2}=1, \sum_{\lambda} \xi_{\lambda} \eta_{\lambda}=0$. Analogously we have

$$
\begin{equation*}
\frac{1}{r_{n-1}(x)^{2}}+\frac{1}{r_{n}(x)^{2}} \geqq \frac{1}{a_{n}^{2}}+\frac{1}{a_{n+1}^{2}} . \tag{2.16}
\end{equation*}
$$

Regarding (2.11) and (2.13), we have

$$
\begin{equation*}
\frac{a_{1}{ }^{2}}{2 a_{n+1}} \leqq \frac{a_{1}{ }^{2} a_{2}{ }^{2}}{a_{n+1}\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right)} \leqq \frac{r_{1}(x)^{2} r_{2}(x)^{2}}{a_{n+1}\left\{r_{1}(x)^{2}+r_{2}(x)^{2}\right\}} . \tag{2.17}
\end{equation*}
$$

Thus for

$$
\begin{equation*}
0 \leqq c \leqq \frac{a_{1}{ }^{2}}{2 a_{n+1}} \tag{2.18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{a_{1}^{2}}{\left(r_{n-1}(x)^{2}-c a_{1}\right)\left(r_{n}(x)^{2}-c a_{1}\right)} \leqq \frac{p(x)^{2}}{\left(r_{n-1}(x)^{2}-c p(x)\right)\left(r_{n}(x)^{2}-c p(x)\right)} \leqq \overline{\bar{K}}(\Pi) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{K}(\mathrm{II}) & \leqq \frac{p(x)^{2}}{\left(r_{1}(x)^{2}-c p(x)\right)\left(r_{2}(x)^{2}-c p(x)\right)} \tag{2.20}\\
& \leqq \frac{a_{n+1}{ }^{2}}{\left(r_{1}(x)^{2}-c a_{n+1}\right)\left(r_{2}(x)^{2}-c a_{n+1}\right)} .
\end{align*}
$$

Making use of (2.15), we have

$$
\begin{aligned}
& \left(r_{1}(x)^{2}-c a_{n+1}\right)\left(r_{2}(x)^{2}-c a_{n+1}\right)-\left(a_{1}{ }^{2}-c a_{n+1}\right)\left(a_{2}{ }^{2}-c a_{n+1}\right) \\
& \quad=r_{1}(x)^{2} r_{2}(x)^{2}-a_{1}{ }^{2} a_{2}{ }^{2}-c a_{n+1}\left\{r_{1}(x)^{2}+r_{2}(x)^{2}-a_{1}{ }^{2}-a_{2}{ }^{2}\right\} \\
& \quad \geqq r_{1}(x)^{2} r_{2}(x)^{2}-a_{1}{ }^{2} a_{2}{ }^{2}-c a_{n+1}\left(r_{1}(x)^{2}+r_{2}(x)^{2}\right)\left(1-\frac{a_{1}{ }^{2} a_{2}{ }^{2}}{r_{1}(x)^{2} r_{2}(x)^{2}}\right) \\
& \quad=\left\{r_{1}(x)^{2} r_{2}(x)^{2}-a_{1}{ }^{2} a_{2}{ }^{2}\right\}\left\{1-c a_{n+1}\left(\frac{1}{r_{1}(x)^{2}}+\frac{1}{r_{2}(x)^{2}}\right)\right\} .
\end{aligned}
$$

From (2.17) and (2.18), we have

$$
1-c a_{n+1}\left(\frac{1}{r_{1}(x)^{2}}+\frac{1}{r_{2}(x)^{2}}\right) \geqq 0 .
$$

On the other hand, making use of the relations

$$
\sum_{\lambda} \xi_{\lambda}{ }^{2}=\sum_{\lambda} \eta_{\lambda}^{2}=1, \quad \sum_{\lambda} \xi_{\lambda} \eta_{\lambda}=0=\sum_{\lambda} \frac{1}{a_{\lambda}^{2}} \xi_{\lambda} \eta_{\lambda}
$$

we have

$$
\begin{aligned}
\frac{1}{a_{1}{ }^{2} a_{2}{ }^{2}}-\frac{1}{r_{1}(x)^{2} r_{2}(x)^{2}} & =\frac{1}{a_{1}{ }^{2} a_{2}{ }^{2}}-\sum_{\lambda} \frac{1}{a_{\lambda}{ }^{2}} \xi_{\lambda}{ }^{2} \sum_{\mu} \frac{1}{a_{\mu}{ }^{2}} \eta_{\mu}^{2} \\
& =\sum_{\lambda<\mu}\left(\frac{1}{a_{1}{ }^{2} a_{2}{ }^{2}}-\frac{1}{a_{\lambda}{ }^{2} a_{\mu}{ }^{2}}\right)\left(\xi_{\lambda} \eta_{\mu}-\xi_{\mu} \eta_{\lambda}\right)^{2} \geqq 0,
\end{aligned}
$$

that is

$$
r_{1}(x)^{2} r_{2}(x)^{2}-a_{1}{ }^{2} a_{2}{ }^{2} \geqq 0
$$

Thus we have

$$
\begin{equation*}
\left(r_{1}(x)^{2}-c a_{n+1}\right)\left(r_{2}(x)^{2}-c a_{n+1}\right) \geqq\left(a_{1}^{2}-c a_{n+1}\right)\left(a_{2}^{2}-c a_{n+1}\right) \tag{2.21}
\end{equation*}
$$

Analogously, we get

$$
\begin{equation*}
\left(r_{n-1}(x)^{2}-c a_{1}\right)\left(r_{n}(x)^{2}-c a_{1}\right) \leqq\left(a_{n}^{2}-c a_{1}\right)\left(a_{n+1}^{2}-c a_{1}\right) \tag{2.22}
\end{equation*}
$$

From (2.19), (2.20), (2.21) and (2.22), for c in (2.18) we get the inequality

$$
\frac{a_{1}^{2}}{\left(a_{n}^{2}-c a_{1}\right)\left(a_{n+1}^{2}-c a_{1}\right)} \leqq \bar{K}(\Pi) \leqq \frac{a_{n+1}^{2}}{\left(a_{1}^{2}-c a_{n+1}\right)\left(a_{2}^{2}-c a_{n+1}\right)} .
$$

It is clear that the left equality holds for some Π tangent to Q_{c} at ($a_{1}-c$, $0, \cdots, 0)$ and the right one holds for some Π tangent to Q_{c} at $(0,0, \cdots$, $\left.a_{n+1}-c\right)$. Thus, the proof of Theorem A is completed.
3. The Jacobi equation along a principal section of Q. Let Q be an elliptic hypersurface of the 2 nd order in E^{n+1} given by (4). In the domain of Q such that $x_{n+1} \neq 0$, we regard x_{1}, \cdots, x_{n} as local coordinates of it, then

$$
\begin{equation*}
x_{n+1}= \pm a_{n+1} F \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
F=\sqrt{1-\sum_{i} \frac{x_{i}{ }^{2}}{a_{i}{ }^{2}}} . \tag{3.2}
\end{equation*}
$$

In the coordinates, the line element of Q :

$$
d s^{2}=\sum_{\lambda} d x_{\lambda} d x_{\lambda}=\sum_{i, j} g_{i j} d x_{i} d x_{j}
$$

gives

$$
\begin{equation*}
g_{i j}=\delta_{i j}+\frac{a_{n+1}{ }^{2}}{F^{2}} \frac{x_{i} x_{j}}{a_{i}{ }^{2} a_{j}{ }^{2}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{i j}=\delta_{i j}-p(x)^{2} \frac{x_{i} x_{j}}{a_{i}{ }^{2} a_{j}{ }^{2}} . \tag{3.4}
\end{equation*}
$$

From (3. 3), we have

$$
\frac{\partial g_{i j}}{\partial x_{k}}=\frac{a_{n+1}{ }^{2}}{F^{2}} \cdot \frac{1}{a_{i}{ }^{2} a_{j}{ }^{2}}\left(\delta_{i k} x_{j}+\delta_{j k} x_{i}\right)+\frac{2 a_{n+1}{ }^{2}}{F^{4}} \frac{x_{i} x_{j} x_{k}}{a_{i}{ }^{2} a_{j}{ }^{2} a_{k}{ }^{2}}
$$

and

$$
\begin{aligned}
\Gamma_{i j, k} \equiv & \frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x_{j}}+\frac{\partial g_{k j}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{k}}\right) \\
= & \frac{a_{n+1}{ }^{2}}{2 F^{2}}\left\{\frac{1}{a_{i}{ }^{2} a_{k}{ }^{2}}\left(\delta_{i j} x_{k}+\delta_{k j} x_{i}\right)+\frac{1}{a_{j}{ }^{2} a_{k}{ }^{2}}\left(\delta_{i j} x_{k}+\delta_{k i} x_{j}\right)\right. \\
& \left.-\frac{1}{a_{i}{ }^{2} a_{j}{ }^{2}}\left(\delta_{k i} x_{j}+\delta_{k j} x_{i}\right)\right\}+\frac{a_{n+1}{ }^{2}}{F^{4}} \frac{x_{i} x_{j} x_{k}}{a_{i}{ }^{2} a_{j}{ }^{2} a_{k}{ }^{2}} .
\end{aligned}
$$

Thus, the Christoffel's symbols of Q in the coordinates are given by

$$
\begin{equation*}
\Gamma_{i j}^{l}=\sum_{k} g^{i k} \Gamma_{i j, k}=\frac{p(x)^{2}}{2} \delta_{i j}\left(\frac{1}{a_{i}{ }^{2}}+\frac{1}{a_{j}{ }^{2}}\right) \frac{x_{l}}{a_{l}{ }^{2}}+\frac{p(x)^{2}}{F^{2}} \frac{x_{i} x_{j} x_{l}}{a_{i}{ }^{2} a_{j}{ }^{2} a_{l}{ }^{2}} . \tag{3.5}
\end{equation*}
$$

Along the principal section γ given by

$$
\begin{equation*}
x_{2}=x_{3}=\cdots=x_{n}=0 \tag{3.6}
\end{equation*}
$$

we have from (3.5)

$$
\Gamma_{11}^{1}=\frac{p(x)^{2} x_{1}}{F^{2} a_{1}{ }^{4}}, \quad \Gamma_{i j}^{\alpha}=\Gamma_{\alpha 1}^{1}=0, \quad \alpha=2,3, \cdots, n
$$

and so the equations of parallel displacement of a tangent vector ξ with components ξ^{i} along γ in Q are

$$
\frac{d \xi^{1}}{d s}+\Gamma_{11}^{1} \xi^{1} \frac{d x_{1}}{d s}=0, \quad \frac{d \xi^{\alpha}}{d s}=0, \quad \alpha=2,3, \cdots, n .^{2)}
$$

2) In general, the equations of parallel displacement of a tangent vector ξ along a curve $x_{i}=x_{i}(s)$ are

$$
\frac{d \xi^{i}}{d s}+\sum_{j, k} \mathbf{r}_{j k}^{i} \xi^{j} \frac{d x_{k}}{d s}=0
$$

and the equations of a geodesic are

$$
\frac{d^{2} x_{i}}{d s^{i}}+\sum_{j, k} \mathbf{r}_{j k}^{i} \frac{d x_{j}}{d s} \frac{d x_{k}}{d s}=0 .
$$

Hence the vector e_{α} with components δ_{α}^{i} are parallel displaced along γ. Since $g_{i \beta}=\delta_{i \beta}$ along $\gamma, e_{2}, e_{3}, \cdots, e_{n}$ are orthogonal to each other and to γ. The equations above imply also that γ is a geodesic.

On the other hand, for any vectors X, Y in E^{n+1} with components X_{λ}, Y_{λ} with respect to the canonical coordinates, we define

$$
\begin{equation*}
Q(X, Y)=\sum_{\lambda} \frac{1}{a_{\lambda}^{2}} X_{\lambda} Y_{\lambda} \tag{3.7}
\end{equation*}
$$

Then, for the 2nd fundamental form Φ of Q, we have easily from (2.5) and (2.6) the equality

$$
\begin{equation*}
\Phi(X, Y)=p(x) Q(X, Y) \tag{3.8}
\end{equation*}
$$

where X, Y are tangent to Q at x, that is

$$
Q(x, X)=Q(x, Y)=0
$$

regarding x as the position vector.
By means of (1.13) and (3.8), for the curvature tensor R of Q and tangent vectors X, Y, Z to Q at x, we have

$$
\begin{align*}
<Y, R(Z, X Z)> & =\Phi(Z, Z) \Phi(X, Y)-\Phi(Z, X) \Phi(Z, Y) \tag{3.9}\\
& =p(x)^{2}\{Q(Z, Z) Q(X, Y)-Q(Z, X) Q(Z, Y)\}
\end{align*}
$$

In general, the equations of a Jacobi field along a geodesic σ is

$$
\begin{equation*}
\frac{D}{d s} \frac{D X}{d s}+R\left(\frac{d \sigma}{d s}, X \frac{d \sigma}{d s}\right)=0 \tag{3.10}
\end{equation*}
$$

Along the principal section γ, we get easily

$$
\begin{gathered}
Q\left(\frac{d \gamma}{d s}, \frac{d \gamma}{d s}\right)=\frac{1}{a_{1}^{2}}\left(\frac{d x_{1}}{d s}\right)^{2}+\frac{1}{a_{n+1}{ }^{2}}\left(\frac{d x_{n+1}}{d s}\right)^{2}=\frac{1}{a_{1}^{2} F^{2}}\left(\frac{d x_{1}}{d s}\right)^{2} \\
Q\left(\frac{d \gamma}{d s}, X\right)=\frac{1}{a_{1}^{2}} \frac{d x_{1}}{d s} X_{1}+\frac{1}{a_{n+1}{ }^{2}} \frac{d x_{n+1}}{d s} X_{n+1}=\frac{1}{a_{1}^{2} F^{2}} \frac{d x_{1}}{d s} X_{1} \\
Q(X, Y)=\frac{1}{a_{1}^{2} F^{2}} X_{1} Y_{1}+\sum_{\alpha=2}^{n} \frac{1}{a_{\alpha}^{2}} X_{\alpha} Y_{\alpha}
\end{gathered}
$$

using (3.1), (3.2) and $Q(x, Y)=0$. Now putting $X^{i}=X_{i}$, we have

$$
\begin{aligned}
& \frac{D X^{1}}{d s}=\frac{d X_{1}}{d s}+\Gamma_{11}^{1} X^{1} \frac{d x_{1}}{d s}=\frac{d X^{1}}{d s}+-\frac{p(x)^{2}}{F^{2}} \frac{x_{1}}{a_{1}{ }^{4}} X^{1} \frac{d x_{1}}{d s}, \frac{D X^{\alpha}}{d s}=\frac{d X^{\alpha}}{d s} \\
& \frac{D}{d s} \frac{D X^{1}}{d s}=\frac{d^{2} X^{1}}{d s^{2}}+2 \frac{p(x)^{2}}{F^{2}} \frac{x_{1}}{a_{1}^{4}} \frac{d x_{1}}{d s} \frac{d X^{1}}{d s}+ \\
& \quad+\frac{p(x)^{4}}{a_{1}^{4} F^{4}}\left\{\frac{1}{a_{n+1}{ }^{2}}-\left(\frac{1}{a_{1}{ }^{2}}-\frac{2}{a_{n+1}^{2}}\right) \frac{x_{1}^{2}}{a_{1}^{2}}+3\left(\frac{1}{a_{1}^{2}}-\frac{1}{a_{n+1}{ }^{2}}\right) \frac{x_{1}^{4}}{a_{1}^{4}}\right\}\left(\frac{d x_{1}}{d s}\right)^{2} X^{1}, \\
& \frac{D}{d s} \frac{D X^{\alpha}}{d s}=\frac{d^{2} X^{\alpha}}{d s^{2}}, \quad \alpha=2,3, \cdots, n .
\end{aligned}
$$

From (3.9), (3.10) and the calculations above, the Jacobi's equations along γ are

$$
\left\{\begin{array}{l}
\frac{d^{2} X_{1}}{d s^{2}}+2 \frac{p(x)^{2}}{F^{2}} \frac{x_{1}}{a_{1}{ }^{4}} \frac{d x_{1}}{d s} \frac{d X_{1}}{d s} \tag{3.11}\\
\quad+\frac{p(x)^{4}}{a_{1}{ }^{4} F^{4}}\left\{\frac{1}{a_{n+1}{ }^{2}}-\left(\frac{1}{a_{1}{ }^{2}}-\frac{2}{a_{n+1}{ }^{2}}\right) \frac{x_{1}{ }^{2}}{a_{1}{ }^{2}}+3\left(\frac{1}{a_{1}{ }^{2}}-\frac{1}{a_{n+1}{ }^{2}}\right) \frac{x_{1}^{4}}{a_{1}{ }^{4}}\right\}\left(\frac{d x_{1}}{d s}\right)^{2} X_{1}=0, \\
\frac{d^{2} X_{\alpha}}{d s^{2}}+\frac{p(x)^{2}}{a_{1}{ }^{2} a_{\alpha}{ }^{2} F^{2}}\left(\frac{d x_{1}}{d s}\right)^{2} X_{\alpha}=0, \quad \alpha=2,3, \cdots, n
\end{array}\right.
$$

The second part of (3.11) shows that the Jacobi's equations have ($n-1$) solutions $\underset{(\alpha)}{X}$ orthogonal to γ such that $\underset{(\alpha)}{X}\left\|\left\|\left\|_{(\alpha)}\right\|=e_{\alpha}, \alpha=2,3, \cdots, n\right.\right.$.
4. Proof of Theorem B. Firstly, we show that the principal section γ_{c} :

$$
\begin{equation*}
x_{2}=x_{3}=\cdots=x_{n+1}=0 \tag{4.1}
\end{equation*}
$$

of Q_{c} is also a geodesic as γ in Q. Making use of the frame $\left(x, e_{1}, \cdots, e_{n}\right)$ along γ defined in §3, we have

$$
\begin{aligned}
& \Phi\left(e_{1}, e_{1}\right)=p(x) Q\left(\frac{d \gamma}{d s}, \frac{d \gamma}{d s}\right)=\frac{p(x)}{a_{1}{ }^{2} F^{2}}\left(\frac{d x_{1}}{d s}\right)^{2}=\frac{p(x)^{3}}{a_{1}{ }^{2} a_{n+1}{ }^{2}} \\
& \Phi\left(e_{1}, e_{\alpha}\right)=0, \Phi\left(e_{\alpha}, e_{\beta}\right)=p(x) Q\left(e_{\alpha}, e_{\beta}\right)=\frac{p(x) \delta_{\alpha \beta}}{a_{\alpha} a_{\beta}} .
\end{aligned}
$$

With respect to this frame, we have along γ

$$
\left(A_{i j}\right)=\left(\begin{array}{cccc}
\frac{p(x)^{3}}{a_{1}^{2} a_{n+1}{ }^{2}} & & & 0 \tag{4.2}\\
\frac{p(x)}{a_{1}{ }^{2}} & & & \\
& & \ddots & \\
& & \cdot & \\
0 & & & \frac{p(x)}{a_{n}{ }^{2}}
\end{array}\right) \text {. }
$$

Then, from (1.6) and (4.2), we have for γ_{c}

$$
\begin{aligned}
\frac{d \bar{x}}{d s} & =\frac{d x}{d s}+c \frac{d e_{n+1}}{d s}=\left\{1-\frac{c p(x)^{3}}{a_{1}{ }^{2} a_{n+1}{ }^{2}}\right\} e_{1}, \\
\frac{d^{2} \bar{x}}{d s^{2}} & =\frac{d}{d s}\left\{1-\frac{c p(x)^{3}}{a_{1}{ }^{2} a_{n+1}{ }^{2}}\right\} e_{1}+\left\{1-\frac{c p(x)^{3}}{a_{1}{ }^{2} a_{n+1}{ }^{2}}\right\} \frac{d e_{1}}{d s} \\
& \equiv \frac{d}{d s}\left\{1-\frac{c p p(x)^{3}}{a_{1}{ }^{2} a_{n+1}{ }^{2}}\right\} e_{1} \quad\left(\bmod e_{n+1}\right),
\end{aligned}
$$

for γ is a geodesic and so

$$
\frac{d e_{1}}{d s} \equiv 0 \quad\left(\bmod e_{n+1}\right)
$$

The equation above shows that γ_{c} is a geodesic of Q_{c}. Along γ_{c}, we have from the consideration in $\S 3$

$$
\frac{d e_{\alpha}}{d s} \equiv 0 \quad\left(\bmod e_{n+1}\right)
$$

hence

$$
\begin{equation*}
\frac{\bar{D} e_{i}}{d s}=0, \quad i=1,2, \cdots, n \tag{4.3}
\end{equation*}
$$

where \bar{D} denotes the covariant differentiation of the space Q_{c}. On the other hand, with respect to the frame $\left(\bar{x}, e_{1}, \cdots, e_{n}\right)$, the matrix $\left(\bar{A}_{i j}\right)$ is of a diagonal form by virtue of (1.10) and (4.2). Then, the Jacobi's equations along γ_{c} can be written as

$$
\frac{d^{2} \dot{\bar{X}}^{i}}{d \bar{s}^{2}}+\sum_{k} \bar{R}_{l i k l} \bar{X}^{k}=0
$$

where \bar{s} denotes the arc length of γ_{c} and $\bar{X}=\sum_{i} \bar{X}^{i} e_{i}$ and they turn into the following
(4.4) $\quad \frac{d^{2} \bar{X}^{1}}{d \bar{s}^{2}}=0, \frac{d^{2} \bar{X}^{\alpha}}{d \bar{s}^{2}}+\frac{p(x)^{4} \bar{X}^{\alpha}}{\left\{a_{1}{ }^{2} a_{n+1}{ }^{2}-c p(x)^{3}\right\}\left\{a_{\alpha}{ }^{2}-c p(x)\right\}}=0$.

The second part of (4.4) shows that γ_{c} has ($n-1$) Jacobi fields \bar{X} orthogonal to γ_{c} such that $\underset{(\alpha)}{\bar{X}}\|\bar{X}\|=e_{\alpha)}, \alpha=2,3, \cdots, n$, which are also parallel along γ_{c}.

According to Theorem 1 in [3], the above circumstance along any principal section of Q_{c} follows that Theorem B is true for the principal section.

References

[1] M. BERGER, An extension of Rauch's metric comparison theorem and some applications, Illinois Journ. Math., 61 (1962), 700-712.
[2] H. E. RaUch, Geodesics and curvature in differential geometry in the large, New York, Yeshiba Univ., 1959.
[3] T. OTSUKI, A note on Jacobi fields of δ-pinched Riemannian manifolds, (to appear).

