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1. Introduction. A ring with identity is said to be a local ring if the
sum of any two non-units is a non-unit or equivalently if the ring has a
unique maximal right ideal. Most of the known important local rings are
either integral domains or divisible rings. It is trivially true that Z (the set
of all zero-divisors) is included in J(Jacobson radical). In addition Z turns
out to be an ideal in many cases. Also the condition that Z is an ideal is
necessary for a ring to have a local quotient ring. These observations neces-
siate one to study rings with Z as an ideal or with ZCIJ and to investigate
when such rings become local rings. In §2, we begin by proving that in
commutative case divisible rings with uniform condition are local. But in the
non-commutative case these are proved to be local with the added right
Noetherian condition. This right uniform property exactly characterizes local
rings among right injective rings. In §3 we consider rings with Z as an ideal
and with ZCIJ and find conditions for these rings to be local. Among right
injective rings, we find local rings as well as semi-simple rings. These two
classes of rings can be characterized by extreme properties. In §4, we study
two properties which separate local and semi-simple rings among right
injective rings.

Throughout this paper we assume that every ring R has identity and Z
and J denote the set of all zero-divisors in R and Jacobson radical of R
respectively.

2. Divisible Rings.

2.1 DEFINITION: A ring with identity is said to be divisible if every
regular element (not a left or a right zero-divisor) is a right unit (having a
right inverse). This implies that every regular element is a unit.

2.2 PROPOSITION: Let R be a divisible ring. Then R is a local ring iff
Z is included in a proper ideal. In this case Z becomes an ideal.

PROOF: Because of the divisible property, every proper right ideal is
included in Z. Now if Z is included in a proper ideal, then evidently Z is
an ideal. Thus R is a local ring with Z as the unique maximal right ideal.
The other part is trivially true.
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2.3 REMARK: In a ring R with identity, if Z is included in a proper
ideal, then R has no idempotents other than 0 and 1. Hence proper Von
Neumann regular rings though divisible, do not have the above property.

2.4 DEFINITION: A ring is said to be right uniform if every proper right
ideal is large, i.e., every non-zero right ideal has non-null intersection with
every non-zero right ideal.

2.5 THEOREM: If R is a commutative divisible and uniform ring, then
R is a local ring.

PROOF: Let a and b be any two non-units in R. Since R is divisible, a,
b € Z, i.e., ax=0 = by, x, y^O. Since R is uniform, xl—ymΦ^) for some l,meR.
Then (a + b)xl = bxl = bym = 0. Hence a + bzZ. This implies that a + b is a
non-unit and so R is a local ring.

2.6 THEOREM: Let R be a right Noetherian and two-sided uniform
divisible ri?ιg. Then R is a local ring.

PROOF: Let a and b hz any two non-units in R. Then a,b £ Z. Let

aχ = 0=by. Since χl=ynι^0 by right uniform property, {a + b)xl—bxl = bym
= 0. Hence a + b £ Z. Similarly if xa =yb = 0, we have a + b £ Z, by left uniform
property. Assume now ax — ̂ —yb. Because R is right Noetherian, an = 0,
^ " ^ O by virtue of [2, Theorem 6.1]. Then by left uniform property, lan~1 = my.
Hence lan~\a + b) = lan~1b = myb = 0, i.e., a + bzZ. Thus a + b is a non-unit
and hence R is a local ring with Z as the unique maximal right ideal.

2.7 REMARK: In the case of right Noetherian rings R, the conclusion
that i? is a local ring fails if either one of the conditions of uniformity or
divisibility is dropped out. Proper semi-simple rings and the ring of integers
present counter examples. But there exist non-uniform divisible rings. However
this uniform property classifies local rings among right injective rings (which
are divisible by [5; Theorem 3.1]).

2.8 EXAMPLE: Let R= [a + bx + cy: a, b, c e a division ring D;x2=y2 = xy
=yχ = 0 and dx = xd and dy=yd for every deD}. Define a + bx + cy = 0 iff
a — b^c — 0. Then R is a ring with the usual rules of multiplication and
addition. Since xRnyR — 0 and Rxf)Ry = 0, R is not right or left uniform
but R is a divisible local ring with the unique maximal right ideal generated
by x and y.

2.9 THEOREM: Let R be a right injective ring with identity. Then the
following are equivalent :

i) R is a local ring.
ii) R has no proper idempotents.
iii) No proper projective right ideal is injective.



CHARACTERIZATION OF LOCAL RINGS 413

iv) R is right uniform.

PROOF: Evidently i) «=» ii). Since every injective right ideal is generated
by an idempotent and hence is projective, ii)=Φ iii).

iii) => iv): We observe first that R has no proper injective right ideals.
Hence R is the injective hull of every one of the right ideals and R is right
uniform [1; Theorem 57.13].

iv)=Φ i) : Since R has identity and R is right injective, HomR(R, R) is
isomorphic to the ring of all left multiplications and hence to R. But
HomΛ (R9R) is a local ring since R is right uniform [6; Proposition 2.2].
Thus R is a local ring.

3. Rings with Z as an ideal. In integral domains Z is trivially an ideal
and ZCIJ. There exist rings with zero-divisors for which Z is an ideal and
ZCZJ. It can be observed from [2; Theorem 6.1], that uniform and two sided
Noetherian rings satisfy this property because Z is a nil ideal and hence
ZCZJ. Now we shall find a criterion for these rings to be local rings.

3.1 PROPOSITION. Let R be a ring such that Z is an ideal and ZCIJ.
Then R is a local ring iff R/Z is a local ring.

PROOF: Let R/Z be a local ring. Denote the elements of R/Z by a, a e R. If
ax = l, then ax=l + n, n £ Z. Since ZCIJ, ax is a unit, i.e., axy = l, This implies
xya = l since ZCIJ. Hence a is a unit. It can easily be verified that a is a non-
unit if a is a non-unit. Now, if a and b are non-units, evidently by the above

characterization, a and b are non-units. Hence α + έ is a non-unit since R/Z
is a local ring. This implies that a + b is a non-unit. The other part is
trivially true since onto homomorphic image of a local ring is a local ring.

3.2 THEOREM: Let R be a ring satisfying the following conditions.
i) Right ideals containing J are principal.

ii) J is completely prime and is a principal left ideal.
iii) Z^J.
iv) J ^ 0.

Then R is a local ring.

PROOF: It suffices to prove that J is composed of all non-units. Let
J=Rx and a ^ J . Then by ϊ)J+aR = bR and b^J. Hence x — by. Since J is
completely prime, y £ J. Therefore y^cx, i.e., x = by = bcx. Thus 1 — bczZ.
This implies by iii) 1 — bczJ and be is a unit and hence b is a unit.
Consequently J+aR = R. Therefore it follows that l=j + ac, j £ J and 1 — ac £ J
and tfc is a unit. Thus we conclude that a is a unit.

3.3 REMARK, In the above theorem the condition that J^=0 is necessary
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as can be seen from the example of the ring of integers.

As an immediate consequence of 3.2 we have the following.

3.4 COROLLARY. Let R be a principal ideal ring {every right and left
ideal is principal) and ZC^J. Then R is a local ring iff J^=0 and J is a
completely prime ideal.

3.5 COROLLARY. Let R be a principal ideal ring which is not a
domain. Then, if Z=J, R is a local ring.

We conclude this section with a discussion whether Z can be large.

3.6 PROPOSITION. Let R be a ring with Z as an ideal. Then, if Z is
not a large right ideal, R is an integral domain.

PROOF: Let Z^O. By hypothesis ZnA = 0 for a right ideal A(±?0).
Consider x(^0) e Z. For definiteness let tx = 0. If j>(^0) € A, then (t + y)x
—yx^AίλZ. Thrs implies yx — 0. Hence t+y^Z and so y z Z. Thus y = 0, a
contradiction.

3.7 REMARK: If Z is a large ideal, R need not be an integral domain as
can be noted in the following example. Let R={a-\-bx: a,b^s. division ring
D; x2 = 0 and dx=xd for every d £ D}. Then R is a ring with the only ideal
(x) and Z=(x) is a nilpotent ideal and is a large right ideal.

4. Local and semi-simple rings. A trivial local ring as well as a semi-
simple ring is a divison ring. In 2.9 we proved that the right injective rings
which are local are characterized by right uniform property. Now we show
in the following that semi-simple rings which are a subclass of right injective
rings can be described exactly by the opposite property.

4.1 PROPOSITION: Let R be a ring with identity such that no proper
right ideal is large. Then R is semi-simple.

PROOF: Let A be any proper right ideal. By hypothesis AθB=0 for
some right ideal B(^0). Then by Zorn's lemma, there exist a proper right
ideal B* such that AnB* = 0, and Cz>J3* and CnA = 0^> C=B*. It can be
verified easily that A + B* is a large right ideal. Hence by hypothesis A + B*
=R. Thus every proper right ideal is a direct summand, which implies that
R is semi-simple.

It is also possible to separate local and semi-simple rings among right
injective and right Noetherian rings by the property whether or not every
proper principal right ideal is project ive.
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4.2 PROPOSITION: Let R be a right injective and right Noetherian
ring. Then R is semi-simple iff every principal right ideal is projective.

PROOF: Let every principal right ideal be projective. Then by QF
theorem of [3; page 80], every principal right ideal is injective, i.e., principally
generated by an idempotent. This fact together with the finitely generated
condition on right ideals, makes every right ideal principally generated by
an idempotent. Thus R becomes semi-simple. The other part is trivially
satisfied.

4.3 LEMMA. Let R be a ring with identity satisfying the ascending
chain condition on annhilator right ideals. Then a right unit is a two-sided
unit.

PROOF: Let α^O and ax=l. Assume xa^l. Since a(xa—1) = 0, ar = [t €
R\at = 0} is a non-zero right ideal. Now α r C(α 2 ) r C(α 3 ) r C Because of the
a.c.c condition, (an)r = (an+1)r for some positive integer n. Let u(^0) £ (an)r.
Then an u = 0. But u = (ax)u. Hence an(ax)u = 0, i.e., xu € (an+1)r, i.e., xu z (an)r.
Thrs implies anxu = 0 and an~1(axu) = 09 i.e., an~lu = 0. Thus uz(an~1)r and so
(an'ι)r = (any. Proceeding in this way we get α r = (α2) r. Let u <Ξ ar = (a2)r. Then
a2(u — xu) — 0. But a{u—xu) — au — u = — u. Hence u — xu € (a2)rί)ar only if
u = 0. This implies αr = 0, a contradiction.

4.4 THEOREM. Let R be a right injective and right Noetherian ring.

Then R is a local ring with the maximal right ideal as a nil potent ideal

iff no proper principal right ideal is projective.

PROOF: Let no proper principal right ideal be projective. Then R has
no idempotents and hence R is a local ring by 2.9. By the same theorem 2.9,
R is also right uniform. So P— [a € R\ar^0} is a nilpotent ideal, [2; Theorem
3.1]. We will show now that P is the set of all non-units in R. Let a be
non-unit and a ^ P. Then a is right regular. This implies aR is projective
and hence by hypothesis aR=R, i.e., a is a right unit., By 4.3, a becomes a
two-sided unit.

Conversely if the maximal right ideal of the local ring R is nilpotent, no
proper principal right ideal is a free ideal. But in local rings projective ideals
are free [4; Theorem. 2]. Hence Q.E.D.
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