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Introduction. Let us consider a hypersurface Mn~ι of a Riemannian
manifold Mn. For a linear transformation F of the tangent bundle T(Mn) of
Mn we always define a linear transformation / of the tangent bundle T(Mn~ί)
of Mn~ι in such a way that / is the correspondence XeT(Mn~ι) to the
tangential components of FX to Mn~ι. The study of such a transformation f
is rather fundamental in studying the theory of hypersurfaces of a Riemannian
manifold whose tangent bundle admits a remarkable transformation F. In
fact, in the previous paper [3] the author has obtained the following result.

Let the linear transformation F be a natural almost complex structure of
an even-dimensional Euclidean space and f the induced linear transformation
of the tangent bundle of a hypersurface in the above sense. If the linear
transformation f is commutative with the linear transformation h which
is defined by the second fundamental tensor of the hypersurface, the hyper-
surface must be one of the followings :

1) (2n — l)-dimensional sphere S271'1,
2) (2n — l)-dimensional Euclidean space E2n~ι,
3) Product manifold of an odd dimensional sphere Sp with a Euclidean

space E2n~p-\
Jn this paper, we assume that M be an odd dimensional sphere S2n+1 and F
be a linear transformation determined by the natural contact structure on an
odd dimensional sphere S2n+ί. Then we can define the transformation f of
the tangent bundle of a hypersurface in S2n+1 and discuss the problem that
for what hypersurface the commutativity of f and h to be satisfied. To study
this problem, in §1, we give some properties of the contact structure of
S2n+1 and in §2, some preliminaries of the theory of hypersurface. In §3, we
study a hypersurface of an odd dimensional sphere and prepare some identities
for later use. In the last §4, we determine the hypersurface with constant
mean curvature for which the commutativity h f=f h to be valid.

1. Contact Riemannian structure on an odd dimensional sphere. A
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(2w + l)-dimensional differentiable manifold M is said to have a contact
structure and to be a contact manifold if there exists a 1-form η on M such
that

(1. 1) vA(dη)nΦ0

everywhere on M, where dη is the exterior derivative of η and the symbol
Λ means the exterior multiplication, η is said to be a contact form of M.

Since (1.1) means that the two-form dη is of rank 2n everywhere on M
we can find a vector field E on M uniquely by

(1.2) *?(£) = ! , dη(E,X) = 0,

for an arbitrary Xz T(M).
Let S2n+1 be an odd dimensional sphere which is represented by the

equation

in a (2w + 2)-dimensional Euclidean space E2n+2 with rectangular coordinates
). We put

-, n+l

(1. 4) η= ^ Σ ( ^ + 1 + α ^ α -
Z

then the 1-form η defines a contact form of S2n+ι and so we find a vector
field £ on S2n+1 satisfying (1.2).

The Riemannian metric g on S2n+1 is naturally induced from the Euclidean
space E2n+2 in such a way that

With respect to thus defined Riemannian metric, the Riemannian curvature
tensor R of S2n+1 satisfies

(1. 6) R(X, Y)Z=g(Z, Y)X-Ί/(Z, X)Y.

Using (1.5), we define a transformation F; T(S2n+1)^T(S2n+ι) bγ
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(1.7) 2~~y(FX,Y)=driX,Y),

for X J e ϊ i S " " ) . Then the set (F, E, v,^) satisfies0

(1.8)

(1.9) g(FX,FY)=g{X,Y)-riX)η(J),

and consequently

(1.10) v(FX) = 0,

(1.11) F2X=-X+η(X)E.

In general, the set (F, E, η, g) which satisfies (1.1), (1.2), (1.7), (1.8) and (1.9) is
called a contact Riemannian (or metric) structure. It is known2) that if the
contact Riemannian structure on S2n+1 is defined by (1.4), (1.5) and (1.7), it
satisfies further that

(1.12) -|-(V**iXX, Y) = V(X)RY, Z)-η(Y)^X, Z\

(1.13) V*E

for any vector fields X, Y, Z on M, where \7Z denotes the covariant derivative

with respect to the Riemannian metric g.

2. Hypersurfaces of a Riemannian manifold. Let Mm be an ra-dimen-

sional orientable differentiable manifold and φ be a regular, differentiate

mapping Mm into M, whose dimension is ra + 1.

By a regular mapping φ we mean a differentiate mapping, such that the

rax (ra + 1) matrix of functions representing the first partial derivatives in

any parametric representation of φ has rank ra at every point of Mm.

The Riemannian metric g of M naturally induces a metric g on Mm by

the mapping φ in such a way that g(X, Y)=g(dφ{X\ dφ(Y)), where we denote

dφ the differential map of φ, and X, Y tangent vectors to Mm. Since the

image under dφ of the tangent vectors at each point pz Mm forms a hyper-

plane in the tangent space of M at φ(β), one can choose either of the two

opposite unit vectors orthogonal to the tangent space image. Since Mm is

orientable, if we assume that M is also orientable, we can choose the unit

normal vector N to the hypersurface in such a way that, if (Bλ, , Bm) is a

positively oriented frame of tangent vectors at p, then the frame (JSζ dφ{Bλ\

1) S.Sasaki and Y.Hatakeyama [4],
2) S, Sasaki and Y. Hatakeyama [4].
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• , dφ(Bm)) at φ(/>) is positively oriented.
The second fundamental form of the hypersurface Mm is defined as the

components along N of the covariant derivative of dφ(X), that is,

(2. l) v t f*u)dΦ(y)=Vχy+H(χ,Y)jsζ

where we denote by V and ' \7χ¥ the covariant derivative with respect to the
Riemannian metric g and the tangential component of \7aφ(χ)dφ(Y) respectively.

It is easily verified that 'S7χY is identical with the covariant differenti-
ation of Y with respect to the induced Riemannian metric g. Thus we
write (2.1) as

(2. 2) V*Y=VχY-H(X, Y)N,

where we identify, for each pz Mm, the tangent space Tp(Mm) with

dφ(Tp(Mm))cTΦiP)(M) by means of the immersion φ.
Since N is the unit normal vector field to Mm we have

(2. 3) Ί

and consequently

(2. 4)

This means that the covariant derivative X7XN of the unit normal N in
the direction of the tangent vector field X is tangent to the hypersurface.

On the other hand, differentiating both members of the equation g(N9Y)
= 0 covariantly in the direction of a tangent vector field X, we have

Substituting (2.2) into the second term of the above equation, we get
easily

(2.5) ^Vχisζy)=-//(x,y) .

This equation is called the equation of Weingarten.

Let {xί},i = l, 2, , m be local coordinates in an open neighborhood U of

pz Mm. The set of the vector fields (Bl9 , Bn), where Bt= —^ (ί = l ,2, ,

m) is called the natural frame of Mm. We choose positively orientahle fra,m.Q
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(Λζ Bi9 , Bm) at each point of φ(/>) £ M. Then VjJV can be expressed as a

linear combination of Bt (i = 1, , m) and we put

or

m

(2. 6) VBJN= - Σ h}B,.

Consequently we have from (2.5),

m m

(2. 7) H(Bt, Bή)= Σ V ί Φ . 5*)= ΣΛ/ί<β f, BU=hfgXh = hiX>

where and throughout the paper we put g(Bi9 B3) = gi5 and use Einstein's summ-

ation convention for brevity. In the following discussions we identify H(Bj9

Bi) and hf by means of gH or of gji which is inverse matrix of gH and so

we denote H(Bj9 Bί)=hjί.

Since the Riemannian connections V and V are both torsionless, we

easily see that H(X,Y) = H(Y, X) and consequently hjί = hίj.

The mean curvature μ of Mm in M is defined by

(2. 8)
m y J m

It is a scalar on Mm independent of the choice of the frame.

When at each point of the hypersurface Mm there exists a differentiate

function a such that H(X, Y) = ag(X, Y) for any X,Y z T(Mm), or equivalently

(2. 9) hJt = agji9

we call the hypersurface a totally umbilical hypersurface. Moreover, when

the proportional function a vanishes identically we call the hypersurface a

totally geodesic hypersurface.

LEMMA 2.1. A necessary and sufficient condition for a hypersurface to

be umbilical is that the following equation is satisfied:
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(2.10) λi*λ"=^(V)f,

where hji = gjrgishrs and hr

r = girhir.

PROOF. This follows from the identity

(hjt - — h/gjί)(hjί- -^-hr

rgjί) = hHhji- —(h/γ,m m r v / Jl m

and the positive definiteness of the Riemannian metric g.

The relation of the curvature tensors Mm and M is given by the following
Gauss equation

(2.11) Rkjίh=Ίj(R(dφ(Bk\ d<KBs))d<KBt\ dφ{B

where Rkjih denotes g(R(βk9 Bj)Bi9 Bh) for brevity.
We also give the equation of Codazzi.

(2.12) Vjhn-Vth^giRidφiBά dφiβ^dφiβ^ N)

where

If the Riemannian manifold M i s a space of constant curvature, that is,
if we have

(2.13) Rffi, X)Y=kQ(X, Ϋ)W-ϊ(y, W)Z] for any X,ΫandWz T(M),

then, from (2.11), the curvature tensor Rkjih of Mm takes the form

(2.14) Rk3th = k(gJigkh-gkigjh)+hjihkh-hkihjh.

In the same way, for a space of constant curvature M, we have

(2.15) V A * - V , k J Λ = 0 ,

because of (2.12).

3. Hypersurfaces in an odd dimensional sphere. We consider a hyper-
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surface M271 in an odd dimensional sphere S2n+ι. In this paper we regard S2n+1

as a contact manifold with contact Riemannian structure (F, E, η, g) defined
by (1.4), (1.5) and (1.7).

The transform FX of a tangent vector field XzT(M2n)<zT(Sin+ι) can be
expressed as a sum of its tangential part (FX)T to M2n and its normal part,
that is,

FX=(FX)τ+ψ(X)K

The correspondence XzT(M2n) to (FXf and that XzT(M2n) to ψ(X)
define respectively a linear transformation / :T(M 2 n )—^(M 2 7 1 ) and 1-form ψ
on M271. So the above equation can be rewritten as

(3. 1) FX=fX+ψ(X)N,

from which we get

(3.2) ψ(X)=y(FX,N)=-y(X,FN).

By means of definitions of F and f we have immediately that

(3.3) g(fX,Y)=-g(X,fY).

Let {x1} be a local coordinates in a neighbourhood U of pz M2n. We

choose a frame (JNζ Bl9 , B2n\ B,= ̂ .(i = l, . . ., 2n) in T(52w + 1), then from

(3.1) we have

(3.4)
k=l

where / / is the components of the matrix which defines the linear transfor-
mation / and fi is that of the 1-form ψ.

On the other hand the transform FN of the unit normal N by F is
perpendicular to N and consequently tangent to the hypersurface M 2 n.
Hence it follows that

(3. 5) FN=YJk
hBh.

h=l

Substituting (3.5) into (3.2), we find
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271

(3. 6) /, = ψ(5,)= - Σ khg(Bt, Bh)= -kt.
Λ=l

Thus, in what follows we identify fi and — ¥ by means of the Riemannian
metric g and denote kh by — fh.

The vector field E being tangent to S2n+ι, it is represented as

(3. 7)
h

from which we have immediately

(3. 8)

and consequently we denote η(B^) by ph.

We also get easily that

(3.9) q

Transforming again the both members of (3.4) by F and making use of
(1.11), (3.4), (3.5) and (3.6), we find

-Bι+piE=fiγjBj+fi%N-fifBj.

Substituting (3.7) into the above equation, we get

-Bt + &phBh + qpιN=fi

hfh'Bj +fι

hfhN-fιpBj,

from which

(3.10) Wfn^-V + PiP+fif,

(3.H) fιh9> = qtk

Transforming again the both members of (3.5) by F and making use of
(1.11), (3.4) and (3.6), we get

-N+V{N)E= -ffSBt-fftN.

Substituting (3.7) and (3.9) into the above equation, we have
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from which

(3.12)

(3.13)

Since g(FN,FN)=g(-fiBί,-fjBj)=gjίff
i, the last equation shows us that

the square of the length of FN is always less than 1.

Since the second condition of (1.2) is equivalent to g(FE,X) = 0 for any
X€Γ(Λfn+1), it follows that FE=0 and consequently we have

FE = pΨB, + qFN= 0,

because of (3.7). Substituting (3.4) and (3.5) into the above equation, we
obtain

from which

(3.14)

(3.15)

From (3.7) the second condition of (1.2) is now rewritten as

τ£E) = #(£, E) = ~g(JB% + qN, P}B} + qN) = ptp!gH + qΐ = l

From this fact we have

(3.16)

Differentiating (1.7) covariantly in the direction of Z and taking account
of (1.7) and (1.12), we find

(3.17) v(X)g(Z, Ϋ)-4J)gίz, X)+ ~\- d*βj~X y)=#(v2(FX), Ϋ).

Substituting Bh,Bt and Bό for X, Y and Z respectively and regarding the
fact that

dη(X,Y)=2Ϊ(FX, Y)=2gtfX, Y) for X, Y z T(M2n)
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we obtain

2{η(Bh)g(Bί, Bά-ftBJgiBto Bs)} + ^ ( V * A , Bt)+H(Bh9 B3)driNy Bt)

from which

(3.18) Vj/iA = Ptgjh - pnQπ +fιhjh -fhhJt9

where we put

Substituting Λζ Bt and Bs for X, Y and Z respectively in (3.17), we get

f^N^iBj, S,)+AKVftΛζ Bt)=~~g(VB)(FN), Bt).

This implies, together with (3.5), (3.6) and (3.9), that

(3.19) V Jt = - qgjt + f/h/grl,

where

Differentiating (3.8) covariantly in the direction of B^ we obtain

VB}pi=g(VBjE, Bt) + g(E, VBβd.

Substituting (1.13) into the last equation, we get

(3.20) V,A = ( 3 ^ + ί

In exactly the same way, we have

(3.21) Vjq = VBjq =f, ~ p%t,

because of (3.9).

4. Determination of the hypersurfaces with f h = h f. Let M271 be a
hypersurface of an odd dimensional sphere S2n+1 of radius 1. In this paragraph
we always assume that the vector field E over S2n+1 is not tangent to the
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hypersurface at almost every point on S2n+1.

LEMMA 4.1. If the mapping f and h are commutative, the following
identities are valid.

(4.1) H

(4 2) HHfψ =

PROOF. We operate f h to phBh, then f h=h f and (3.14) show us that

(4. 3) f KphBh) = h-f(p"Bh) =

and consequently it follows that

(4. 4)

On the other hand, from (3.3), we have

(4. 5) g(f h(p"Bn),

Comparing (4.4) (4.5), we get (4.1). This proves the first assertion of the
lemma.

Next we consider the inner product of fh(phBh) and p\B3). Then we get

(4. 6) gtf hUfiBάfBj) = giqΓKBάfBJ = qHHp*f,

because of (4.3).
On the other hand, from (3.3) and (3.12), it follows that

g(f.h(phBh),fBj)=-g(h(p»Bh),ff(B)))

lff/Bd = qHih?p\

This shows, together with (4.6), that (4.2) is valid. This completes the proof
of the lemma.

A vector field X is called an infinitesimal conformal transformation if it
satisfies for any Y and Ze T(M2n)

(4.7)
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where p is a certain scalar function on M271 and L(X) is an operator of the
Lie derivative.

LEMMA 4.2. Assume that the mapping f and h are commutative. Then
the vector field FN is an infinitesimal conformal transformation.

PROOF. By definition of the Lie derivative the left hand member of (4.7)
takes the form

(L(X)g)(Y, Z) = vΛgQT, Z)) - g([X, Y], Z)+g(Y, [Z, X])

from which

(4. 8) (L(,FN)gXBt, B}) = g(VB,(FN), B}) + g(VBi(FN), Bt)

h\ Bt)

Substituting (3.19) into the last terms of the above equation, we obtain

= 2qgH,

because of the assumption h>f=f>h. This shows that the vector field FN is
an infinitesimal conformal transformation. This completes the proof of the
lemma.

Owing to Lemma 4.2, FN is an infinitesimal conformal transformation
and consequently we have3)

(4. 9) V,V,/Λ + Rtjiπf = - gihVsq - gJhVιq + ftiVrf,

because of (4.8).
On the other hand covariant differentiation of (3.19) gives us that

(4.10) VjVtΛ = - V A l - PJ151 + Prht

rgJh

-fhhirhjr +frhi

τhih -

3) For example K. Yano [6],
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because of (3.18). Since S2n+ι is a space of constant curvature k=l, we have

•R-kjih = 9jί9kh 9ki9jh ~^~ 'lri'lkh ~~ 'τki'τjh>

by virtue of (2.14), from which

(4.H) Rknnfk=gπfk-ginfi + hHhkhp-hjhhkifK

Substituing (4.10), (4.11) into (4.9) and making use of (3.21), we get

- VArΛr - PΛn- hKhjr + }hihkhp = - gHfhkr.
Suppose now that M271 has the constant mean curvature μ. Then the

above equation gives us that

(4.12) - pji* " fΛnhji + WhjJ* = - 2np%h,

because of (2.15). The equations (3.13), (3.16), (4.12) and Lemma 4.1 imply
that

(413) (1 - q2)^ = 2nhihpψ9

and

(4.14) Q -q^Kh'^Wh^ff.

Again using Lemma 4.1 and eliminating h^pf1, we get

(4.15) ( i - g

Let Mo be a set of non-umbilical points of M2n. Then Mo is necessarily
an open set of M2ϊι. Furthermore by means of Lemma 2.1 and (4.15) it follows
that q2 = l in Mo, consequently we get Pipi = 0 because of (3.16). The
Riemannian metric g being positive definite, this shows that pt = 0 at each
point of Mo. From this fact, in Mo, we have

V ,A = fa + Φn = °>

by virtue of (3.2). However since fH is skew-symmetric and hn symmetric
with respect to their indices, the last equation means that fH = 0, hjt = 0 in
Mo. Thus we have

μ = 0

at each point of Mo. The mean curvature μ being constant over M2n, it
follows that hji = O in the complement of Mo in M271. Thus we can deduce
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that if there exists a non-umbilical point in M271, the hypersurface is totally

geodesic. From these consideration we can prove the following

THEOREM 4.3. Let M271 be a hypersurface with constant mean curvature

of an odd dimensional sphere S2n+1 and E be the unit vector field on S2n+1

which is determined naturally from the contact form of S2n+1. If E is not

tangent to M2n at almost everywhere and if the mapping f and h are

commutative, the hypersurface is umbilical. Furthermore if M2n is complete,

it is a 2n-dimensional sphere.

PROOF. The proof of the first statement of the theorem has already

given in the above discussions and so we give the proof of the latter

statement of the theorem.

Since M2n is totally umbilical, from (2.14), it follows that

(4.16) RkjihH^^^Xg^g^-g^g^ k = -^-h/.

This shows that the hypersurface M271 is a space of positive constant curvature.

M271 being connected, complete Riemannian manifold, we have from the

Myers' theorem4), M2n is compact. Moreover, M2n being orientable and even-

dimensional, it is simply connected.5) Thus we have the latter assertion of

the theorem.6) This completes the proof.

REMARK. Recently Y.Watanabe [7] have proved that in a normal contact

Riemannian manifold, a complete, totally umbilical hypersurface with constant

mean curvature μ is isometric with a sphere of radius 1/sJl + μ2. Using this

result, we can also prove the latter assertion of the theorem.

BIBLIOGRAPHY

[ 1 ] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Interscience
Tracts, John Wiley and Sons, New York, 1963.

[ 2 ] S. MYERS, Riemannian manifolds with positive mean curvature, Duke Math. Journ, 8
(1941) 401-404.

[ 3 ] M. OKUMURA, Certain almost contact hypersurfaces in Euclidean spaces, Kδdai Math.
Sem. Rep., 16(1964), 44-54.

4) S.Myers [2].
5) J.L.Synge [51.
6) For example S.Kobayashi and K. Nomizu [1], p. 294.
[4] S.Sasaki AND Y. Hatakeyama, On differentiable manifolds with contact metric structure,

Journ, Math. Soc. of Japan, 14(1962), 249-271.



HYPERSURFACES OF AN ODD DIMENSIONAL SPHERE 395

[ 5 ] J. L. SYNGE, On the connectivity of spaces of positive curvature, Quart. Journ. Math.
Oxford, 7(1936), 316-320.

[ 6 ] K. YANO, The theory of Lie derivatives and its applications, North Holland Publ. Co.,
Amsterdam, 1957.

[ 7 ] Y. WATANABE, Totally umbilical surfaces in a normal contact Riemannian manifolds,
Kδdai Math. Sem. Rep. 19 (1967), 474-487.

DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY

TOKYO, JAPAN




