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SASAKIAN MANIFOLD WITH PSEUDO RIEMANNIAN METRIC
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Introduction. Sasakian manifold with Riemannian metric is defined by
S. Sasaki [5]. In this paper, we want to define Sasakian manifold with
pseudo-Riemannian metric, and discuss the classification of Sasakian manifolds.

In section 1, we define a Sasakian manifold (with pseudo-Riemannian
metric). In section 2, we define the model spaces of Sasakian manifolds which
are used in section 4 for the classification of Sasakian manifolds of constant
φ-sectional curvatures. In section 3, we discuss Z)-homothetic deformation
which is defined by S. Tanno [9], and prove some fundamental lemmas concerning
completeness of the deformed metric. In section 5, we prove that a Sasakian
manifold, satisfying R(X, Y) R = 0 for all tangent vectors X and Y, is of
constant curvature. In section 6, we discuss a Sasakian manifold M^n+1 which
is properly and isometrically immersed in £fn+2.

I wish to express my hearty thanks to Prof. K. Nomizu, Prof. S. Sasaki
and Prof. S. Tanno for their valuable advices.

1. Preliminaries. Manifolds and tensor fields are supposed to be of class

Let M=M2n+ι be a connected differentiable manifold, and let φ, ξ and η
be tensor fields of type (1, 1), (1, 0) and (0, 1), respectively, on M.

DEFINITION, (φ, ξ, η) is called an almost contact structure on M, if the
followings are satisfied:

<ξ) = i ,

ij(ΦCX)) = o,

φ\X) = -X + η(X)ξ, Xe

*) Partially supported by the National Science Foundation.
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DEFINITION, (φ, ξ, η, g, 8) is called an almost cojitact metric structure
on M, if (φ, ξ, η) is an almost contact structure on M and g is a pseudo-
Riemannian metric on M such that

+ 1 or - l ,

X € Ϊ ( M ) ,

x, y

DEFINITION. (φ,ξ,V, g,8) is a contact metric structure on M, if it is
an almost contact metric structure on M and satisfies

dη(X, Y) = g(φX, Y), X,Yz 1(M).

DEFINITION, (φ, ξ, η, g, £) is a normal contact metric structure on M,
if it is a contact metric structure and satisfies

(v *Φ) r = ̂ (y) x - ^(x, Y) f, x, Y ̂  Ϊ(M) ,

where V indicates the Levi-Civita connection for the pseudo-Riemannian metric
g. In this case, we call M(φ, ξ, η, g, 8) a Sasakίan manifold.

The following example shows that we may assume £ = 1 without loss of
generality.

EXAMPLE. Let (φ, ξ, η, g, 8) be an almost contact metric structure (resp.
a normal contact metric structure) on M. We put

9 =-g, ξ =-ξ> v =-v, Φ = Φ-

Then (φ, ξ, r},]}, 8), 8=—8, is an almost contact metric structure (resp. a normal
contact metric structure) on M.

PROOF. It is easy to see that (φ, ξ, rj, ~g, 8) is an almost contact metric
structure, and it is a contact metric structure if (φ, ξ, η, g, 8) is a contact
metric structure. Suppose (φ, ξ, 77, g, 8) is a normal contact metric structure.
Since the parallelism with respect to g and the parallelism with respect to ~g
are the same, we get

= 8V(Y)X-g(X,Y)ξ

= έη(X)X-g(X,Y)ξ.
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Thus (φ,];,η,~g,£) is normal.

Hereafter, we assume 8=1, and drop it.

REMARK. A contact metric structure is normal if and only if the following
tensor field vanishes :

NKX, Y) = [φX, φY] - φ[φX, Y] - φ[X, φY] + φ2[X, Y] + 2dη(X, Y)ξ .

(cf. S. Sasaki [7], Theorem 11.1)

By the same method as in the case of Riemannian metric, we get the
following, which we use later :

PROPOSITION 1. For an almost contact metric structure (φ, ξ, η, g) on
M,

( 1 )

implies

( i )
(ii) ξ is a Killing vector field,
(iii) dη(X,Y) = g(φX,Y).

Let (Mn, g) be a pseudo-Riemannian manifold. Let X and Y be tangent
vectors at a point of Mn. If X and Y satisfy

g(X,X)g(Y,Y)-g(X,YγΦ0,

then we say that X and Y span a non-degenerate 2-plane X Λ ^ This
definition is independent of the choice of X and Y which span the 2-plane
X Λ ^ For a non-degenerate 2-plane XAY, we define a sectional curvature
K(X,Y) by

κ ( x Y) = g(
V ' ; g(XXg(X,X)g(Y]Y)-g(X,Y)\

If K(X,Y) is constant for all X and Y in Tx(Mn) such that XΛY is a non-
degenerate 2-plane, we call (M^^g) to be of constant curvature at x. If
(Mn, g) is of constant curvature at every point of Mn, K(X, Y) is a function
oί χ£ Mn, say k(x). If k(x) is constant on Mn, we call (Mn, g) to be of
constant curvature. It is known that if (Mn,g) is of constant curvature at
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every point and if n Ξg 3, then (Mn, g) is of constant curvature (J. A. Wolf [10],

p. 57, Cor. 2.2.7). Suppose (Mn, g) is of constant curvature k, then we have

( 2 ) R(X, Y)Z = k{g(Y, Z)X - g(X, Z)Y]

for all tangent vectors X,Y and Z (cf. J. A. Wolf [10], p. 56, Cor. 2.2.5).

Suppose we have a Sasakian manifold M2n+1(φ, ξ, η, g). Let

Dx = [Xz Tx(M2n+1) η(X) = 0} .

For a non-null vector X in Dx, X and φX span a non-degenerate 2-plane, and
hence we can consider a sectional curvature K(X) = K(X, φX). If K(X) is
constant for all non-null vectors X in Dx, we call (M2n+1,g) to be of
constant φ-sectional curvature at x. If (]^Pn+1,g) is of constant φ-sectional
curvature at every point, K(X) is a function of χzM2n+ι, say k(x). In this
case, if k(x) is constant on M2n+\ we call (M2n+1,g) to be of constant
φ-sectional curvature. If (M2n+1,g) is of constant φ-sectional curvature at
every point and if n ^ 2, (Λί2 n + 1,^) is of constant φ-sectional curvature (cf.
K. Ogiue [4]). Suppose (M2n+ι, g) is of constant φ-sectional curvature k, then
we have, for any tangent vectors X, Y and Z,

( 3) AR{X, Y)Z = (k + 3){g(Y, Z)X- g(X, Z)Y} + (k-l){η(X)η(Z)Y

- η(Y)v(Z)X + g(X,Z)η(Y)ξ - g{Y,Z)η{X)ξ

+ g(φY, Z)φX + g(φZ, X)φY - 2g{φX, Y)φZ] .

(cf. K. Ogiue [4]). Thus, if (Mίn+ί, g) is of constant φ-sectional curvature 1,
it is of constant curvature 1.

REMARK. If we do not assume θ = 1, (3) should be

( 3') 4R(X, Y)Z = (k + Sε){g(Y, Z)X - g(X, Z)Y]

+ (εk-ΐ){η(X)η(Z)Y - η(Y)η(Z)X}

+ (k-£){g(X, Z)η{Y)ξ - g(Y, Z)η(X)ξ

+ g(φY, Z)φX + g{φZ, X)φY - 2g(φX, Y)φZ} .

2. Model spaces. Let b?+1 be an "inner product" on C+ι, defined by

Σui-vι+ "£ usv
ϊ = l j=s+l
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Let *g = gl"+2 be a pseudo-Riemannian metric on Cn+1 defined by the parallel
translation of b"+1. Let J be a complex structure on Cn+1 defined by the
parallel translation of the map

uz Cn+ι > Λ/~=ΓΓ«

For n ̂  0 and 0 ̂  s ̂  n, let M = SJ?+1be a hypersurface of O + 1 defined by

( 2 ) S2

2

s

n+1 = {u € C"+1 £?+1(w,«) = 1} ,

and let <7 = <7 |<S|?+1. Then (M, g) is a pseudo-Riemannian manifold of constant
curvature 1, of dimension 2/z + l and of signature 2s (cf. J. A. Wolf [10], pp.
62-68). If s = 0, M is nothing but the unit sphere S2n+1 S. Sasaki and
Y. Hatakeyama [6] defined a Sasakian structure on it. Similarly, we can define
a Sasakian structure on M = 5!?+1, n = 0, 0 ̂  5 ̂  ?z, as follows :

For J: € M", the tangent space of M at x is given by

TX(M) = {X€ TX(C"+1) g(X,x) = 0} ,

where we consider x as its position vector. Let ξ be a vector field on M
defined by

( 3 ) ξyxzM >ξz = Jx,

where Jx is considered as a tangent vector of Cn+ί at x by the parallel

translation. Since J is skew-symmetric with respect to ^ , g>(Jx, x) — 0 hence

J:r is in TX(M), and

Let ?y be a 1-form on M defined by

( 4 ) η(X)=:g(ξ,X), X

Since x s J l ί i s a non-null vector in Cn + 1, we have an orthogonal projection

n:

with respect to g~, that is,

( 5 ) τr(X) = X- g(x,X)x, XzTx(Cn+l),
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Let φ be a tensor field of type (1, 1) on M defined by

( 6 ) φ = 7toj.

It is easy to see that (φ, ξ, η, g) is an almost contact metric structure on M.

We want to show that this structure is a Sasakian structure. According to

Proposition 1, it is sufficient to show

( 7 )

Consider M to be a hypersurface of Cn+ι. Then the vector field

ζ : x £ M > ξx = x

is a field of unit normal vectors to M in Cn+ι. For any vector fields X and

Y tangent to M, we have the formulas of Gauss and Weingarten:

( 8 ) DJT

( 9 ) Dxζ=-AX,

where Dx and Vx denote covariant differentiations for (7 and g, respectively.

A is a field of symmetric endomorphisms (with respect to g) satisfying

(10) h(X,Y) = g(AX,Y)

for tangent vectors X and Y (cf. L. P. Eisenhart [1]). Since the pseudo-

Riemannian metric g is defined by the parallel translation,

(11) DΛ = X

for any tangent vector X to M. Thus, (8), (9), (10) and (11) imply

(12) DxY = yx

Now, we have

(13) (V*Φ) Y =

for any vector fields X and Y tangent to M. We want to show that the right

hand side of the above equation is nothing but the right hand side of (7).

Using (12), we get
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(14) V*(ΦY) = DΛ(φY) + g(X, φY) ξ

= DJτrJY)+g(X,φY)ζ.

On the other hand, we have

Dx{nJY) = DX(JY - ?(ξ, JY) ζ)

= JDXY - g(X, JY) ζ - g(ξ, JDXY) ζ - g(ξ, JY) X,

g{X, φY) - g{X, JY) = g(X, nJY-JY)

= g(X,-g(ξ,JY)ξ)

= 0.

Thus (14) becomes

(15) VΛΦY) = JDXY - g(ξ, JDXY) ξ - g(ζ, JY) X.

The second term of the right hand side of (13) is

(16) φ VsY = nJ(DxY + g(X, Y) ζ)

= τrJDxY + g(X,Y)ξ.

Hence, (13), (15) and (16) imply

(V^Φ) Y = JDXY - g(ξ, JDxY)ζ - g(ξ, JY)X - πJDxY - g(X, Y)ξ

= g(ζ, JDXY) ζ - g(ζ, JDXY) ξ + g(ξ, Y)X- g(X, Y) ξ

= η(Y)X-g(X,Y)ξ.

REMARK. If we replace (2),(3),(4) and (6) by

( 2') fβLV = {M e C + 1 bT\u, u) = -1}, 1 ̂  5 ̂  « + 1 ,

(3') ξ: xzHΪW > ξx = - Jx,

(4') η(X) =-g(lX), g=g\ H%-+ϊ ,

(6') φ = π°J, πX = X + g(x, X)x, Xe TX(H%^),

then H%ίϊ(ή>,ξ,η,g, -1) is a Sasakian manifold and Hϊ?^(φ, -ξ,-η,-g,+ΐ)
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is nothing but Sf{+}s+1)(φ, ξ, η, g) (cf. Example of §1).

It is known that S|?+1 is diffeomorphic to R2s xS2n+ι'2s. Thus S%+1 is
simply connected for sφn\ S\^λ is connected with infinite cyclic fundamental
group. We define

(17) 3j?+1 = S£ + 1 for sΦn;

Sll+1 = universal pseudo-Riemannian covering manifold of Sl"+1.

The Sasakian structure on S1S+1, which we denned above, induces a Sasakian
structure on SW1* We call £1?+1 with the Sasakian structure to be the model
spaces of Sasakian manifolds, and denote by Si?+1(cf), ζ, η, 7j).

LEMMA 1. Let (M2n+ι,h) be a pseudo-Riemannian manifold. Suppose
(JVPn+ι,h) is complete and of constant curvature 1, Mln+1 is simply connected
and h is of signature 2s, O^s^n, n^l. Then, (M2n+ι,h) is isometric

to the model space S%+1. (cf. J. A. Wolf [10], p. 68, Theorem 2.4.9).

LEMMA 2. Suppose we have two Sasakian manifolds M2n+1(φ,ξ,η,g)
and M2n+1(φ,ξ,η,'g) such that M and M are simply connected, g and ~g
have the same signature. If (M, g) and (M, ~g) are complete and of constant
curvature 1, then there is an i some try

f: M > M

such that f*ξ = ξ, f*η = V,f*°φ = φ°f*', that is, M(φ, ξ, η, g) and M(φ, ξ9η,'g)
are equivalent.

PROOF. Let x € M and x € M be arbitrary points. Since g and ~g have
the same signature, we can find an isometry

F: TX(M) > T-X(M)

such tha£ F(ξx) = ξΈ, v(HX)) = V(X) for Xz TX(M) and_Foφ = φoF. Since
M and M are simply connected, and since (M, g) and (M, "g) are complete, we
have a unique isometry

/: M M

such that f{x) = x and /* | TX(M) = F (cf. J. A. Wolf [10], p. 61, Corollary 2.3.12).
Since f is an isometry and since ξ is a Killing vector field by Proposition 1,
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*ξ is a Killing vector field on M. For any tangent vector X to ffl, we have

Hence, for X € T^M), we get

(18)

Thus, since f is a Killing vector field, (18), \/χξ = φX and (f*ξ)χ — ξx imply

f*ξ — ξ, and hence f*η = η. Finally, for any Xz 3E(M) and Y z 3E(Af), we

have

g(J* φX,Y) f= (f*g)(φX,fϊΎ) =

showing f*°φ = φ°f*.

3. D-homothetic deformations. -Suppose we have a Sasakian manifold

M*n+KΦ,ξ,V,g). Let

( 1 ) 9 = oίg + (Λ2-Λ)τ?(g) 77,

where rt is a non-zero constant, and let

Then (φ9ζ,η,^) is a Sasakian structure on M = M2n+1, and we say that

M(φ, ξy v, g) is Z)-homothetic to M($, ξ, η, Ίj). If (M, g) is of constant

φ-sectional curvature ky we have

(2) K(X) = K(X,φX)

for any non-null vector XzDx, and hence (My~g) is of constant φ-sectional
curvature ( 1 / Λ ) { * - 3 ( Λ - 1 ) } . Thus if & Φ - 3 , and if we take a = (* + 3)/4,
(M9]j) is of constant φ-sectional curvature 1, and hence of constant curvature
1. (cf. S.Tanno [8], [9]). We summarize as follows:

PROROSITION 2. A Sasakian manifold of constant φ-sectional curvature

k φ — 3 is D-hornothetic to a Sasakian manifold of constant curvature 1.
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Let M=M2n+ι(φ,ξ,η,g) be a Sasakian manifold.

DEFINITION. We call a geodesic x(i), cc<t<β, to be ξ-geodesic (resp.
D-geodesic) if φ(x(t)) = 0 (resp. η{±(t)) = 0) for a < t < β.

DEFINITION. We call M to be ξ-complete (resp. D-complete) if every
^-geodesic (resp. D-geodesic) is complete.

LEMMA 1. Let Af2n+1(φ,ξ,y,g) be a Sasakian manifold. If (M2n+1, g)
is complete, then (M2n+1,(j) is ξ- and D-complete, -where

g = ag + (a2—a) η ® η , Λ ^ 0 .

PROOF. Let V J and V^ denote covariant differentiations for cf and g,
respectively. For any vector fields X, Y and Z, we have

2g(VχY, Z) = XgQΓ, Z) + Yg(X, Z) - Zg(X, Y)

+ g([X, Y], Z) + ff ([Z, X], Y) + g([Z, Y], X)

= 2^(VχY, Z) + (

- Z(η(X) η(Y))

On the other hand, by the definition of contact metric structure,

2g(φX,Y) = 2dη(X,Y)

= Xη(Y) - Yη(X) - η([X, Y]) .

Hence, we have

η([X, Y]) = X^Y) - Yη(X) - 2g(φX, Y),

η([Z, X]) = Z KX) - Xv(Z) - 2g(φZ, X),

η([Z, Y]) - Zi<Y) - Yη{Z) - 2^(φZ, Y).

Thus we get

( 3) g(VχY, Z) = rt^(VxY, Z) + (a*-ά){(Xη(Y)) η(Z) - g(φX, Y) η(Z)

- g{φZ, X) η{Y) - g(φZ, Y) η(X)} .
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Now, suppose x(t), β < t < 7, be a geodesic in M2n+ί with respect to (f. Since

ξ is a Killing vector field,

= 0.

Hence we get

( 4 )

= 0.

Since φ is skew symmetric with respect to g,

( 5 ) g(φxyt), x{t)) = 0 .

If we put X = Y = i ( ί ) in (3), then (4) and (5) imply

( 6 ) ctg{Vi(0 *(*)> Z) - (tf2 -Λ)

This formula says that x{t\ β < t < 7, is a geodesic with respect to # if x(t)

is either f-geodesic or D-geodesic with respect to g. Thus, since (M2n+1,g)

is complete, (M2n+ι,(j) is ξ- and Z)-complete.

The following lemma is due to S. Tanno :

LEMMA 2. If a simply connected Sasnkian ?nanifold M=M2n+1(φ, ξ, η, g)

is ξ- and D-complete, and of constant curvature 1, then it is complete.

PROOF. Let S be one of the model spaces such that the signature of S

is the same as that of M. Let x(t), <x <t < 8, be a geodesic in M. We

want to show that the geodesic can be extended for a < ί < β + 8 for some

8 > 0. We may suppose 0 € (ct, β). Let us take any point x0 £ S. Since S and

ilί are of constant curvature, we can find a local isomorphism f0 such that

fo(xo) = "(0). Let X be a tangent vector to 3 at r 0 such that /0*(X) = έ(0),

and let x(ί) be a geodesic in S such that :r(0) = x0 and x(0) = X. Since 5 is

complete, we can extend x(t) for — oo < t < +oo. Thus we can extend the

local isomorphism f0 along x(ί) for a<t<β, say / x . To show that x(i) can be

extended for oί < £ < β + £ for some £ > 0, it is sufficient to show that f0

can be extended along x(t) for cc <t ί^β. If j:(ί) is either ^-geodesic or
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D-geodesic it can be done, because M is ξ- and D-complete. So, we may
suppose that x(t) is neither ^-geodesic nor D-geodesic. By considering a
normal coordinate neighborhood of S at x(β), we can find t{ € (0, β) such that,
there exists Y£ Tx{t)(S) such that η(Y) = 0 and the D-geodesic y(t),y(0) = x{tγ)
and y(0) = Y, intersects the trajectory L of ξ passing through x(β) at z£ S.
Since M is D-complete, we can extend /Ί along the D-geodesic y(t), say f
especially, the domain of f2 contains a neighborhood of z. Since M is
^-complete, we can extend f2 along L, say f in particular, the domain of f
contains a neighborhood of x(β). Since S and M are simply connected, these
extensions are unique. Thus f0 is extended along x{t) for oί < t ^ 8.

4. Main theorems.

THEOREM 1. If a Sasakίan ma?ιifold M2n+1(φ, ξ, η, g\ n ^ 1, is complete,
simply connected and of constant φ-sectional curvature k Φ — 3, then it is
D-homothetic to the model space S%f+1 of Sasaki an manifolds, where

2s = the signature of g if £ > — 3 ,

2s — 2n — the signature of g ifk< —3 .

PROOF. Let

g = ag Λ-ίcP-cήη® η9

Then Proposition 2 says that M2n+1(φ, ξ, η,Cj) is a Sasakian manifold of constant
curvature 1. According to Lemma 1 of §3, (M2n+1,'g) is ξ- and D-complete,
and hence it is complete by Lemma 2 of §3. Since (M2n+1,g) is complete,
Lemma 1 of §2 says that it is isometric to S^+ι, where

2s = the signature of g if a > 0,

2s = 2n — the signature of g if a < 0 .

It is clear that c£>0 (resp. <2 < 0) is equivalent to k > — 3 (resp. k< —3).
Then, Lemma 2 of §2 says that M 2 n + 1(φ, ξ, 77,<f) is equivalent to the model
space *S!?+1 of Sasakian manifold that is, the Sasakian manifold M2n+ί(φ, ξ, η, g)
is Z)-homothetic to SLn+1.

COROLLARY. If a Sasakian manifold M2n+ί(φ, ξ, η, g\ n ^ 1, with a
Riemannian metric g is complete, simply connected and of constant
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φ-sectional curvature k Φ — 3, then it is D-homothetic to either the unit

sphere S2n+1 if k > - 3 or Sξn

n

+1 if k < - 3 .

REMARK. The above Corollary was proved by S. Tanno [9] in the case
of k> - 3 .

EXAMPLE. Let us consider the model space (SK+\ <7). St"+ι is the
universal pseudo-Riemannian covering manifold of Sl"+1, which is diffeomorphic
to R2axSι. Let us consider a .D-homothetic deformation

g = - # + 29® v ,

i.e., cc=—l in (1) of §3. It is clear that f is a Riemannian metric of Sl£+1,

and (2) of §3 says that (<S?ί;+1, g) is of constant φ-sectional curvature —7.

THEOREM 2. Let Mi = Mln+1(φi,ξi,Vί,gί\ i = 1, 2, n ^ 1, be complete,
simply connected Sasakian manifolds. Suppose they are of the same
signature 2s and of the same constant φ-sectional curvature k Φ — 3, then
they are equivalent', that is, there is an isometry

2

f: Mι M2

such that / ^ i = ̂ 2, f*V2 = Vι and / * o φγ = φ2 o/^.

PROOF. Theorem 1 says that KZt = iWln+1(^, ξi7 ηu gt), i = 1,2, are

equivalent to 51?+1, where

g i= aβi + {a2-a)ηi® Vi,

ξi = (I/a) ξi9 ηt = aηi9 φt = φi9 i = 1,2,

Hence, Lemma 2 of §2 implies that Mx and iV?2 are equivalent that is, there
is an isometry

/ : Mx > M2

such that f*ξx = | 2 , f*ηt = rji and f^oφι= φ2 o/, f. Since

gt = (l/a)gt + ((1/α2) - (1/ά)) η^rj,, i = 1, 2 ,

y is an isometry
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f:M1 > M2.

Moreover, we have

f*°Φι =/*°φi = φi°f* = Φz°f#-

Thus f gives the equivalence of M, and M2.

5. Sasakian manifold with R{X, Y) R = 0. Let M2n+1(φ,ξ,η,g) be a
Sasakian manifold. Then, by the definition of Sasakian manifold, we get

(1) R(X,ξ) Y = S7xVγξ-^7vxrξ (••• ξ is a Killing vector field)

= n(Y)X - g(X, Y)ξ,

R(X, Y)ξ =

X) ~ φ([X,Y])

= η(Y)X - g{X, Y)ξ - (η(X)Y - g(Y, X)ξ)

= η{Y)X - η(X)Y

for any vector fields X and Y. Suppose R(X, Y) i? = 0 for all tangent vectors
X and Y, where R(X, Y) operates on R as a derivation of the tensor algebra
at each point. Now, let X and Y be tangent vectors such that η(X) = η(Y) = 0
and g(X, Y) — 0. Then, using (1) and (2) above,

(R(X,ξ) RχX,Y)Y

= R(X, ξ)R(X, Y)Y-R(R(X, ξ)X, Y)Y-R(X, R{X, ξ)Y)Y-R(X, Y)R(X, ξ)Y

= n(R(X, Y)Y)X-g(X, R(X, Y)Y)ξ-R(η(X)X-g(X, X)ξ, Y)Y

-R(X, η(Y)X-g(X, Y)ξ)Y-R(X, YχV(Y)X-g(X,

- η(R(X, Y)Y)X-g(X, R(X, Y)Y)ξ + g(X, X)R(ξ, Y)Y
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= η(R(X, Y)Y)X-g(X, R(X, Y)Y)ξ-g{X, X)V(Y)Y+g(X, X)g(Y, Y)ξ.

Hence,

( 3 ) η{R{X, Y)Y)X - g{X, R(X, Y)Y)ξ + g(X, X)g{Y, Y)ξ = 0.

Thus, considering ξ-component of (3), we get

g(X, R(X, 7)7) - g(X, X)g(Y, 7),

showing that (M2n+ι,g) is of constant φ-sectional curvature 1, and hence it is

of constant curvature 1.

THEOREM 3. A Sasakian manifold satisfying R(X,Y) R = 0 for all

tangent vectors X and Y is of constant curvature 1.

6. Sasakian manifold M2n+ι which is isometrically immersed in

E2

s

a+2. Let Ef be a Euclidean space Rn with a pseudo-Riemannian metric ^ s

which is defined by the parallel displacement of the "inner product"

<x,y > = -

Then the signature of g>s is 5, and E" is complete and of constant curvature

0 (cf. J. A. Wolf [10], §2. 4).

Let M2n+ί(φ, ξ, η, g) be a Sasakian manifold. Suppose we have an isometric

immersion

f:M2n+ι > £f+ 2.

For each x^M2nJtX, we can choose a unit vector field ξ normal to M2n+ι

on some neighborhood U of x:

gs(ξ,ζ) = S, 8=1 or - 1 on U.

For any vector fields X and Y on U tangent to M2n+ι, we have the formulas
of Gauss and Weingarten :

DXY = VxY +

= - AX9
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where Dx and V.v denote covariant differentiations for Jjs and g, respectively.

A is a field of symmetric endomorphisms which corresponds to the second

fundamental form h, that is, h(X, Y) — g(AX, Y) for all tangent vectors X

and Y. The equation of Gauss expresses the curvature tensor R of M'2n+ι by

means of A:

(1) R(X, Y)Z = β{g(Z9 AY)AX - g(Z, AX)AY].

This equation implies

(2) R(X, ξ)Y = 6{η(AY)AX - g(AX, Y)Aξ}.

On the other hand, we have (1) of §5 :

(3) R(X, ξ)Y = n(Y)X - g(X, Y)ξ.

Suppose the isometric immersion f:M2n*λ > E?s

n+2 is proper, that is, A can

be expressed by a real diagonal matrix with respect to a certain orthonormal

frame at each point of M2n+ι (cf. A. Fialkow [2], p.764). Let {el9e2, ,e2n+1]

be an orthonormal basis of TXo(M2n+1) such that A is expressed by a diagonal

matrix with respect to {el9 e2, e2n+1], i.e.,

(4) Aet = pteiy 1 ^ i ^ 2n + 1, Pi*R.

(2), (3) with X=ei9 Y = e, and (4) imply

(5) Vie&t - g(el9 e3) ξ =

If iφj, (5) implies

Hence Sρiρj = 1 for all i Φ j, or v(^j) = 0 for some j.

(a) Suppose Gpipj = 1 for all i Φ j. Then pi Φ 0 for all i, and px =

= = p2n+\ — P Thus 8ρ2 = 1. This implies 8 = 1 and ρ2 — 1.

(b) Suppose v(ej0) = 0 for some j0. Then (5) implies

ξ =

Hence ρjo Φ 0 and Aξ = (l/εpJo)ξ, i. e, ξ is an eigenvector of A with eigenvalue
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Ph- We may suppose ex = ξ, and hence η(eϊ) = 0 for 2 ̂  z ̂ g 2n + l. (2)
implies

(3) implies

*(**,£) = 1

for 2 ̂  ί 5g 2ra + l. Hence we get pxpt = 8 for 2 ̂  ί ^ 2n + l, and hence pa^Ps
= — = P2n+i = P Consequently, AX = pX for any tangent vector X such
that η(X) = 0. Thus (1) implies (M2n+\ g) is of constant φ-sectional curvature
Sp2, hence we have (3) of §1 with k = 8ρ2. Now, if we assume n ^ 2 , we can
find non-null tangent vectors X and Y such that η(X) = ^(Y) = 0, #(X, Y) = 0
and ^(φX, Y) = 0. Then (3) of §1 and (1) of this section give

4R(X,Y)X= -(k + 3)g(X,X)Y

and

R(X,Y)X= -€P>g(X,X)Y,

respectively. Hence we get

Since k = £p2, this equation implies 8ρ2 = 1, that is, p2 = θ. Hence £ = 1 and
p2 = 1. Since ρλρ = S, we get px = p.

Summarizing (a) and (b), if n^2, we have 8 = 1, A = p and p2 = 1. We
may suppose p = l , since the change f >— ξ implies A > — A, p=(l/(2w
Tr A is a differentiable function on 17.

Now, let us suppose n ̂  2. Consider the i?2n+2-valued function

.r € C7c M2W+1 > fx + / (x) € R2ra+2.

For any tangent vector X to M2w+1, we have

DfJX+f)=M~AX+X)

= 0 .

This implies that ζ+f is a constant map M 2 n + 1 >αt€j?2 n + 2 , and hence
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<f(x) - a, f{x) - a> = <ξx, ζx>

= 1

for x^U. Thus f(U) lies on the hypersurface S2

s

n+\cc), which is the hyper-

surface S2n+1 translated by the parallel translation β > a + β, β £ R2n+2.

Let M = [xζ M2n + 1 : f(x)z S2

s

a+\cc)}. Then the above argument says that

M' is open. Similarly, M2n + ι—M' is open, showing M' to be closed.

Thus, since M2n+ι is connected, M' = M2n+1, i.e.,/ vM
2 n + 1) lies on S2n+\a). In

particular, (M2n+1,g) is of constant curvature 1.

THEOREM 4. Suppose we have a complete Sasakian ?nanifold

M2n+1(φ,ξ, η, g), n^2, which is properly and isometric ally immersed in

&r\ Then

(i) if 0 ̂  s ίg 2n — 1, then s is even, the immersion is an isometric

imbedding and M2n+ι(φ,.ξ,η, g) is equivalent to S2

s

n+1,

(ii) if 2n^s^=2n + 2, then s = 2n and M2n + 1(φ, ξ, η, g) is a pseudo-

Riemannian covering manifold of S\n+1 and the immersion induces the

covering projection, naturally.

We need the following Lemma:

LEMMA. Let Mx = (Mi1, hγ) and M2 = (M2

n, h2) be pseudo-Riemannian

manifolds with the same dimension and signature. Suppose Mι and M2

are of the same constant curvature k, and suppose we have an isometric

immersion

f:Mι >M2.

Then, if Mx is complete, M2 is also complete and the isometric immersion

f is a covering projection (cf. S. Kobayashi-K. Nomizu [3], Theorem 4.6).

PROOF. Let y2 be an arbitrary point of M2. Let us take xx € Mγ and let

x2 — f(xι) Then we can join x2 and y2 by a broken geodesic L2. Since Mx

is complete, there is a broken geodesic Lι in Mx such that f{Lx) — L2, showing

that f is an onto mapping.

Let x2(t), ct<t<β, be a geodesic in M2. Then, since Mx is complete,

we have a geodesic Xχ(t), — o o < ί < + o o , such that f(xi(t)) = x2(t) for

ci < t < β. Since f is an isometric immersion, there is a neighborhood U of

Xι(fiL) (resp. Xχ(β)) such that f\U is an isometry of U onto βJJ) which is a
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neighborhood of f\xx(ά)) (resp. f(xx(β)). Thus the geodesic x2(t), a < t < β,
can be extended for cί — £'<t<β + S" for some positive constants 8' and £",
showing M2 to be complete.

Let us consider the universal pseudo-Riemannian covering manifolds Mx

and M 2 of Mx and M2 with projections px and p2, respectively. Let xx be an
arbitrary point of Mx, choose yx £ px\xx) and y2 £ pϊ\f{^\ί) Let VVl, UXι,
Uf(Xι) and Vy2 be neighborhoods of yl9 xl9 f{x\) and y2, respectively, such that
px, f and p2 are isometries of VVι, UXχ and Vy2 onto UXι, UfiXϊ) and Uf{Xι),

respectively. Then we have an isometry

Since Mx and M2 are complete, simply connected and of constant curvature k,
the local isometry F has a unique extension, say F that is, an isometry

F: Mx > M2. Since this extension can be done along all (broken) geodesies
passing through yx, we have

which shows that / is a covering projection, since / is a continuous and open
mapping.

PROOF OF THEOREM 4. The above Lemma says that the isometric
immersion is a covering projection M2n+ι > S2

s

n+\ά). If O^s ^2n — 1, s is
even, then S2

s

n+\a) is simply connected, hence the covering projection is an
isometry. Thus the Theorem follows from Lemma 2 of §2.
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