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Introduction. Sasakian manifold with Riemannian metric is defined by
S. Sasaki [5]. In this paper, we want to define Sasakian manifold with
pseudo-Riemannian metric, and discuss the classification of Sasakian manifolds.

In section 1, we define a Sasakian manifold (with pseudo-Riemannian
metric). In section 2, we define the model spaces of Sasakian manifolds which
are used in section 4 for the classification of Sasakian manifolds of constant
¢-sectional curvatures. In section 3, we discuss D-homothetic deformation
which is defined by S. Tanno [9], and prove some fundamental lemmas concerning
completeness of the deformed metric. In section 5, we prove that a Sasakian
manifold, satisfying R(X,Y)-R =0 for all tangent vectors X and Y, is of
constant curvature. In section 6, we discuss a Sasakian manifold M?**! which
is properly and isometrically immersed in E"*%

I wish to express my hearty thanks to Prof. K. Nomizu, Prof. S. Sasaki
and Prof. S. Tanno for their valuable advices.

1. Preliminaries. Manifolds and tensor fields are supposed to be of class
C~.

Let M = M?"*! be a connected differentiable manifold, and let ¢, £ and #
be tensor fields of type (1, 1), (1, 0) and (0, 1), respectively, on M.

DEFINITION. (¢,&,7) is called an almost contact structure on M, if the
followings are satisfied :

€ =1,
n($(X) =0, XeZ(M),
(X)) = —X + n(X)E, XecXM).

*) Partially supported by the National Science Foundation.
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DEFINITION. (¢,£,7,9,8) is called an almost contact metric structure
on M, if (¢,£, 1) is an almost contact structure on M and g is a pseudo-
Riemannian metric on M such that

gE & =¢€, &= +lor —1,
n(X)=¢&9¢& X), Xe<X(M),
9($X, ¢Y) = g(X,Y) — en(X)n(Y), X, YeEM).
DEFINITION. (¢,&,7,9,€) is a contact metric structure on M, if it is
an almost contact metric structure on M and satisfies

an(X,Y) = 9(¢X,Y), X, Ye<EM).

DEFINITION. (¢,§,9,9,€) is a normal contact metric structure on M,
if it is a contact metric structure and satisfies

(V)Y =en(¥) X — g(X,Y)E, X, Y<¥M),

where V/ indicates the Levi-Civita connection for the pseudo-Riemannian metric
g. In this case, we call M(¢,§,1,g,8) a Sasakian manifold.

The following example shows that we may assume & = 1 without loss of
generality.

EXAMPLE. Let (¢,£,7,9,€) be an almost contact metric structure (resp.
a normal contact metric structure) on M. We put

Then (¢,£,7%,9,€), €=—¢, is an almost contact metric structure (resp. a normal
contact metric structure) on M.

PROOF. It is easy to see that (¢, E,Ej,'g_,@) is an almost contact metric
structure, and it is a contact metric structure if (¢,&,7,9,€) is a contact
metric structure. Suppose (¢, £,7,9,€) is a normal contact metric structure.
Since the parallelism with respect to ¢ and the parallelism with respect to g
are the same, we get

(THY = (VY
= en(V) X — g(X, )&
= &)X — (X, V)E.
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Thus ($,£, 7,9, &) is normal.
Hereafter, we assume =1, and drop it.

REMARK. A contact metric structure is normal if and only if the following
tensor field vanishes :

NXY) = [¢X,¢Y] — ¢[¢pX, Y] — ¢[X, Y] + $[X, Y] + 2dn(X, V)& .
(cf. S. Sasaki [7], Theorem 11.1)

By the same method as in the case of Riemannian metric, we get the
following, which we use later:

PROPOSITION 1. For an almost contact metric structure (¢, &, 7, g) on
M,

(1) (Vi)Y =n(Y) X — g(X,Y)§&
implies

(1) Vaf=¢X),
(1) & is a Killing vector field,
(iii) dn(X,Y) = 9(¢X,Y).

Let (M™, g) be a pseudo-Riemannian manifold. Let X and Y be tangent
vectors at a point of M". If X and Y satisfy

then we say that X and Y span a non-degenerate 2-plane XAY. This
definition is independent of the choice of X and Y which span the 2-plane
XANY. For a non-degenerate 2-plane XAY, we define a sectional curvature

K(X,Y) by

_ JRX, Y)Y, X)
RLY) = 5% X) oY, ¥)— (X, Y7

If K(X,Y) is constant for all X and Y in T,(M") such that XAY is a non-
degenerate 2-plane, we call (M™, g) to be of constant curvature at x. If
(M, g) is of constant curvature at every point of M", K(X,Y) is a' function
of xe M, say k(x). If k(x) is constant on M", we call (M™, g) to be of
constant curvature. It is known that if (M™, g) is of constant curvature at
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every point and if n = 3, then (M™, g) is of constant curvature (J. A. Wolf [10],
p. 57, Cor. 2.2.7). Suppose (M™", g) is of constant curvature k, then we have

(2) RX,Y)Z = k{g(Y,2)X — g(X,Z)Y}
for all tangent vectors X,Y and Z (cf. J. A. Wolf [10], p. 56, Cor. 2.2.5).
Suppose we have a Sasakian manifold M?*"*!(¢, &, 7, g). Let
D, = {(Xe T(M™); n(X) = 0} .

For a non-null vector X in D,, X and ¢$X span a non-degenerate 2-plane, and
hence we can consider a sectional curvature K(X) = K(X,¢X). If K(X) is
constant for all non-null vectors X in D,, we call (M?*"*!,g) to be of
constant ¢-sectional curvature at x. If (MP"*!,g) is of constant ¢-sectional
curvature at every point, K(X) is a function of x < M?"*!, say k(x). In this
case, if k(x) is constant on M?*"*!, we call (M?"*',g) to be of constant
¢-sectional curvature. If (M?"*!,9) is of constant ¢-sectional curvature at
every point and if n=2, (M®**!,g) is of constant ¢-sectional curvature (cf.
K. Ogiue [4]). Suppose (M*"*!, g) is of constant ¢-sectional curvature k&, then
we have, for any tangent vectors X, Y and Z,

(3) ARXY)Z = (k+3){g(Y,Z2)X — 9(X, Z)Y} + (k=D {n(X)n(Z)Y
= 1N)Z2) X + (X, Z)n(Y)§ — g(Y, Z)n(X) &
+ 9(9Y, 2)¢X + g($Z, X)pY — 29(¢X, Y)$Z} .

(cf. K. Ogiue [4]). Thus, if (M*"*!, g) is of constant ¢-sectional curvature 1,
it is of constant curvature 1.

REMARK. If we do not assume & = 1, (3) should be
(3) ARX,Y)Z = (k+38){g(Y,Z) X — g(X,Z2)Y}
+ (=D {n(X)n(2)Y — 2(Y)n(Z) X}

+ (k=8){g(X, Z)n(Y)§ — g(Y, Z)n(X)E
+ 9(#Y, 2)pX + g(¢Z, X)pY — 29(pX, Y)pZ} .

2. Model spaces. Let 47*! be an “inner product” on C"*!, defined by

s n+l
(1) br(s,v) = Re (—Zm + uﬂ‘)j)-
=1

Jj=s+1
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Let g = gi#** be a pseudo-Riemannian metric on C"*! defined by the parallel
translation of b7*'. Let J be a complex structure on C"*' defined by the
parallel translation of the map

uc Cn+1 N ,\/7—7115‘
For n=0 and 0 = s =mn, let M = S**'be a hypersurface of C"*! defined by
(2) Sttt = {ue C**Y; B2 (u,u) = 11,
and let g = ¢ |Si#*'. Then (M, g) is a pseudo-Riemannian manifold of constant
curvature 1, of dimension 27+1 and of signature 2s (cf. J. A. Wolf [10], pp.
62-68). If s=0, M is nothing but the unit sphere S?"*!; S. Sasaki and
Y. Hatakeyama [6] defined a Sasakian structure on it. Similarly, we can define

a Sasakian structure on M = S*!, =0, 0 =5 <, as follows:
For x € M, the tangent space of M at x is given by

T.(M) = {Xe T(C™"); g(X,x) = 0},

where we consider x as its position vector. Let & be a vector field on M

defined by
(3) EixeM —— £, =Jx,

where Jx is considered as a tangent vector of C"*! at x by the parallel
g P

~ o~

translation. Since J is skew-symmetric with respect to §, g(Jz,x)=0; hence

Jz is in T,(M), and
9&:,8:) = gz, 2) =1.

Let # be a 1-form on M defined by

(4) n(X) =g X), XecXEM).

Since £ € M is a non-null vector in C"*!, we have an orthogonal projection
m: To(CY) —— Tu(M)

with respect to g, that is,

(5) 2(X)=X—gx, X))z, XeT (C™), zeM.
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Let ¢ be a tensor field of type (1, 1) on M defined by

(6) p=mod.

It is easy to see that (¢,£,7,9) is an almost contact metric structure on M.

We want to show that this structure is a Sasakian structure. According to
Proposition 1, it is sufficient to show

(7) (V)Y =n(¥) X — g(X,Y)E.
Consider M to be a hypersurface of C"*'. Then the vector field
(ixeM —— ¢, =x

is a field of unit normal vectors to M in C**'. For any vector fields X and
Y tangent to M, we have the formulas of Gauss and Weingarten :

(8) DXY=VXY+h(X’Y)C>
(9) DXé‘:_AX’

where Dy and Vx denote covariant differentiations for § and g, respectively.
A is a field of symmetric endomorphisms (with respect to g) satisfying

(10) X, Y) = g(AX,Y)

for tangent vectors X and Y (cf. L.P. Eisenhart [1]). Since the pseudo-
Riemannian metric g is defined by the parallel translation,

(11) D =X
for any tangent vector X to M. Thus, (8), (9), (10) and (11) imply
(12) DyY = viY — gX,Y)¢.

Now, we have

13) (Vep)Y = VAPY) — VY,

for any vector fields X and Y tangent to M. We want to show that the right
hand side of the above equation is nothing but the right hand side of (7).
Using (12), we get
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(14) VHpY) = DAY) + g(X,¢Y) ¢
= DynJY) +g(X,¢Y)¢.

On the other hand, we have

DynJY) =D JY — §(&,JY)¢)
=JDyY -G X, JY)¢ -3¢ IDY)E — g JY) X,

FX, ¢Y) — §(X,JY) = §(X, nJY —JY)
=9X, -g&JNY
=0.

Thus (14) becomes
(15) VH¢Y)=JDyY — g&, JDY) ¢ — g JY)X.
The second term of the right hand side of (13) is

(16) ¢VY = ad(DyY + g(X,Y)E)
= 2JDyY + g(X,Y)E.

Hence, (13), (15) and (16) imply

(Vi) Y = JDY — §(& JDY)E — §(&, JY) X — DY — g(X, Y)E
= 9@ JDY)E — F& IDY)E + g, V) X — g(X,Y)E
= (V)X — g(X, Y)E.

" REMARK. If we replace (2),(3),(4) and (6) by

(2) Hiptt = {ue C5 b3 (u,u) = —1}, 1=s=n+l,
(3) E: xe Py —— &, = — Jz,

(4) 7(X)=-9¢X), §=gHE,

(6) d=mod, TX=X+7gxX)x, XeT,(H,



278 T. TAKAHASHI

is nothing but S5t 1,(¢, &, 7, g) (cf. Example of §1).

It is known that Sj3*' is diffeomorphic to R2x.S*"*!-2s. Thus Si*' is
simply connected for s##n; S¥*! is connected with infinite cyclic fundamental
group. We define

@7 Sinel = S+t for s+ n;

Siv*1 = universal pseudo-Riemannian covering manifold of Sii+!.

The Sasakian structure on S3**!, which we defined above, induces a Sasakian
F\'2n+l

structure on S, We call S¥**! with the Sasakian structure to be the model
spaces of Sasakian manifolds, and denote by Si*¥&, E, 7, §).

LEMMA 1. Let (M**',h) be a pseudo-Riemannian manifold. Suppose
(M*™*2, h) is complete and of constant curvature 1, M*"*' is simply connected
and h is of signature 2s, 0=s=mn, n=1. Then, (M***',h) is isometric

to the model space §§§‘“. (cf. J. A. Wolf [10], p. 68, Theorem 2.4.9).

LEMMA 2. Suppose we have two Sasakian manifolds M*™*'($,E,n, g)
and M ($,£,%,9) such that M and M are simply connected, g and G
have the same signature. If (M, g) and (M,q) are complete and of constant
curvature 1, then there is an isometry

fiM—— M

such that fyE=E, f*5=n, fyop=¢ofy; that is, M(¢, &, 7, g) and M($,£,7,9)

are equivalent.

PROOF. Let € M and Ze€ M be arbitrary points. Since g and g have
the same signature, we can find an isometry

F: T,(M) —— T=(M)
such that F(£,) = &, 3(F(X)) = 7(X) for Xe T,(M) and Fop=¢ o F. Since

M and M are simply connected, and since (M, g) and (M,J) are complete, we
have a unique isometry

fiM—M

such that f(x)=72 and f|T.(M)=F (cf. J. A. Wolf [10], p. 61, Corollary 2.3.12).
Since f is an isometry and since £ is a Killing vector field by Proposition 1,
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f+«£ is a Killing vector field on 7. For any tangent vector X to M, we have
Vi f2b) = [u(Vr.nE) = fuldf 3 X) .

Hence, for X € T=(M), we get

(18) Vb)) = $X.

Thus, since £ is a Killing vector field, (18), V3£ = ¢ X and (fyf)s = &5 imply
f«E = E, and hence f*p = 7. Finally, for any X<X¥M) and Y < X(M), we
have
I(fx-9X, Y) - f= (D (X f2Y) = 9(¢X, f3Y)
= dn(X,f3Y) = (f*d7) X, f5'Y)
= d;i(f*X’ Y;) .f: .‘_7@; .f*X7 ?) 'f,
showing fyod = o f.

3. D-homothetic deformations. Suppose we have a Sasakian manifold
M, €,n, g). Let

(1) g=ag+(@-a)yn® 7,

where a is a non-zero constant, and let

E=(1/a)E, 7 =an,

i

.

$
Then (¢,%,7%,9) is a Sasakian structure on M = M?®**!, and we say that
M(¢,£,7,g) is D-homothetic to M($,£,%,9). If (M,g) is of constant

¢-sectional curvature k£, we have

(2) K(X) = K(X, $X)

= (/a){k—3(a—1)}
for any non-null vector Xe D,, and hence (M,q) is of constant ¢-sectional
curvature (1/a@){k—3(a—1)}. Thus if 2= —3, and if we take a = (k+3)/4,

(M,9) is of constant ¢-sectional curvature 1, and hence of constant curvature
1. (cf. S.Tanno [8],[9]). We summarize as follows :

PROROSITION 2. A Sasakian manifold of constant ¢-sectional curvature
k # —3 is D-homothetic to a Sasakian manifold of constant curvature 1.
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Let M=M*"*(¢,&,n, g) be a Sasakian manifold.

DEFINITION. We call a geodesic x(¢), @ <t < B, to be &-geodesic (resp.
D-geodesic) if ¢(a(t)) = 0 (resp. n(x(2)) = 0) for a <t < B.

DEFINITION. We call M to be &-complete (resp. D-complete) if every
£-geodesic (resp. D-geodesic) is complete.

LEMMA 1. Let M*"* (¢, &, 1, g) be a Sasakian manifold. If (M***, g)
is complete, then (M**',q) is & and D-complete, where

J=ag+(@—-ayn®n, a#0.

PROOF. Let V; and S/, denote covariant differentiations for g and g,
respectively. For any vector fields X, Y and Z, we have

2(VNY,Z)=Xg(Y,Z2)+ Y§(X,Z) — Z§(X,Y)
+9(UX, Y1, Z2) +¢(Z,X],Y) + §UZ, Y], X)
=2ag(VyY,Z) + (@ —a){X(n(Y) 7(2)) + Y(n(X) n(Z))
— Z((X) n(Y)) + (I X, YD) n(Z) + n((Z, X]) n(Y))
+7(lZ, YD) n(X)} .
On the other hand, by the definition of contact metric structure,
2g(¢pX,Y) = 2dn(X,Y)
= Xn(Y) — Yn(X) — 2([X,Y]).
Hence, we have
(X, Y]) = Xn(Y) — Yn(X) — 29(¢X,Y),
Z, X)) = Zn(X) — Xn(Z) — 29(¢Z, X),
W(Z,Y]) = Zn(Y) — Yn(Z) — 29(¢Z,Y) .

Thus we get

(3) J(VUAY,2) = ag(ViY,Z) + (@ —a){(Xn(Y) n(Z) — g(¢X,Y) n(Z)
—9@Z, X)n(Y) — g(¢Z,Y) n(X)} .
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Now, suppose x(t), 8 <t <7, be a geodesic in M*"*' with respect to §. Since
£ is a Killing vector field,

(Vi ,2(@) = (1/2)L(E) TNZ(), £(2))

=0.
Hence we get
(4) Z(8) 9(&(t)) = &) §(E, +t))
= 257(6&0 E’ Z(t))

=0.
Since ¢ is skew symmetric with respect to g,

(5) 9(p£d), £2)) = 0.

If we put X =Y = Z(¢) in (3), then (4) and (5) imply
(6) ag(Vie Z(t), Z2) — (& —a) g(Z, £(t)) n(Z(t)) = 0.

This formula says that x{¢),8 <t <7, is a geodesic with respect to g if x(¢)
is either £-geodesic or D-geodesic with respect to §. Thus, since (M?*"*!, g)
is complete, (M?*"*!,§) is &- and D-complete.

The following lemma is due to S.Tanno:

LEMMA 2. If a simply connected Sasnkian manifold M=DM*"*'(¢p, €, 1, g)
is &- and D-complete, and of constant curvature 1, then it is complete.

PROOF. Let S be one of the model spaces such that the signature of S
is the same as that of M. Let Z(¢), @ <t <8, be a geodesic in M. We
want to show that the geodesic can be extended for @ <t < 8 + & for some
&> 0. We may suppose 0< (a,8). Let us take any point x,€S. Since S and
M are of constant curvature, we can find a local isomorphism f, such that
folxs) = “(0). Let X be a tangent vector to S at x, such that fo(X) = Z(0),
and let z(¢) be a geodesic in S such that z(0) = x, and #(0) = X. Since S is
complete, we can extend x(¢) for —oo <<t < +o0. Thus we can extend the
local isomorphism f, along x(¢) for a<t<B, say fi. To show that Z(¢) can be
extended for @ <t <B + &€ for some €>0, it is sufficient to show that f,
can be extended along x(¢) for a<<t=8. If x(t) is either &-geodesic or
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D-geodesic it can be done, because M is £ and D-complete. So, we may
suppose that x(f) is neither £-geodesic nor D-geodesic. By considering a
normal coordinate neighborhood of S at x(B), we can find £, € (0,8) such that,
there exists Y € T5,(S) such that 7(Y)=0 and the D-geodesic ¥{t), y(0) = x(¢t))
and %(0) = Y, intersects the trajectory L of E passing through z(8) at z ¢ S.
Since M is D-complete, we can extend f; along the D-geodesic y(¢), say f5;
especially, the domain of f, contains a neighborhood of z. Since M is
£-complete, we can extend f, along L, say f;; in particular, the domain of f,
contains a neighborhood of x(8). Since S and M are simply connected, these
extensions are unique. Thus f; is extended along x(¢) for @ <t = 8.

4. Main theorems. -

THEOREM 1. If a Sasakian manifold M*"*Y(¢, &, 1, g), n = 1, is complete,
simply connected and of constant ¢-sectional curvature k #+ —3, then it is

D-homothetic to the model space Si*' of Sasakian manifolds, where

2s = the signature of g if k> —3,
2s = 2n—the signature of g if k<< —3.

PROOF. Let
g=ag+@-a)yn@n,
E=Q/a)E, n=an, $=¢,
a = (k+3)/4.

Then Proposition 2 says that M>**($,£,%,§) is a Sasakian manifold of constant
curvature 1. According to Lemma 1 of 83, (M*"*1,q) is &- and D-complete,

and hence it is complete by Lemma 2 of §3. Since (M?®*"*',§) is complete,

Lemma 1 of §2 says that it is isometric to S*!, where

2s = the signature of g if >0,
2s = 2n—the signature of ¢ if @ <O0.

It is clear that a >0 (resp. @ << 0) is equivalent to %2> —3 (resp. £ < —3).
Then, Lemma 2 of §2 says that M*"*1($, &, 7,7) is equivalent to the model
space Si*! of Sasakian manifold; that is, the Sasakian manifold M***'(¢, £, 7, g)

28

~

is D-homothetic to S37*!.

COROLLARY. If a Sasakian manifold M**'(¢$,&,7,9), n=1, with a
Riemannian metric g is complete, simply connected and of constant
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¢-sectional curvature k # —3, then it is D-homothetic to either the wunit
sphere S*™* if k> —3 or Si»*' if k< —3.

REMARK. The above Corollary was proved by S.Tanno [9] in the case
of k> —3.

ExXAMPLE. Let us consider the model space (~§2“, g). Sin+t is the

universal pseudo-Riemannian covering manifold of S3**', which is diffeomorphic

to R*»x S'. Let us consider a D-homothetic deformation
g=-9g+27@7,

ie., a=—1in (1) of §3. It is clear that J is a Riemannian metric of Sen+1

and (2) of §3 says that (S¥*, g) is of constant ¢-sectional curvature —7.

THEOREM 2. Let M, = M7 (¢, 1,75, 9:), ¢ = 1,2, n=1, be complete,
simply connected Sasakian manifolds. Suppose they are of the same
signature 2s and of the same constant ¢-sectional curvature k = —3, then
they are equivalent; that is, there is an isometry

fi My —— M,

such that fyx&,=§&,, f*n,=n, and f* o ¢, = ¢, o fx.

PROOF. Theorem 1 says that M, = M2"*X$,, £,%:,9:), ¢ = 1,2, are

equivalent to S3***, where

g,=ag, +@—-a)ynQn,,
Eiz (1/a)fi , Ny = any, $i = (}5@, = 1,2:
a = (k+3)/4.

Hence, Lemma 2 of §2 implies that M, and M, are equivalent; that is, there
is an isometry

f: M, —— M,

such that f*é_l = £, f*ﬁz =7, and Sxo <—§1 = $2 o fx. Since

g =G, + (/") — Va)7.® 7, i=12,

f is an isometry
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M, ———> M,.
Moreover, we have

Sfeb1 = fu(aE) = ak, = &,

Frny = fHQ/am,) = A/ay, = n,

fxodr = frobs = $r0fx=sof.
Thus f gives the equivalence of M, and M,.

5. Sasakian manifold with R(X,Y)-R=0. Let M*"*(¢,& 7n,g9) be a
Sasakian manifold. Then, by the definition of Sasakian manifold, we get

(1) RX, Y = ViVrE—VywfE (- £ is a Killing vector field)
= VAPY) — $(ViY)
= (Vi)Y + ¢(ViY) — (VYY)
= (V)X — g(X, Y)§,

(2) RX,Y)E = VaxVrE — VyVif — Virré
= VA9Y) — Vr(¢X) — (X, Y])
= (Vi)Y + ¢(VzY) — (Vrd)X — $(VrX) — $([X,Y])
=n(Y)X — g(X, Y)E — ((X)Y — g(¥, X)§)
= n(Y)X — n(X)Y
for any vector fields X and Y. Suppose R(X,Y)-R=0 for all tangent vectors
X and Y, where R(X,Y) operates on R as a derivation of the tensor algebra
at each point. Now, let X and Y be tangent vectors such that 7(X)=7(Y)=0
and ¢(X,Y)=0. Then, using (1) and (2) above,
(R(X, £)-RXX, Y)Y
= R(X, §)R(X, Y)Y —R(R(X, £)X, Y)Y —R(X, R(X, £)Y)Y —R(X, Y)R(X, §)Y
= 7(R(X, Y)Y)X—g(X, R(X, Y)Y)E - R(n(X)X—g(X, X)§, Y)Y
—R(X, n(¥)X—g(X, Y)§)Y —R(X, Y)(n(Y)X— 9(X, Y)§)
= n(R(X, Y)Y)X—g(X, RX, Y)Y)é+g(X, X)R(E, Y)Y
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= n(R(X, Y)Y)X—g(X, R(X, Y)Y)E — g(X, X)n(Y)Y + g(X, X)g(Y, Y)E.
Hence,
(3) HR(X, Y)Y)X — g(X, RX, Y)Y)t + g(X, X)g(Y,Y)E = 0.
Thus, considering £-component of (3), we get
IX RX, YY) = g(X, X)g(Y, Y),

showing that (M?®"*',g) is of constant ¢-sectional curvature 1, and hence it is
of constant curvature 1. :

THEOREM 3. A Sasakian manifold satisfying R(X,Y)-R=0 for all
tangent vectors X and Y is of constant curvature 1.

6. Sasakian manifold M?®"*' which is isometrically immersed in
E***  Let E? be a Euclidean space R® with a pseudo-Riemannian metric g
which is defined by the parallel displacement of the “inner product”

<z,y>=— )y xy' + 3 2y
=1 j=s+1

Then the signature of g, is s, and E} is complete and of constant curvature
0 (cf. J. A. Wolf [10], §2. 4).

Let M?"*Y(¢, &, 1, g) be a Sasakian manifold. Suppose we have an isometric
immersion

f. M2n+1 E2n+2
: _ s .

For each x < M**!, we can choose a unit vector field & normal to M?®***!
on some neighborhood U of x:

g E=¢ &€=1 or -1 onU.

For any vector fields X and Y on U tangent to M*"*!, we have the formulas
of Gauss and Weingarten :

DY = .Y + enX, Y),
Dyt = — AX,
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where Dy and Yy denote covariant diiferentiations for 7, and g, respectively.
A is a field of symmetric endomorphisms which corresponds to the second
fundamental form A, that is, A(X,Y) = g(AX,Y) for all tangent vectors X
and Y. The equation of Gauss expresses the curvature tensor R of M?*"*!' by
means of A:

@) R(X,Y)Z = &{g(Z, AY)AX — g(Z, AX)AY}.
This equation implies

@) R(X, £)Y = &{n(AY)AX — g(AX, Y)AE}.
On the other hand, we have (1) of §5:

3 R(X,0Y = n(Y)X — g(X, Y)E.

Suppose the isometric immersion f:M?"*! —> E2**? is proper, that is, A can
be expressed by a real diagonal matrix with respect to a certain orthonormal
frame at each point of M?"*! (cf. A. Fialkow [2], p.764). Let {e;, €5+, €3n41}
be an orthonormal basis of T, (M?"*') such that A is expressed by a diagonal
matrix with respect to {e,, €s, *++ €3,.1}, 1.€,

(4) Aei = Piei, l é i é 271 =+ 1, Pz S R.
(2),(3) with X =¢,, Y =e; and (4) imply
®) n(e)e. — glei, €;) & = E{pipm(e;)e; — piglene)AE}.
If 7=7, (5) implies
n(e;)e, = Ep,p;nie;)e;.

Hence é&p;p; =1 for all 77, or n(e;) =0 for some j.

(@) Suppose é&p,p; =1 for all 7. Then p, %40 for all ¢, and p, = p,
=eee=pyy =p. Thus &> =1. This implies €=1 and p*=1.

(b) Suppose 7(e;,) =0 for some j,. Then (5) implies

& = &p;, AE.

Hence p;, # 0 and AE = (1/&p;, )&, i.e, £ is an eigenvector of A with eigenvalue
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1/€p;. We may suppose e, = £, and hence 7(e;)) =0 for 2=i=2n+1. (2)
implies
K(e, &) = €pipi s
(3) implies
K(e, &) =1

for 2=7=2n+1. Hence we get p,p;=E& for 2=17 = 2n+1, and hence p,=p;
= s+ =Py = p. Consequently, AX = pX for any tangent vector X such
that 7(X)=0. Thus (1) implies (M"*1, g) is of constant ¢-sectional curvature
&p?, hence we have (3) of 81 with &= &p?:. Now, if we assume n=2, we can
find non-null tangent vectors X and Y such that 7(X) =7(Y) =0, ¢(X,Y)=0
and g(¢X,Y)=0. Then (3) of §1 and (1) of this section give

ARX, )X = —(k+3) g(X, X)Y
and

RX,Y)X = —&p g(X, X)Y,

respectively. Hence we get

KO _ gpt.
4 P

Since k = &p?, this equation implies &p* = 1, that is, p?> = & Hence € =1 and
p*=1. Since p,p = & we get p, = p.

Summarizing (a) and (b), if #=2, we have €=1, A=pand p> =1. We
may suppose p=1, since the change {——> —¢ implies A—> — A, p=(1/(2n+1))-
Tr A is a differentiable function on U.

Now, let us suppose # = 2. Consider the R?"*2-valued function

zeUc M —— ¢, + flx) e R*"*2,
For any tangent vector X to M?"*!, we have

DrAE+S) = f(—AX+X)
=0.

This implies that {+ f is a constant map M?"*1 —> a € R?***2, and hence
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<ka> - a’f(x> —a> = ‘(Cz, §x>
=1

for ze U. Thus f{U) lies on the hypersurface S***'(«), which is the hyper-
surface S?"*! translated by the parallel translation 8 — a + B, 8< R**%.
Let M' = {xe M*™*': flx)e S (a)}. Then the above argument says that
M’ is open. Similarly, M®**'—M’ is open, showing M  to be closed.
Thus, since M?**! is connected, M’ = M?*"*', ie., fM*™*!) lies on S"* (a). In
particular, (M?®"*!, g) is of constant curvature 1.

THEOREM 4. Suppose we have a complete Sasakian manifold
M, E,m, g), n=2, which is properly and isometrically immersed in
E**?2 Then

(1) if 0=s=2n—1, then s is even, the immersion is an isomeLric
imbedding and M**\(¢,.£,n, g) is equivalent to Si**,

() if 2n=s=2n+2, then s =2n and M* " ¢,E n,g9) is a pseudo-
Riemannian covering manifold of Si*' and the immersion induces the
covering projection, naturally.

We need the following Lemma :

LEMMA. Let M, = (Mp, h,) and M, = (M3, h,) be pseudo-Riemannian
manifolds with the same dimension and signature. Suppose M, and M,

are of the same constant curvature k, and suppose we have an isometric
immersion

feM,——M,.

Then, if M, is complete, M, is also complete and the isometric immersion
S is a covering projection (cf. S. Kobayashi-K. Nomizu [3], Theorem 4.6).

PROOF. Let y, be an arbitrary point of M, Let us take x,€ M, and let
x, = flx;). Then we can join x, and y, by a broken geodesic L,. Since M,
is complete, there is a broken geodesic L, in M, such that f{(L,)=L,, showing
that f is an onto mapping.

Let x,(2), ¢ <t <@, be a geodesic in M,. Then, since M, is complete,
we have a geodesic z,(t), —oo <t < +oo, such that fx,(#)) = x,(¢) for
a<t<B. Since f is an isometric immersion, there is a neighborhood U of
x(a) (resp. x,(B)) such that f|U is an isometry of U onto f{U) which is a
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neighborhood of fix,(a)) (resp. flx,(B)). Thus the geodesic x,(¢), @ <t < B,
can be extended for a—& <t < B+&’ for some positive constants & and &,
showing M, to be complete.

Let us consider the universal pseudo-Riemannian covering manifolds M,
and 1\72 of M, and M, with projections p, and p,, respectively. Let x, be an
arbitrary point of M,, choose y, € pi(x,) and y,< pi'(fx,). Let V,, U,,
U;., and V,, be neighborhoods of y,, x;, f{x,) and y,, respectively, such that
P, f and p, are isometries of V,, U, and V,, onto U,, Us., and Uya,,

respectively. Then we have an isometry

F=pitfp:V, ——V,,.

Since M, and Mg are complete, simply connected and of constant curvature %,
the local isometry F has a unique extension, say F'; that is, an isometry

F: M, —> M,. Since this extension can be done along all (broken) geodesics
passing through y,, we have

PzOF:fOPn

which shows that f is a covering projection, since f is a continuous and open
mapping.

PROOF OF THEOREM 4. The above Lemma says that the isometric
immersion is a covering projection M®***! —— S Y q). If 0=s=2n—1, s is
even, then S¥*(a) is simply connected, hence the covering projection is an
isometry. Thus the Theorem follows from Lemma 2 of §2.
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