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1. Introduction. The purpose of this paper is to study the integral
representation of a normal positive linear functional on a von Neumann algebra.
This is a part of reduction theory in von Neumann algebra and it has been
studied by many authors. In this paper, we shall show that a normal positive
linear functional on a von Neumann algebra has an integral representation by
factor states. Before going into the discussions, the author wishes to express
his hearty thanks to Prof. M. Fukamiya and Prof. M. Takesaki in the
presentation of this paper.

2. Notations and Definitions. Let M be a von Neumann algebra on a
Hubert space H with the predual M# and the center Z a positive linear
functional ψ on M is included in a positive linear functional φ on M [notation:
ψ 4 φ] if there exists a positive scalar a such that φ — aty is a positive
linear functional on M. Then ψ <ξ φ if and only if, for each sequence {an}
in M, φ{dn^n) ~~* 0 a s n ""* °°> implies Λ/r(αJαn) —* 0 as n —> oo.

By using the above notation, we set the following definition.

DEFINITION 1. Let M be a von Neumann algebra and φ be a positive
linear functional. If the normalized form of φ is a pure state, then φ is said
to be pure. If, whenever ψ is a positive linear functional such that ψ <ζ <p,
there exists an element a0 in M+ (that is, the set of all positive elements of
M) such that ψ{a) = <p(aa0) for all a € M, then φ is said to be reducible.

Let A be a C*-algebra with the identity and φ a positive linear functional
on A. Putting

Iφ= [asA; φ{a*ά) = 0}

which is called the left kernel of <p, the quotient space A/Iφ becomes the
preΉilbert space with the inner product canonically induced by φ. We denote
the element of A/Iφ corresponding to a^A by ηφ{a). Then we get a Hubert
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space Hφ, the completion of A/Iφ, and a cyclic representation τcφ of A, as the

left multiplication operators on Hφ.

Let A be a C*-algebra acting on a Hubert space H, let K be a subspace

of H. If K is invariant under A, then we use a symbol KηΆ (that is, the

set of all commuting operators for A). In particular, if K is a closed subspace,

then the projection e from H onto K is an element of A'.

DEFINITION 2. Let A be a C*-algebra with the identity 1 and φ a state

on A. Then, if the weak closure irφ(A) of 7tφ(A) is a factor, <p is called a

factor state.

3. Main theorems. The purpose of this paper is to show that the

normal reducible functional ψ is a faithful normal trace on eMe (this notation

is due to [1]) where e is the support of φ, and the normal reducible functional

on a type I von Neumann algebra M has the integral representation by factor

states. However, these factor states do not necessarily induce von Neumann

representation, which we shall show.

Now we shall state the explained results in the following form:

THEOREM A. Let M be a von Neumann algebra of type I with the

center Z on a Hilbert space H and let φ be a reducible normal positive

linear functional on M. Then φ admits the integral representation on the

spectrum X of Z:

(ά) φ(a) = I ψζ(a) dv(ζ) for each az M,

which satisfies the following conditions :

(1) v is the spectral measure vξ on X where the vector ξ is an element

of H which arises from restricting φ on Z,

(2) for each z^Z and azM, ψζ(za) = z\ζ)φζ{a) where zκ is the

Gelfand's representation of z,

(3) the mapping ζ-^ψζ is weakly continuous on supp(u),

( 4 ) there exists a non-dense set N in supp(i>) = Y such that, for ξz Y—N,

φζ is a factor state.

Let 7tζ be the canonical representation induced by <pξ, then we have

THEOREM B. Let M be a properly infinite von Neumann algebra of
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type I with the separable predual M* and the center Z τvhich is
non-atomic. Then there exists an element ζ of the spectrum X of Z for
which 7tξ(M) is not a von Neumann algebra.

4. Some lemmas. To prove our theorems, we shall provide some
considerations. A projection e in M is said to be abelian if a von Neumann
algebra eMe is abelian. If zie) is the central support of e, then Z2(β) and eMe
is *-isomorphic ([1] p.19, Proposition 2). We define the "*-isomorphism Φ from
Zz{e) onto eMe as Φ(a) = ae for a € Zi(e), and the linear mapping τe from M
onto Zz{e) as τe(a)~Φ~\eae) for each a^M.

For each ζ^X, the closed two-sided ideal in M generated by ζ will be
denote by [f], for which the quotient algebra M/[ζ] is a C^-algebra. For any
ze Z, z* denotes the image of z by the Gelfand's representation of z.

LEMMA 1. For each ζ in the set [ζzX; z(e)\ξ) = 1], the functional
φ{a)^τe{a)\ζ) is pure.

PROOF. It is clear that φ is a non-zero positive linear functional. Let ψ
be a positive linear functional on M such that ψ <ξ φ. Since φ([ξ]) = 0,
^([Π) = 0. Therefore, there exists a functional ^ on M/[f] such that
ψ*i(#(£)) = ψ 1 ^) for all a^M where a(ξ) is the element of M/[ξ] corresponding
to a. Furthermore, ψ ( l — e) = 0 this means that ψ (α) = ψ(eae) for all a^M
by the Schwartz's inequality. Therefore, we have :

= ψ(eae) = ψ(τβ(α) *) = t i W

for all α € M

This shows that -ψ is a scalar multiple of <p, hence 9? is pure.

Let φ be a normal positive linear functional on M and ψ be any positive
linear functional on M such that ψ 4 Ψ-> then, by the Radon-Nikodym theorem
due to S. Sakai [6], there exists a positive element aQ of M satisfying

for all a^M. But, aQ is not necessarily

LEMMA 2. Let φ be a faithful normal positive linear functional on
M, (jtφ, Hφ) the canonical representation of M induced by φ and ξφ a cyclic
vector for this representation. Then φ is reducible on M if and only if
ωξ is reducible on 7tφ{M) where ωξφ denote a normal state defined by
ωξφ(a) = {aξφ\ξφ) for all az τtφ{M).

PROOF. Suppose that φ is reducible. Since ψ is faithful, nφ is a
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"*-isomorphism and σ-weakly continuous. If ψ is a positive linear functional
on the von Neumann algebra πφ(M) such that ψ ξ ωξφ and Λ/̂  is defined by
ψι(a) = ψ(7rφ(a)), then ψι is an element of {M#)+ such that ψL <ζ φ. Obviously,
if φ(a*an) ~* 0 as n -+ ooy then ψι(a*an) — ψ(π(an)*π(an)) —• 0 as n—+oo.

Since φ is reducible, there exists a positive element a0 of M such that
ψι(a) = <p(aa0) for all a£ M, hence we get

ψ(πφ(a)) = (τrφ(aa0) ξφ \ ξφ) = (τtφ(a) πφ(a0) ξφ \ ξφ)

which shows that ωξ is reducible. The above argument can also be applied
to prove the converse part. This completes the proof of Lemma 2.

In Lemma 2, the assumsption that φ is faithful is not essential, but its
proof will be left for readers.

The following lemma is due to H. Halpern [2].

LEMMA 3. The vector state ωξ is reducible on M if and only if ξ is a
trace element for eMe vυhere e = supp(ω^).

Now we shall show our Prop. 1 which will give us an extended notion
of normal reducible functional.

PROPOSITION 1. Let M be a von Neumann algebra on a Hilbert
space H, Z the center of M, φ an element of (M%)+ and e the support
of φ. Then φ is reducible if and only if φ is a faithful normal trace on
a von Neumann algebra eMe.

PROOF. Suppose firstly that φ is a faithful normal trace on a von
Neumann algebra eMe. If ψ is a positive linear functional such that ψ <ζ φy

then ψ(a) = ψ(eae) for all a^M. Since ψ<(^ on eMe, by the Radon-Nikodym
theorem due to S. Sakai [6], there eixsts a positive element a0 of eMe such
that ψ(eae) — φ(aoeaeao) for all a^ M. Since φ is a trace on eMe, we have

ψ(a) = ψ(eae) = φ(aoeaeao) = <p(eaeal)

= <p(eaal) — φ(μdo) for all az M.

This shows that φ is reducible on M.



ON THE INTEGRAL REPRESENTATION OF SOME FUNCTIONAL 241

We shall show the converse. Suppose that φ is a faithful positive linear
functional on eMe. Let (nφy Hφ) be the canonical representation of eMe
induced by φ such that φ{a) — φ(eae) — (πφ(eae) ξo\ ξ0) where ξ0 is a cyclic
vector for nφ{eMe). Then, by Lemma 2, ξ0 is a trace element for πφ{eMe).
Thus, φ is a normal trace on eMe. This completes the proof of Proposition 1.

LEMMA 4. Let A be a C*-algebra with the identity 1, {<Pi}i=lt2 be two
states on A and {ni]i==l2 be the canonical representations of A induced by
[<Pi}i=i,2 respectively. If there exist two equivalent projections [e^^^ in A

for which u is the partial isometry with the initial projection ex and the
final projection e2, and if {^i)i=i,2 satisfy the relations <Pi(l — eL) = 0, for
i — 1, 2 and φv(u*au) = φJ^i) for all az A, then π1 and n2 are unitarily
equivalent.

PROOF. For / = 1,2, let It be the left kernel of φiy Kt = A/It and Ht

the completion of KL with respect to the inner product induced by φt. Difine
the mapping U of K2 into Kγ by the following form : U(a2) = au(a% is the
class of Kι corresponding to a for i —1,2). Then, for a,bza2, we have

φι({(a - b) u)\(a - b) u)) = φx(u*(a - b)*(a - b) ύ)

= φl{a - b)*(a - 6)) = 0

This shows thet U is well-defined it is clear that U maps K2 onto Kλ.
U has the unique extension to a unitary operator from H2 onto Hu

because, for each a,b £ A, we have

(ά2 \b\ = φlb*a) = Ψι{u*{b*ά)u)

= φi{{bu)*{au)) = (U(a2)\U{b2)\,

hence U is an isometry and has the unitary extension from H2 onto Hx (we
denote it again IT). Furthermore, since we have, for each a,b £ A,

and

U(τc2(a)(b2)) - U{ab2) = abu\

so we have, for all a € A,

τrx(α) [7 = Uτt2{a\

nx and τr2 are unitarily equivalent. This completes the proof of Lemma 4.
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LEMMA 5. Let A be a C*-algebra with the identity 1, φ a state on
n

A and {̂ i}?=i a family of positive linear functionals on A with φ — ̂  φ%.
i = l

Let (πφ, Hφ) and (τtu Ht) be the canonical representations of A induced by
φ and [<Pi}i=i, respectively. If there exists a family {^}?=1 of orthogonal
projections in A such that φi(l — ei) = 0 for i = 1, 2, , n, then there exists
a family {Kί}?=1 of closed subs paces of Hφ satisfying the following
conditions : for each i,j = 1, 2, , n,

( i ) if i^j, Kt and Kj are mutually orthogonal,
(ii) Kι are invariant subs paces under 7tφ(A),

n

(iii) Hφ = Σ® Ki and
i = l

(iv) πφ\Ki are unitarily equivalent to πt.

PROOF. For each i = 1, 2, , n, let ( | )φ and ( | \ be the inner
product for Hφ and Hiy respectively. Let ξt be cyclic vectors for nφ{A) and
7t%{A) respectively. If we define a bilinear form [πφ{a) ξφ\τrφ(b) ξφ] on the dense
subset {πφ(A)ξφ} of Hφ such that \7tφ(a) ξ \ πφ(b) ξφ] = <pi(b*a), then this
bilinear form is bounded and so may be extended on Hφ. Therefore, by
Riesz' representation theorem, there exists the unique bounded operator tt on H
w i t h O ^ ί i ^ l such that <Pi(b*a) = [τtφ{a) tt ξφ \ πφ(b) ti ξφ] for every a, b € A,
and tt is an element of τtφ(A)\

For each i — 1,2, , n, Iφ and It be the left kernel of φ and φt

respectively and ηφ and ηt the canonical mappings from A onto A/Iφ and A/Iiy

respectively. Then we have, for each a,b € A,

(Vi(a)\ Vi(b)\ = φi{b*a) = (ttπ^ξΛ t^(b) ξφ)φ.

Therefore, if we define the operator Ut from {τri(A)ξi) into {τtφ(A)ξφ} by
Uplift) ξι) = τtφ{a) tιξφ for each i and a£ A, it is a linear isometrical mapping.
If we define the closed subspace Kt of Hφ by Kt — [τtφ{A)tί ξφ] = [t^9(A) ξφ] =
ti(Hφ) = supp(ίi), then Ut has the unique extension to a unitary operator Ht

onto Ki, which we denote again it by Ό%. Since tt is an element of πφ(A)\ Kt

is an invariant subspace under nφ(A). Furthermore, for each α, b € A, we have

^ ( ) ()) fa) ξt) = πφ{ab) ttξΨ
and

= πψ(a) Ufaib) ξt) = *JLa)π,(J>) ttξΨ

= τrφ(ab)tt ξφ.
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Therefore, ni and nφ\'Ki are unitarily equivalent.
Next, we shall show that [Ki}i=ι are mutually orthogonal. By the

assumption, we have: φk(l — ek) = 0 for all k. Since {ek}ΐ=1 are mutually
orthogonal, we have, for each ayb £ A and for z, k=l, 2, , n, if

I ^ ( ( 1 - et) b*aet) \2 ^ φk{a*b(l - e,) b*ά) <pk(et)

^ φk(a*b{l - et) b*a) φk(l - ek) = 0,

and

I φt(il - βi) b*aei) 12 ^ Ψi(l - et) φi(b*aeia*b) - 0.

Therefore, for each z, we have

Hφ = %(ΛO Θ ηφ(A(ϊ - ^)

and

Therefore, if i Φjy. Kt and Kj are mutually orthogonal.
n

Now, we shall show that Hφ = ^ 0 i^. For every α,6 € A, we have

i = l

n

Since the subspace {ηφ(a) azA} is dense in Hφ, we h a v e ^ ί ? = l . Therefore,
i = l

n

we have : Hφ = ^Z ® Kt. This completes the proof of Lemma 5.
ΐ = l

By the mentioned lemmas, we have the following theorem.

THEOREM 1. Let A be a C*-algebra with the identity 1. Let φ be a
state on A and {^}?=1 be a family of pure, positive linear functionals on
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n

A such that φ = ]Γ <pt. If there exists a family {^}?=1 of orthogonal

equivalent projections in A such that φ^l — et) = 0 for i — 1, 2, , n, and
if\ for the partial isometry uh -with the initial projection ex and the final
projection eh, φ^ufaui) = <Pt(ά) for each az A, then ψ is a factor state.

PROOF. Let (nφ> Hφ) and {(πί9 //ί)}?=i D e t n e canonical representations
induced by φ and {<£>*]?=! respectively. Since, by Lemma 4, ni and π5 are
unitarily equivalent, there exists an w-dimensional Hubert space H(n) such

/ " \
that [Σ ® ni\ (A) and πx{A) ® CH{n) are unitarily equivalent where C/I{n) is the

algebra of all scalar multiples of the identity on H(ή). Since φx is pure, the

weak closure πλ(A) of πx(A) is the algebra B(HX) of all bounded operators on

/ n \
Hλ. Therefore, the weak closures of ( ^ 0 ^ 1 (A) and B{Hλ)®C,τ{n) are

/
unitarily equivalent. Furthermore, by Lemma 5, πφ(A) and 1 ^ 0 ^ ) (A) are

unitarily equivalent. Therefore the weak closure nψ(A) of τtφ(A) and the weak

7 \ I \ ^^
closure 1 ^ 0 ^ I (A) of l^©7Γι](A) are unitarily equivalent, and so πφ(A)
and B(Hι) ® Cmn) are unitarily equivalent. Thus, φ is a factor state.

In Theorem 1, it is obvious that the weak closure πφ(A) of 7ΐφ(A) is a

factor of type I.

5. The proof of Theorem A and B. At first, we shall show Theorem
A.

PROOF OF THEOREM A. Let e be the support of <p, then, by Proposition
1, φ is a faithful normal trace on eMe.

Since M is type I and eMe is finite, eMe is a finite von Neumann algebra
of type I, and there exists a family {en(i)}?Li of orthogonal projections in Ze

oo

such that eniί) is an w(z)-homogeneous projection and e = Σ enU)- Thus,
ΐ = l

oo

eMe = Σ ® (eMe)en(i). In the following, we shall pass the argument by

considering en for en{i).

First, we suppose e = 1, and let Yx be the spectrum of Z and Xn the
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closed and open set corresponding to en for each n, then the set Yι — \l Xn
n = l

= iSΓ is a non-dense set in Yx (we distinguish Yx from X, because we shall use
Y1 for the spectrum of Ze).

Since Λfen is n-homogeneous, there exists a family {/>ίw)}ίLi of projections
in M such that they are equivalent, orthogonal and abelian projections and
their sum is en. Thus, there exists an abelian von Neumann algebra 9ίn

which is the center of Men, and we have Men = Sln (g) B(Hn) where Hn an
^-dimensional Hubert space.

Now, since ρ[n) Mρ[n) is abelian, ρ[n) Mp^ = Zρ[n) ς^ Zen. The above
^-isomorphism Φ n is defined by ΦΰKp^ap^) = fo?n, for p^ap^ = bp^ in
^>ίn) M/>ίn) = Zpψ> where α is an element of M and 6 is an element of Z.
Let u(tn) be the partial isometry with the initial projection p[n) and the final
projection p\n) for z" = 1, 2, , w, then, for α e Men, we have

V

where

Furthermore, we have

This shows that au — τpu)(a) where r denotes the mapping defined in the
beginning of §4. Thus we denote a by {atj} with au € SIn and call it the
matrix representation of a. [See also [7], p.2.11]

Since M is a finite von Neumann algebra, there exists the center-valued
trace fc]. Moreover we have the following integral representation of φ: for
each a£ M,

(1) φ(μ) = φ(a*)= Γ a* \t) dμ(t)

= Σ f a*\t)dμ(t) + f a*\t)dμ(t)

where μ is the spectral measure on Yλ and the support of μ is Yx.
Let fc)βn be the center-valued trace on Men, then it satisfies that a^^ — a^

1 n

for all a £ M<ew. Furthermore we can show that α*e» = - — ^ α ϋ f° r a

W i = l

where {α^} is the matrix representation of α, we have
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<p{a) = φ{a>) = [ l^rΣ.aiι*(t)

" _ ! ( n ) ( n )_, ( n ) ( n ) Λ \

for each a
We return the argument from eMe to M, then

<α) = φieae) = Γ {eae)^\t)dμ{t).

Let Y be the closed and open set to which the central support z{e) of e

corresponds and Yx the spectrum of Ze. Then there exists a ^-isomorphism

7t from Z«(e) onto Ze given by a-*ae for a^Zz{e). Considering the transpose
ι7t of 7Γ, it is the linear isomorphism of {Ze)* onto (Z 2 ( β ))*, and ^ = 8 induces

a homeomorphism from Yx onto Y. Furthermore, ?7 = δ~1 is a homeomorphism

from Y onto Y^

Put φζ{d) = {eaeYe\η{ζ)) for each a^M. Then we get, for each α ^ Z and

f£ y, (a^)A(^(f)) = aA(?) and so, for each α ^ Z and b £ M, we have

Let us define v in the following form :

then we have : for each a € Λf,

^>(α) = i {eaeye*{t) dμ{t) — I

It is obvious that supp(i/) = Y and */ is a spectral measure on Y. The set N' is

non-dense in Yλ and so N=δ{N') is non-dense in Y. Hence, for each ξeY—N,

there exists a positive integer n such that η{ζ) <= Xn . For such n, we define a

linear functional φίξ in the following form:

—
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Then φiζ(l — en) = 0, φiζ(a) = φiζ{enae^) and φL is pure on enMen by Lemma 1.
Therefore φiζ is pure on M.

Assume that ?(£) * Xn, then ^ = φ-\p[n)enaenp[n)\ alV = ΦΛpln)uln)*enaen

uPpίn)) and u^en = enu!^.
Hence we have

for all a^ M.

Since <PiζO- —pia)) = 0 and {p'ίn)} are mutually equivalent, by considering
n

Theorem 1, φζ = 5Z ^£ *s a factor state. This completes the proof of

Theorem A.

Let 7ΐζ be the canonical representation induced by φζ, then nζ{M) is
not necessary a von Neumann algebra. Considering πζ, then, for £ € X,
7tξ\0) Π Z = [z € Z 2*(£) = 0}. Therefore, 7Γ? is σ-weakly continuous if and
only if the one-point set {ζ} is a closed and open set in X, and τr? is σ-weakly
continuous for all ζ^X if and only if Z is an atomic abelian von Neumann
algebra. By this consideration, we have the following proof of Theorem B.

PROOF OF THEOREM B. Since Z is non-atomic, there exists an element
ζ of X such that nζ is not σ-weakly continuous. If 7tζ(M) is a von Neumann
algebra for such an element ξ, then πζ is a ^-homomorphism from M onto a
von Neumann algebra n^M), and, by Theorem 1 in [8], τrζ must be σ-weakly
continuous, which is a contradiction. Therefore, τtξ(M) can't be a von Neumann
algebra, which completes the proof.

We may construct a von Neumann algebra M and a positive linear
functional φ which satisfy the conditions in Theorem A and B. Let H be a
countably infinite dimensional Hubert space, B(H) the von Neumann algebra
of all bounded operators on H and L°°(0,1) a von Neumann algebra of all
essentially bounded functions under the Lebesgue measure on the open interval
(0,1). As B(H) is properly infinite and L°°(0,1) is a finite von Neumann
algebra, the W*-tensor product M=L°°(0,1) ® B{H) is a properly infinite von
Neumann algebra (p.3. 40 in [7]) and the center Z of M is L°°(0,1) ® CH where
CH is the algebra of all scalar multiples of the identity on H, and it is a
non-atomic abelian von Neumann algebra. Since the Hubert space L2(0,1) (g) H
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is separable, M* is separable. Therefore, M satisfies the assumption in
Theorem B.

Next, we shall construct a positive linear functional φ which satisfies the
assumption in Theorem A and B. Let e be a non-zero, finite dimensional
projection on H, then the W*-tensor product JV= L°°(0,1) ® eB(H)e is a finite
von Neumann algebra (p. 3.40 in [7]) and σ-finite, because the Hubert space
L2(0,1) ® e{H) is separable. Therefore there exists a faithful normal trace φ
on N= (1® e)M(l® e). If we define a positive linear functional φ by φ{a) —
φ(a(l® e)) for all a^M, is a normal positive linear functional on M. We
see, by the definition of φ, supp(^) = 1® e. Therefore, by Proposition 1, φ is
a reducible normal positive linear functional on M. By the above construction,
we see that φ and M satisfy the assumptions in Theorem A and B.
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