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1. Introduction. The purpose of this paper is to study the integral
representation of a normal positive linear functional on a von Neumann algebra.
This is a part of reduction theory in von Neumann algebra and it has been
studied by many authors. In this paper, we shall show that a normal positive
linear functional on a von Neumann algebra has an integral representation by
factor states. Before going into the discussions, the author wishes to express
his hearty thanks to Prof. M.Fukamiya and Prof. M. Takesaki in the
presentation of this paper.

2. Notations and Definitions. Let M be a von Neumann algebra on a
Hilbert space H with the predual My and the center Z; a positive linear
functional Y+ on M is included in a positive linear functional @ on M [notation :
¥ ¢ @] if there exists a positive scalar @ such that @ — a¥yr is a positive
linear functional on M. Then ¥ ¢ @ if and only if, for each sequence {a,}
in M, @(aja,)— 0 as n— oo, implies Y(aka,) — 0 as n — oo.

By using the above notation, we set the following definition.

DEFINITION 1. Let M be a von Neumann algebra and @ be a positive
linear functional. If the normalized form of @ is a pure state, then ¢ is said
to be pure. If, whenever Vr is a positive linear functional such that ¢ ¢ @,
there exists an element a, in M* (that is, the set of all positive elements of
M) such that y(a) = @(aa,) for all a € M, then @ is said to be reducible.

Let A be a C*-algebra with the identity and @ a positive linear functional
on A. Putting

I, = {ac A; p(a*a) = 0}
which is called the left kernel of @, the quotient space A/I, becomes the

pre-Hilbert space with the inner product canonically induced by @. We denote
the element of A/I, corresponding to ac€ A by n,(a). Then we get a Hilbert
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space H,, the completion of A/I,, and a cyclic representation =, of A, as the
left multiplication operators on H,.

Let A be a C*-algebra acting on a Hilbert space H, let K be a subspace
of H. If K is invariant under A, then we use a symbol K7 A" (that is, the
set of all commuting operators for A). In particular, if K is a closed subspace,
then the projection e from H onto K is an element of A’

DEFINITION 2. Let A be a C*-algebra with the identity 1 and ¢ a state

on A. Then, if the weak closure 7, (A) of =, (A) is a factor, @ is called a
factor state.

3. Main theorems. The purpose of this paper is to show that the
normal reducible functional @ is a faithful normal trace on eMe (this notation
is due to [1]) where e is the support of @, and the normal reducible functional
on a type I von Neumann algebra M has the integral representation by factor
states. However, these factor states do not necessarily induce von Neumann
representation, which we shall show.

Now we shall state the explained results in the following form :

THEOREM A. Let M be a von Neumann algebra of type I with the
center Z on a Hilbert space H and let @ be a reducible normal positive
linear functional on M. Then @ admits the integral representation on the
spectrum X of Z:

() @la) = f @da)dv(§) for each ac M,

which satisfies the following conditions :

(1) v is the spectral measure »; on X where the vector § is an element
of H which arises from restricting @ on Z,

(2) for each 2€Z and ac M, @lza)==2"({)pla) where 2" is the
Gelfand’s representation of =z,

(3) the mapping {—@, is weakly continuous on supp(»),

(4) there exists a non-dense set N in supp(v)=Y such that, for (€ Y— N,
@, is a factor state.

Let z; be the canonical representation induced by @, then we have

THEOREM B. Let M be a properly infinite von Neumann algebra of
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type 1 with the separable predual M, and the center Z which is
non-atomic. Then there exists an element ¢ of the spectrum X of Z for
which w(M) is not a von Neumann algebra.

4. Some lemmas. To prove our theorems, we shall provide some
considerations. A projection ¢ in M is said to be abelian if a von Neumann
algebra eMe is abelian. If z(e) is the central support of e, then Z.,, and eMe
is *-1somorphic ([1] p.19, Proposition 2). We define the *-isomorphism ® from
Z.ey onto eMe as ®(a) = ae for a€ Z,,, and the linear mapping 7, from M
onto Z,., as 7,(a)=® '(eae) for each a< M.

For each ¢< X, the closed two-sided ideal in M generated by ¢ will be
denote by [¢], for which the quotient algebra M/[¢] is a C*-algebra. For any
z€Z, 2" denotes the image of z by the Gelfand’s representation of =z.

LEMMA 1. For each { in the set {{< X; z(e)" (&) = 1}, the functional
pla)=7.a) () is pure.

PROOF. It is clear that @ is a non-zero positive linear functional. Let
be a positive linear functional on M such that 4 ¢ @. Since @([{]) =0,
Y([¢]) = 0. Therefore, there exists a functional 4, on M/[¢] such that
Yi(a(§)) = Y(a) for all ae M where a(f) is the element of M/[¢] corresponding
to a. Furthermore, Y1 — €) = 0; this means that y(a) = y(eae) for all ae M
by the Schwartz’s inequality. Therefore, we have:

Y(a) = Yleae) = Y(7(a) e) = Yi(7.(a)" (§) &)
= pla) Yi(el@)=p(a@)Y(e) for all ac M.

This shows that 4 is a scalar multiple of @, hence @ is pure.

Let @ be a normal positive linear functional on M and +r be any positive
linear functional on M such that 4 ¢ @, then, by the Radon-Nikodym theorem
due to S.Sakai [6], there exists a positive element a, of M satisfying
Y(a)=@(a.aa,) for all ae M. But, a, is not necessarily [a,|=1.

LEMMA 2. Let @ be a faithful normal positive linear functional on
M, (=,, H,) the canonical representation of M induced by ¢ and &, a cyclic
vector for this representation. Then @ is reducible on M if and only if
w;, is reducible on m, (M) where o, denote a normal state defined by

"’5,,(“) (a€,| &) for all ac m(M).

PROOF. Suppose that ¢ is reducible. Since @ is faithful, =z, is a
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*.isomorphism and o-weakly continuous. If 4 is a positive linear functional
on the von Neumann algebra 7,(M) such that ¥ ¢ @, and +, is defined by
Y(a)=y(m (a)), then ¥, is an element of (My)* such that ¥, ¢ @. Obviously,

if @lata,)— 0 as n— oo, then Y (afa,) = Y(z(a,)*n(a,)) — 0 as n— oo,

Since @ is reducible, there exists a positive element a, of M such that
¥i(a) = @laa,) for all ae M, hence we get

‘P(”a)(a)) = (g (aa,) &, E,) = (m,(a) 7[9)(‘10) £,1€,)
= o (m,(a) my(a)),

which shows that w;, is reducible. The above argument can also be applied
to prove the converse part. This completes the proof of Lemma 2.

In Lemma 2, the assumsption that ¢ is faithful is not essential, but its
proof will be left for readers.

The following lemma is due to H. Halpern [2].

LEMMA 3. The vector state w; is reducible on M if and only if £ is a
trace element for eMe where e = supp(w;).

Now we shall show our Prop.1 which will give us an extended notion
of normal reducible functional.

PROPOSITION 1. Let M be a wvon Neumann algebra on a Hilbert
space H, Z the center of M, @ an element of (My)* and e the support
of @. Then @ is reducible if and only if @ is a faithful normal trace on
a von Neumann algebra eMe.

PROOF. Suppose firstly that @ is a faithful normal trace on a von
Neumann algebra eMe. If +r is a positive linear functional such that ¥ ¢ @,
then y(a)=+r(eae) for all ae M. Since ¥¢{ @ on eMe, by the Radon-Nikodym
theorem due to S.Sakai [6], there eixsts a positive element a, of eMe such
that Yreae) = p(aseaea,) for all ac M. Since @ is a trace on eMe, we have

Y(a) = Y(eae) = plajeaea,) = pleaeay)

= @p(eaal) = p(aal) for all ae M.

This shows that @ is reducible on M.
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We shall show the converse. Suppose that @ is a faithful positive linear
functional on eMe. Let (m,, F,) be the canonical representation of eMe
induced by @ such that @(a) = @(eae) = (w,(eae) &,| &) where &, is a cyclic
vector for my(eMe). Then, by Lemma 2, & is a trace element for m,(eMe).
Thus, @ is a normal trace on eMe. This completes the proof of Proposition 1.

LEMMA 4. Let A be a C¥-algebra with the identity 1, {¢,}i.1. be two
states on A and {m.},_,, be the canonical representations of A induced by
{Pi}io1.2 Tespectively. If there exist two equivalent projections {€}i-1, in A
for which u is the partial isometry with the initial projection e, and the
Sfinal projection e,, and if f{e;}i-.. satisfy the relations @,(1 — e,) =0, for
i=1,2 and @ (u*au) = @) (a) for all ac A, then n, and n, are unitarily
equivalent.

PROOF. For i =1,2, let I; be the left kernel of @;, K; = A/I, and H,
the completion of K; with respect to the inner product induced by ;. Difine
the mapping U of K, into K, by the following form: U(a@%) = au'(a' is the
class of K, corresponding to a for i=1,2). Then, for a,b<c a’, we have

pi(((a = b)uj*((a — byu)) = @(u*(a — b)*(a — b)u)
= @(a—b¥a— b)) =0

This shows thet U is well-defined ; it is clear that U maps K, onto K.
U has the unique extension to a unitary operator from H, onto H,,
because, for each a,b< A, we have

@ |8"), = py(b*a) = (u*(b*a) u)
= @((bw)X(aw)) = (U@"|U(6*),,

hence U is an isometry and has the unitary extension from H, onto H; (we
denote it again U). Furthermore, since we have, for each a,bc A,

7(a) U®B") = m\(a)(bu') = abu',
and _ -

Ulry(a) (")) = Uab’) = abu',

so we have, for all ac A,
(@)U = Urya),

7, and m, are unitarily equivalent. This completes the proof of Lemma 4.
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LEMMA 5. Let A be a C*-algebra with the identity 1, ¢ a state on

A and {@;}i-, a family of positive linear functionals on A with ¢ =3 @;.

i=1
Let (n,, H,) and (m;, H,) be the canonical representations of A induced by
@ and {@}i,, respectively. If there exists a family {e;}}., of orthogonal
projections in A such that ¢,(1—e;)=0 for i =1,2,- -+, n, then there exists
a family {K;}}, of closed subspaces of H, satisfying the following
conditions : for each i,j =1,2,---, n,

(1) if i#j, K, and K, are mutually orthogonal,
(i) K, are invariant subspaces under n,(A),
(iiiy H,=3 ® K, and

i=1

(iv) m,|K, are unitarily equivalent to ;.

PROOF. For eachi=1,2,---,n, let ( | ), and ( | ), be the inner
product for H, and H;, respectively. Let & be cyclic vectors for =, (A) and
7, (A) respectively. If we define a bilinear form [7n,(a) £, |7,(b) £,] on the dense
subset {7 (A)E,} of H, such that [7,(a)€&|7,(b)E,] = @(b*a), then this
bilinear form is bounded and so may be extended on H,. Therefore, by
Riesz’ representation theorem, there exists the unique bounded operator ¢, on H
with 0 =¢, =1 such that @,(b*%a) = [r(a)t; &, |n(b) ¢, E,] for every a,be A,
and £, is an element of m,(A).

For each ¢ =1,2,---, n, I, and I, be the left kernel of @ and ¢,
respectively and 7, and #; the canonical mappings from A onto A/I, and A/I,
respectively. Then we have, for each a,bec A,

(m(@)| m(b)) = @ (b%a) = (timo(@)k,| £:my() £p)s

Therefore, if we define the operator U, from {m,(A)§,} into {7,(A)E,} by
Ui(r(a) §;) = n(a)t;E, for each 7 and a< A, it is a linear isometrical mapping.
If we define the closed subspace K; of H, by K, = [7,(A), £,] = [t,7,(A) E,) =
t,(H,) = supp(t;), then U, has the unique extension to a unitary operator H,
onto K;, which we denote again it by U,. Since ¢, is an element of 7, (A), K
is an invariant subspace under 7,(A). Furthermore, for each a,b<c A, we have

Ui(,(a) 7,(b)) = Ui(m,(ab) &) = m,(ab)t .,
7 (a)U;mi(b)) = mp(a) U(my(b) &) = mo(a)my(b) &,
= m,(ab)t, & P

and
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Therefore, 7; and #,|K,; are unitarily equivalent.

Next, we shall show that {K;}7, are mutually orthogonal. By the
assumption, we have: @ (1 — ¢,) =0 for all k£ Since {e;}f., are mutually
orthogonal, we have, for each a,b<c A and for ¢,k=1,2,---, n, if i#k,

le((1 — ) b*ae,)|* = pu(a*b(1 — &) b*a) pi(e)

= @u(a®*b(l — ¢;) b*a) p(1 — €;) = 0,
and
l@:(1 — &) b*ae,)|* = @i(1 — &) @i(b*ae,a*b) = 0.

Therefore, for each 7z, we have

H, = "Lp(AZ) D (Al — ez))
and

K; = supp(t;) C ny(Ae;).
Therefore, if i #j, K, and K; are mutually orthogonal.

Now, we shall show that H, =) @ K,. For every a,bc A, we have

i=1

(1) 2 B), = Pb%0) = 5 (b%)
= 5 @) & 1m0 £,
= (Ma)’s’g»l (z t%> () gq,)?
= (nw(a).\ (Z:lﬂ) n¢(b))¢

Since the subspace {7,(a); a< A} is dense in H,, we have )  ti=1. Therefore,

=1

we have: H, =) @ K;. This completes the proof of Lemma 5.

=1

By the mentioned lemmas, we have the following theorem.

THEOREM 1. Let A be a C¥*-algebra with the identity 1. Let @ be a
state on A and {p,}7., be a family of pure, positive linear functionals on
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A such that ¢ =Y @;. If there exists a family {e}l., of orthogonal
i=1

equivalent projections in A such that ¢, (1 — ;) =0 for 1 =1,2,--+,n, and
if, for the partial isometry u, with the initial projection e, and the final
projection e;, @ (ufaw;) = @,(a) for each a< A, then @ is a factor state.

PrROOF. Let (m,, H,) and {(m;, H;)}’;, be the canonical representations

induced by @ and {@;}7, respectively. Since, by Lemma 4, n; and =; are
unitarily equivalent, there exists an n-dimensional Hilbert space H(n) such

that (Z fay] ﬂi) (A) and 7,(A) ® Cyn are unitarily equivalent where Cjy,, is the

i=1

algebra of all scalar multiples of the identity on H(n). Since ¢, is pure, the
weak closure 7%) of m,(A) is the algebra B(H,) of all bounded operators on
H,. Therefore, the weak closures of <Z€B ﬂi) (A) and B(H))® Cyw are

=1

unitarily equivalent. Furthermore, by Lemma 5, =,(A) and (Z 4> 7ri> (A) are
i=1
unitarily equivalent. Therefore the weak closure ;Z/A) of 7,(A) and the weak
closure (Z @® m)(A) of (z D ni)(A) are unitarily equivalent, and so n:,tzl)
=1 =1

and B(H,) ® Cyw are unitarily equivalent. Thus, @ is a factor state.

In Theorem 1, it is obvious that the weak closure 7;:(;4.) of m,(A) is a

factor of type L

5. The proof of Theorem A and B. At first, we shall show Theorem
A.

PROOF OF THEOREM A. Let e be the support of @, then, by Proposition
1, @ is a faithful normal trace on eMe.

Since M is type I and eMe is finite, eMe is a finite von Neumann algebra
of type I, and there exists a family {e,}21 of orthogonal projections in Ze

oo

such that e, is an n(7Z)-homogeneous projection and e =) e,u. Thus,

i=1
eMe = > @ (eMe)e,;,- In the following, we shall pass the argument by

i=1
considering e, for e,.

First, we suppose ¢ =1, and let Y, be the spectrum of Z and X, the
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closed and open set corresponding to e, for each n, then the set Y, — U X,

n=1
=N’ is a non-dense set in Y, (we distinguish Y, from X, because we shall use
Y, for the spectrum of Ze).

Since Me, is n-homogeneous, there exists a family {p™}7, of projections
in M such that they are equivalent, orthogonal and abelian projections and
their sum is e,. Thus, there exists an abelian von Neumann algebra %,
which is the center of Me,, and we have Me, = A, ® B(H,) where H, an
n-dimensional Hilbert space.

Now, since pi” Mp{™ is abelian, p{» Mp™ = Zp™ g)Zen. The above
*-isomorphism @, is defined by ®;'(pMap™) = be,, for pMap™ = bp™ in
PO Mpm= Zp™ where a is an element of M and b is an element of Z.
Let %™ be the partial isometry with the initial projection p{® and the final
projection p™ for ¢ =1,2,---, n, then, for ac Me,, we have

n
a= ) auPuM*
t,J=1

where

a;; = O (pPu*au( p™) € A,

Furthermore, we have
P(i")aﬁ") = aiiP?)-

This shows that a;; = 7un(a) where 7 denotes the mapping defined in the
beginning of §4. Thus we denote a by {a;;} with a;;€ ¥, and call it the
matrix representation of a. [See also [7], p.2.11]

Since M is a finite von Neumann algebra, there exists the center-valued

trace . Moreover we have the following integral representation of @ : for
each a< M,

(1) 9@ = pla*) = [ a**@0) dute)

Y,

=5 [ @ @duo + [ o @du

n=1% X,

where p is the spectral measure on Y, and the support of u is Y.
Let B, be the center-valued trace on Me,, then it satisfies that a’e=a’

1 n
for all a€ Me,. Furthermore we can show that a’e=-—->"a,, forac Me,
i=1
where {a,;} is the matrix representation of a, we have
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pla) = p(a’?) = f (711‘ Z_ an’A(t)) du(t)

Y,

— f (‘}1 - Z @;1(p§")u§"}*au§")p§"))A(t)d,u(t))
Xn i=1

for each a <€ Me,.
We return the argument from eMe to M, then

#la) = pleac) = [ (eae) O)du(t).

Let Y be the closed and open set to which the central support z(e) of e
corresponds and Y, the spectrum of Ze. Then there exists a *-isomorphism
7 from Z,, onto Ze given by a — ae for a< Z,,. Considering the transpose
‘w of m, it is the linear isomorphism of (Ze)* onto (Z,,,))*, and ‘w=38 induces
a homeomorphism from Y, onto Y. Furthermore, 7=38"! is a homeomorphism
from Y onto Y.

Put @(a)=(eae)?<"(n({)) for each ac M. Then we get, for each a< Z and
£eY, (ae)"(n(€)=a’(¢) and so, for each a< Z and &< M, we have
pab)=(eabe)? <" (n(£))=a"({)p(b).
Let us define » in the following form :

CY)*>p —> 'n(p) = ve QY)*,

then we have: for each ae M,

o@) = [ (eac)e (e du(e) = [ pua) dt)

It is obvious that supp(v) =Y and v is a spectral measure on Y. The set N’ is
non-dense in Y, and so N=8(N") is non-dense in Y. Hence, for each {< Y— N,
there exists a positive integer 7 such that 7(¢{)e X,. For such n, we define a
linear functional @;; in the following form:

Pula) = = BP0l i) (1(E)

- % Tpn(eaaen) (n(D).
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Then @il —e,) =0, @, la)= @pilemae,) and @, is pure on e,Me, by Lemma 1.
Therefore @ is pure on M.

Assume that 7{({)e X,, then a{P =®; (pPeqae,p™), al¥ =®(pPu* e ae,
uMp) and uMe,=e,u™.

Hence we have

1

Pl au) = L Dl au e, pi7) (n(0)

DT e Jul? ) (0(E)

Il

= @yla) for all ae M.

Since @;(1—p{")=0 and {p/®} are mutually equivalent, by considering

Theorem 1, @, = >_ @, is a factor state. This completes the proof of
=1

Theorem A.

Let =, be the canonical representation induced by @, then = /(M) is
not necessary a von Neumann algebra. Considering =, then, for ¢e X,
0N Z={zeZ; 2"({) = 0}. Therefore, =, is o-weakly continuous if and
only if the one-point set {¢} is a closed and open set in X, and =, is o-weakly
continuous for all {€ X if and only if Z is an atomic abelian von Neumann
algebra. By this consideration, we have the following proof of Theorem B.

PROOF OF THEOREM B. Since Z is non-atomic, there exists an element
¢ of X such that =, is not o-weakly continuous. If (M) is a von Neumann
algebra for such an element ¢, then 7, is a *-homomorphism from M onto a
von Neumann algebra 7/(M), and, by Theorem 1 in [8], #; must be o-weakly
continuous, which is a contradiction. Therefore, 7, (M) can’t be a von Neumann
algebra, which completes the proof.

We may construct a von Neumann algebra M and a positive linear
functional @ which satisfy the conditions in Theorem A and B. Let H be a
countably infinite dimensional Hilbert space, B(H) the von Neumann algebra
of all bounded operators on H and L~(0,1) a von Neumann algebra of all
essentially bounded functions under the Lebesgue measure on the open interval
(0,1). As B(H) is properly infinite and L=(0,1) is a finite von Neumann
algebra, the W*-tensor product M=L>(0,1) ® B(H) is a properly infinite von
Neumann algebra (p.3.40 in [7]) and the center Z of M is L=(0,1) ® Cy where
Cy is the algebra of all scalar multiples of the identity on H, and it is a
non-atomic abelian von Neumann algebra. Since the Hilbert space L*0,1)® H
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is separable, M, is separable. Therefore, M satisfies the assumption in
Theorem B.

Next, we shall construct a positive linear functional @ which satisfies the
assumption in Theorem A and B. Let e be a non-zero, finite dimensional
projection on H, then the W*-tensor product N=L(0,1)® eB(H)e is a finite
von Neumann algebra (p.3.40 in [7]) and o-finite, because the Hilbert space
L*0,1)® e(H) is separable. Therefore there exists a faithful normal trace ¢’
on N=(1® ¢) M(1 ® e). If we define a positive linear functional @ by @(a)=
@' (al® €)) for all ae M, is a normal positive linear functional on M. We
see, by the definition of @, supp(p) =1® e. Therefore, by Proposition 1, @ is
a reducible normal positive linear functional on M. By the above construction,
we see that @ and M satisfy the assumptions in Theorem A and B.
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