Tôhoku Math. Journ. 21(1969), 419-433

CAPACITIES OF SETS AND HARMONIC

ANALYSIS ON THE GROUP 2^o

MASAKO KOBAYASHI

(Received October 1, 1968)

1. Introduction. In this paper we shall work on the dyadic group 2^{ω} which consists of all sequences $x = (x_1, x_2, \dots)$, $x_i = 0$ or 1, where addition is defined coordinatewise mod 2. The topology is the product topology which is the same as that given by an invariant metric $\delta(x, y)$, where if $x = (x_1, x_2, \dots)$ and $y = (y_1, y_2, \dots)$ are in 2^{ω} , then

$$\delta(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|/2^n.$$

After this we shall write |x-y| instead of $\delta(x, y)$.

In particular, we first define the Rademacher function $\varphi_0(\bar{x})$ by $\varphi_0(\bar{x}) = 1$ if $0 \leq \bar{x} < 1/2$, $\varphi_0(\bar{x}) = -1$ if $1/2 \leq \bar{x} < 1$, and $\varphi_0(\bar{x}) = \varphi_0(\bar{x}+1)$ for real \bar{x} . Next, we define $\varphi_n(\bar{x}) = \varphi_0(2^n \bar{x})$ for every nonnegative integer *n*. Then the Walsh function $\psi_n(\bar{x})$ is defined by setting $\psi_0(\bar{x}) = 1$, $\psi_n(\bar{x}) = \varphi_{n_1}(\bar{x}) \cdots \varphi_{n_r}(\bar{x})$ where $n = 2^{n_1} + \cdots + 2^{n_r}$ and the n_i are uniquely determined by $n_{i+1} < n_i$. As is well known, $\{\psi_n\}_{n=0}^{\infty}$ form a complete orthonormal system and every function $f(\bar{x})$ which is integrable on (0, 1) may be expanded in a Walsh-Fourier series;

$$f(\overline{x}) \sim \sum_{n=0}^{\infty} a_n \psi_n(\overline{x})$$
, where $a_n = \int_0^1 f(\overline{x}) \psi_n(\overline{x}) d\overline{x}$, $n = 0, 1, 2, \cdots$.

 $\varphi_n(x)$ is defined on 2^{ω} with $x = (x_1, x_2, \cdots)$ by setting $\varphi_n(x) = 1$ if $x_{n+1} = 0$, $\varphi_n(x) = -1$ if $x_{n+1} = 1$. $\psi_n(x)$ is defined on 2^{ω} by setting $\psi_0(x) = 1$, $\psi_n(x) = \varphi_{n_i}(x) \cdots \varphi_{n_r}(x)$ where as before $n = 2^{n_1} + \cdots + 2^{n_r}$ and the n_i are uniquely determined. We note that $\{\psi_n\}_{n=0}^{\infty}$ gives us the full set of characters of 2^{ω} . N. J. Fine in his paper on the Walsh functions, [3], shows that the natural map $\lambda : 2^{\omega} \rightarrow [0, 1]$ defined by

$$\lambda(x) = \sum_{n=1}^{\infty} x_n/2^n$$

is continuous, one-to-one except for a countable set, preserves Haar measure and

carries the characters of 2^{ω} onto the Walsh functions.

The main purposes of this paper depend on the note [1] by L. H. Harper. As regard terminology and notations we shall follow it as a rule. In order to facilitate progress we set up some results of L. H. Harper which are needed in the sequel.

For $x \in 2^{\omega}$, let $\{x\} = 2^{-n}$, where *n* is the number of zeroes in *x* preceding the first one $(\{0\} = 0)$. Then

(1.1)
$$|x| = \sum_{n=1}^{\infty} x_n 2^{-n} \leq \{x\} \leq 2|x|.$$

Fix $0 \leq \alpha < 1$. Let

(1.2)
$$K(x) = \{x\}^{-\alpha}$$
 if $0 < \alpha < 1$ or $\log 1/\{x\}$ if $\alpha = 0$.

(All logarithms shall be taken to the base two.)

Then K is continuous except at zero and nonnegative so that a potential theory with respect to K is valid.

If E is a closed subset of 2^{ω} , then $\mathfrak{M}(E)$ is the set of all nonnegative, Borel measures of norm one on 2^{ω} supported on E. Fix $0 \leq \alpha < 1$, let $\nu \in \mathfrak{M}(E)$ and form the energy integral

(1.3)
$$I(\nu) = \int_{2^{\omega}} \int_{2^{\omega}} K(x-y) d\nu(x) d\nu(y).$$

Then there are two cases: Either $I(\nu) = +\infty$ for all ν in $\mathfrak{M}(E)$ or

(1.4)
$$V = \inf I(\nu) < +\infty, \quad \nu \in \mathfrak{M}(E).$$

E is said to be of capacity zero if $I(\nu) = +\infty$ for all ν in $\mathfrak{M}(E)$, or if $V < +\infty$, the capacity of *E* is

(1.5)
$$C \equiv V^{-1/\alpha}$$
 if $0 < \alpha < 1$ or $C \equiv 2^{-\nu}$ if $\alpha = 0$.

(1.6)
$$U(x ; \nu) = \int_{2^{\omega}} K(x-y) d\nu(y)$$

is the potential function associated with ν . The following two statements are standard results in potential theory (See [8] and [9]).

(1.7) If E is of positive capacity, then there exists a unique μ in $\mathfrak{M}(E)$ such that $I(\mu) = V$.

(1.8) The potential function $U(x; \mu)$, of the equilibrium distribution has the following properties;

(i) $U(x; \mu) \ge V$ except for a set which is of measure zero with respect to every measure of finite energy.

(ii) $U(x; \mu) \leq V$ for all x in the support of μ .

(iii) $U(x; \mu)$ is bounded on 2^{ω} .

The nth Dirichlet kernel for the Walsh functions is defined by

(1.9)
$$D_n(x) = \sum_{k=0}^{n-1} \psi_k(x).$$

If $f(x) \sim \sum_{n=0}^{\infty} a_n \psi_n(x)$, then partial sums can be written as

(1.10)
$$\sum_{k=0}^{n-1} a_k \psi_k(x) = \int_{2^n} f(x+t) D_n(t) dt.$$

The size of $D_n(x)$ is given by

(1.11)
$$|D_n(x)| \leq \frac{2}{|x|} \quad (0 < |x| < 1).$$

Moreover, for some constants A and B independent of x and n,

(1.12)
$$(2^{1-\alpha}-1)\sum_{k=1}^{n}\frac{1}{2^{k(1-\alpha)}} D_{2^{k}}(x) \leq AK(x)+B.$$

Let [n] denote the greatest power of 2 in n ([0] = 1 for convenience) then we have

(1.13)
$$\frac{1}{[k]^{1-\alpha}} |D_k(x)| \leq 2K(x).$$

Henceforth, the letter A will be reserved to denote positive constant independent of x and n, which is not always the same number.

Now we arrive at the main theorem of L. H. Harper:

THEOREM. Let
$$f(x) \sim \sum_{n=0}^{\infty} a_n \psi_n(x)$$
 be such that

$$\sum_{n=0}^{\infty} a_n^2 [n]^{1-\alpha} < \infty, \qquad 0 \leq \alpha < 1.$$

Then if $s_n(x; f) = \sum_{k=0}^{n-1} a_k \psi_k(x)$ diverges on a closed set E, the α -capacity of E is zero.

This is a variant of the results for the trigonometric series which are summarized in Chapter 4 of Kahane-Salem [8].

Recently, in connection with the result of L. H. Harper, Professor Sh. Yano proposed the following problem : Let $\sum_{n=0}^{\infty} a_n \psi_n(x)$ be the Walsh-Fourier series of a function $f(x) \in L^p(2^{\omega})$, $1 \leq p < \infty$, and let $\sum_{k=0}^{n-1} \frac{a_k \psi_k(x)}{[k]^{1-\alpha}}$ $(0 \leq \alpha < 1)$ diverge on a closed set E. Then what can we say about the α -capacity of E?

In the present paper, we shall give some partial answers to the above problem. Main results are as follows:

THEOREM I. Suppose that $1 \leq p \leq 2$, $0 \leq \alpha < 1$ and that $\sum_{n=0}^{\infty} a_n \psi_n(x)$ is the Walsh-Fourier series of a function $f(x) \in L^p(2^{\omega})$. Then if $\sum_{k=0}^{n-1} \frac{a_k \psi_k(x)}{[k]^{\frac{1-\alpha}{p}}}$ diverges on a closed set E, the α -capacity of E is zero.

For the case p=2, this is reduced to Harper's theorem mentioned above.

THEOREM II. Suppose that p>2, $0 \leq \alpha < 1$ and that $\sum_{n=0}^{\infty} a_n \psi_n(x)$ is the Walsh-Fourier series of a function $f(x) \in L^p(2^{\omega})$. Then if $\sum_{k=0}^{n-1} \frac{a_k \psi_k(x)}{[k]^{\frac{1-\alpha}{p}}}$ diverges on a closed set E, the $\alpha + \varepsilon$ -capacity of E is zero, where ε is any positive number.

In both theorems, the trigonometric-Fourier series analogues have already been established in [6].

The author gratefully acknowledges the help and guidance of Professor Sh. Yano in the preparation of this paper.

2. In order to prove Theorem I and II, we need the following lemmas.

LEMMA 1. Let $\sum_{n=0}^{\infty} a_n \psi_n(x)$ be the Walsh-Fourier series of a function $f(x) \in L^p(2^{\omega})$, where $1 \leq p < \infty$. Then

$$\int_{2^{\omega}} |\sigma_n(x;f) - f(x)|^p dx \to 0 \qquad (n \to \infty),$$

where $\sigma_n(x; f) = \frac{s_1 + s_2 + \cdots + s_n}{n}, \quad s_i = \sum_{j=0}^{i-1} a_j \psi_j(x).$

(For the case p=1, the result was proved in [2].)

PROOF. Let p(x) be a Walsh polynomial, that is, a linear combination $\sum_{k=0}^{N-1} c_k \psi_k(x)$ such that

$$\int_{2^{\omega}}|f(x)-p(x)|^{p}dx < \varepsilon^{p}.$$

For p(x), we can show that

$$|\sigma_n(x; p) - p(x)| = o(1)$$

in essentially the same way as Fine proved Theorem XVII in [3]. Then

$$\begin{split} \left[\int_{2^{\omega}} |\sigma_{n}(x;f) - f(x)|^{p} dx \right]^{\frac{1}{p}} &\leq \left[\int_{2^{\omega}} |\sigma_{n}(x;f) - \sigma_{n}(x;p)|^{p} dx \right]^{\frac{1}{p}} \\ &+ \left[\int_{2^{\omega}} |\sigma_{n}(x;p) - p(x)|^{p} dx \right]^{\frac{1}{p}} + \left[\int_{2^{\omega}} |f(x) - p(x)|^{p} dx \right]^{\frac{1}{p}} \\ &\leq \left[\int_{2^{\omega}} |\sigma_{n}(x;f - p)|^{p} dx \right]^{\frac{1}{p}} + o(1) + \left[\int_{2^{\omega}} |f(x) - p(x)|^{p} dx \right]^{\frac{1}{p}} \\ &\leq 3 \left[\int_{2^{\omega}} |f(x) - p(x)|^{p} dx \right]^{\frac{1}{p}} + o(1), \end{split}$$

since for any $h(x) \in L^{p}(2^{\omega})$, by Minkowski's inequality,

$$\left[\int_{2^{\omega}} |\sigma_n(x; h)|^p dx\right]^{\frac{1}{p}} = \left[\int_{2^{\omega}} \left|\int_{2^{\omega}} h(t)K_n(x+t)dt\right|^p dx\right]^{\frac{1}{p}}$$

$$= \left[\int_{2^{\omega}} \left|\int_{2^{\omega}} h(x+t)K_n(t)dt\right|^p dx\right]^{\frac{1}{p}} \leq \int_{2^{\omega}} |K_n(t)| \cdot \left[\int_{2^{\omega}} |h(x+t)|^p dx\right]^{\frac{1}{p}} dt$$
$$\leq 2 \left[\int_{2^{\omega}} |h(x)|^p dx\right]^{\frac{1}{p}},$$

where

$$K_n(x) = \frac{1}{n} \sum_{k=1}^n \left(\sum_{j=0}^{k-1} \psi_j(x) \right)$$

and it is known ([5]) that

$$\int_{2^{\omega}} |K_n(x)| \, dx \leq 2.$$

This proves the lemma.

LEMMA 2. If
$$\sum_{k=0}^{\infty} a_k \psi_k(x)$$
 satisfies

$$\int_{2^{\omega}} |\sigma_n(x) - \sigma_m(x)|^p dx \to 0 \quad (m, n \to \infty), \text{ where } 1 \leq p < \infty,$$

there exists a function $f(x) \in L^{p}(2^{\omega})$ such that $f(x) \sim \sum_{k=0}^{\infty} a_{k} \psi_{k}(x)$.

For the case p=1, the result was proved in [2] and we can easily extend it for any $p, 1 \le p < \infty$, so we omit the proof.

LEMMA 3. Let $\sum_{k=0}^{\infty} a_k \psi_k(x)$ be the Walsh-Fourier series of a function $f(x) \in L^p(2^{\omega})$, $1 \leq p < \infty$. Then there exist $g(x) \in L^p(2^{\omega})$ and a function Q(n), $n = 0, 1, 2, \cdots$, which is positive, nondecreasing and tending to infinity with n, while $\sum_{k=0}^{\infty} a_k Q(k) \psi_k(x)$ is the Walsh-Fourier series of the function g(x).

For the case p=1, the result was proved by R. Salem in [4]. By the aids of Lemma 1, 2 and Minkowski's inequality, the assertion for p, 1 , is proved in an entirely similar way.

3. Proof of Theorem I. Suppose the α -capacity of E is not zero. Then we have an equilibrium distribution μ for E and constant M such that

(1)
$$\int_{2^{\omega}} K(x+t)d\mu(t) = U(x; \mu) \leq M$$

on 2[∞].

From Lemma 3 we can find a function $g(x) \in L^p(2^{\omega})$ and Q(n), $n = 0, 1, 2, \cdots$, where Q(n) is positive, nondecreasing and tending to infinity with n, such that $\sum_{k=0}^{\infty} a_k Q(k) \psi_k(x)$ is the Walsh-Fourier series of g(x). Then the partial sums

(2)
$$S_n(x) = \sum_{k=0}^{n-1} \frac{a_k Q(k) \psi_k(x)}{[k]^{\frac{1-\alpha}{p}}}$$

of the series $\sum_{k=0}^{\infty} \frac{a_k Q(k) \psi_k(x)}{[k]^{\frac{1-\alpha}{p}}}$ are unbounded on *E*. For, if not,

(3)
$$s_{n}(x;f) = \sum_{k=0}^{n-1} \frac{a_{k} \psi_{k}(x)}{[k]^{\frac{1-\alpha}{p}}} = \sum_{k=0}^{n-1} \frac{a_{k} Q(k) \psi_{k}(x)}{[k]^{\frac{1-\alpha}{p}}} \cdot \frac{1}{Q(k)}$$
$$= \sum_{k=0}^{n-2} \sum_{j=0}^{k} \frac{a_{j} Q(j) \psi_{j}(x)}{[j]^{\frac{1-\alpha}{p}}} \left[\frac{1}{Q(k)} - \frac{1}{Q(k+1)} \right]$$
$$+ \sum_{j=0}^{n-1} \frac{a_{j} Q(j) \psi_{j}(x)}{[j]^{\frac{1-\alpha}{p}}} \cdot \frac{1}{Q(n-1)} \quad \text{(by Abel)}$$

and so $s_n(x; f)$ would converge. Define

(4)
$$E^+ = \{x \in 2^{\omega}; \overline{\lim} S_n(x) = +\infty\}, E^- = \{x \in 2^{\omega}; \underline{\lim} S_n(x) = -\infty\}.$$

Either $\mu(E^+) > 0$ or $\mu(E^-) > 0$, so without loss of generality we assume the former. Also for $n = 1, 2, \cdots$ let $n(x) \equiv$ the least $k \leq n$ such that

$$(5) S_k(k) = \max_{1 \le j \le n} S_j(x).$$

Then $S_{n(x)}(x) = \max_{1 \le j \le n} S_j(x)$ is a Borel measurable function, $S_{n(x)}(x) \ge a_0 Q(0)$ and goes to $+\infty$ for all x in E^+ . The upshot of all this then is that

(6)
$$I = \int_{2^{\omega}} S_{n(x)}(x) d\mu(x) \to +\infty \quad (n \to +\infty).$$

However, if p = 1,

(7)
$$S_{n(x)}(x) = \sum_{k=0}^{n(x)-1} \frac{a_k Q(k) \psi_k(x)}{[k]^{1-\alpha}} = \int_{\omega} g(t) \sum_{k=0}^{n(x)-1} \frac{\psi_k(x+t)}{[k]^{1-\alpha}} dt,$$

where

$$(8) \qquad \sum_{k=0}^{n(x)-1} \frac{\psi_k(x+t)}{[k]^{1-\alpha}} = \sum_{k=0}^{n(x)-2} \left(\frac{1}{[k]^{1-\alpha}} - \frac{1}{[k+1]^{1-\alpha}} \right) \sum_{j=0}^{k} \psi_j(x+t) + \frac{1}{[n(x)-1]^{1-\alpha}} \sum_{j=0}^{n(x)-1} \psi_j(x+t) \quad \text{(by partial summation)} = (2^{1-\alpha}-1) \sum_{k=0}^{\log[n(x)-1]} \frac{1}{2^{k(1-\alpha)}} \sum_{j=0}^{2^k-1} \psi_j(x+t) + \frac{1}{[n(x)-1]^{1-\alpha}} \sum_{j=0}^{n(x)-1} \psi_j(x+t).$$

Then applying relations (1.12) and (1.13) to the first part and the second part respectively we can find constants A and B such that

$$(9) \qquad \left|\sum_{k=0}^{n(x)-1} \frac{\psi_k(x+t)}{[k]^{1-\alpha}}\right| \leq AK(x+t) + B.$$

Therefore, it follows that

(10)
$$I = \int_{2^{\omega}} S_{n(x)}(x) d\mu(x) \leq \int_{2^{\omega}} \int_{2^{\omega}} |g(t)| \cdot [AK(x+t)+B] dt d\mu(x)$$
$$= B \int_{2^{\omega}} |g(t)| dt + A \int_{2^{\omega}} |g(t)| \cdot \left[\int_{2^{\omega}} K(x+t) d\mu(x) \right] dt$$
$$\leq (B+AM) \int_{2^{\omega}} |g(t)| dt < +\infty.$$

But this contradicts (6) so that the assumption that E is of positive α -capacity must be false.

-426

Now we consider the case 1 . We express I in the following way;

(11)
$$I = \int_{2^{\omega}} S_{n(x)}(x) d\mu(x) = \int_{2^{\omega}} g(t) \left[\int_{\omega} G_{n(x)}(x+t) d\mu(x) \right] dt$$

where

$$G_{n(x)}(x+t) = \sum_{k=0}^{n(x)-1} \frac{\Psi_k(x+t)}{[k]^{\frac{1-\alpha}{p}}} \ .$$

From Hölder's inequality it follows that

(12)
$$I \leq \left[\int_{2^{\omega}} |g(t)|^{p} dt\right]^{\frac{1}{p}} \cdot \left[\int_{2^{\omega}} \left|\int_{2^{\omega}} G_{n(x)}(x+t) d\mu(x)\right|^{q} dt\right]^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1.$

Since $\int_{2^{\omega}} |g(t)|^p dt < \infty$, it is enough to estimate

(13)
$$I' = \int_{2^{\omega}} \left| \int_{2^{\omega}} G_{n(x)}(x+t) d\mu(x) \right|^q dt.$$

Here we prove that

(14)
$$|G_n(x)| \leq A |x|^{\frac{1-\alpha}{p}-1}$$
, where $|x| = \sum_{n=1}^{\infty} \frac{x_n}{2^n}$ if $x = (x_1, x_2, \cdots)$.

For
$$n \leq \frac{1}{|x|}$$
 we have
(15) $|G_n(x)| \leq \sum_{k=0}^{n-1} \frac{1}{[k]^{\frac{1-\alpha}{p}}} \leq \sum_{k=0}^{n-1} \frac{2^{\frac{1-\alpha}{p}}}{k^{\frac{1-\alpha}{p}}} = O(n^{1-\frac{1-\alpha}{p}}) = O(|x|^{\frac{1-\alpha}{p}-1}).$

For $n > \frac{1}{|x|}$, (16) $G_n(x) = \sum_{k=0}^l \frac{\psi_k(x)}{[k]^{\frac{1-\alpha}{p}}} + \sum_{k=l+1}^{n-1} \frac{\psi_k(x)}{[k]^{\frac{1-\alpha}{p}}} = S_1(x) + S_2(x)$, say, where l is the integral part contained in $\frac{1}{|x|}$. By the fact proved above, we have $|S_1(x)| < O(|x|^{\frac{1-\alpha}{p}-1})$. By Abel's transformation,

(17)
$$S_{2}(x) = \sum_{k=l+1}^{n-2} \left(\frac{1}{[k]^{\frac{1-\alpha}{n}}} - \frac{1}{[k+1]^{\frac{1-\alpha}{p}}} \right) \sum_{j=0}^{k} \psi_{j}(x) + \frac{1}{[n-1]^{\frac{1-\alpha}{p}}} \sum_{j=0}^{n-1} \psi_{j}(x) - \frac{1}{[l+1]^{\frac{1-\alpha}{p}}} \sum_{j=0}^{l} \psi_{j}(x).$$

Since

(18)
$$\left|\sum_{j=0}^{k} \psi_{j}(x)\right| \leq \frac{A}{|x|}$$
 by (1.11),

we have

(19)
$$|S_2(x)| \leq \frac{A}{|x|} \cdot |x|^{\frac{1-\alpha}{p}} = A|x|^{\frac{1-\alpha}{p}-1}.$$

From (15), (16) and (19) the proof of (14) is completed. (We may prove (14) also applying the relation which is used in the proof of Lemma 1 in [10].)

Returning to the estimation of I', from (14), we have

(20)
$$I' = \int_{\mathfrak{g}^{\omega}} \left| \int_{\mathfrak{w}} G_{n(x)}(x+t) d\mu(x) \right|^q dt \leq A \int_{\mathfrak{w}} \left[\int_{\mathfrak{w}} |x+t|^{\frac{1-\alpha}{p}-1} d\mu(x) \right]^q dt.$$

Remembering the condition for p, we have q > 2 and so,

$$(21) \left[\int_{2^{\omega}} |x+t|^{\frac{1-\alpha}{p}-1} d\mu(x) \right]^{q} = \left[\int_{2^{\omega}} |x+t|^{\frac{q-2}{q}(-\alpha)} \cdot |x+t|^{\frac{-\alpha-1}{q}} d\mu(x) \right]^{q} \\ \leq \left[\int_{2^{\omega}} |x+t|^{-\alpha} d\mu(x) \right]^{q-2} \cdot \left[\int_{2^{\omega}} |x+t| \left|^{\frac{-\alpha-1}{2}} d\mu(x) \right]^{q}.$$

We know from (1.1) and (1.2) that

$$|x+t|^{-\alpha} \leq AK(x+t)+1.$$

Hence we have

(23)
$$\left[\int_{2^{\omega}} |x+t|^{-\alpha} d\mu(x)\right]^{q-2} \leq A$$

on 2^{ω} . Consequently

(24)
$$I' \leq A \int_{2^{\omega}} \left[\int_{2^{\omega}} |x+t|^{\frac{1-\alpha}{2}-1} d\mu(x) \right]^2 dt.$$

We define functions $\widehat{G}_{2^{p(x)}}(x)$ and $G_{2^{p(x)-1}}(x)$ as follows. Let $\frac{1}{2^p} \leq |x| < \frac{1}{2^{p-1}}$; then we write

(25)
$$\widehat{G}_{2^{p(x)}}(x) = \sum_{k=0}^{2^{p-1}} \frac{\Psi_k(x)}{k^{\frac{1-\alpha}{2}}}, \quad G_{2^{p(x)-1}}(x) = \sum_{k=0}^{2^{p-1}-1} \frac{\Psi_k(x)}{[k]^{\frac{1-\alpha}{2}}}.$$

We denote by $x_p = (0, 0, \dots, 0, 1, 0, \dots)$ an element of 2^{ω} consisted of zeroes except the *p*-th number. Then

(26)
$$\widehat{G}_{2^{p(x_{p})}}(x_{p}) = \sum_{k=0}^{2^{p-1}-1} \frac{1}{k^{\frac{1-\alpha}{2}}} - \sum_{k=p-1}^{2^{p-1}} \frac{1}{k^{\frac{1-\alpha}{2}}}$$
$$= \sum_{k=0}^{2^{p-1}-1} (C_{k} - C_{p-k-1})$$
$$\ge \sum_{k=0}^{2^{p-1}-1} (k+1)\Delta C_{k},$$

where $C_{k} = \frac{1}{k^{\frac{1-\alpha}{2}}}$ and $\Delta C_{k} = C_{k} - C_{k+1}$.

From the fact that

$$\psi_k(x) = \psi_k(x_p)$$
, if $\frac{1}{2^p} \leq |x| < \frac{1}{2^{p-1}}$ and $0 \leq k < 2^p$,

we have

(27)
$$\widehat{G}_{2^{p(x)}}(x) = \widehat{G}_{2^{p(x_p)}}(x_p) \ge \sum_{k=0}^{2^{p-1}-1} (k+1)\Delta C_k, \text{ if } \frac{1}{2^p} \le |x| \le \frac{1}{2^{p-1}}.$$

We know (See [7, p. 228]) that for any sufficiently large n, say, $n \ge N$, there

exists a constant A such that

(28)
$$A\sum_{k=0}^{l} (k+1)\Delta C_{k} \ge |x|^{\frac{1-\alpha}{2}-1}, \text{ if } |x| < \frac{1}{2^{n}},$$

where l is the integral part contained in $\frac{1}{|x|}$. Therefore, combining this fact with (27), we have

(29)
$$A\widehat{G}_{2^{p(x)}}(x) \ge |x|^{\frac{1-\alpha}{2}-1}$$
 if $p-1 \ge N$, that is, $|x| < \frac{1}{2^N}$

Consequently, we have

(30)
$$AG_{2^{p(x)-1}}(x) = A \sum_{k=0}^{2^{p-1}-1} \frac{\psi_{k}(x)}{[k]^{\frac{1-\alpha}{2}}} = A \sum_{k=0}^{2^{p-1}-1} \frac{1}{[k]^{\frac{1-\alpha}{2}}} \ge A \sum_{k=0}^{2^{p-1}-1} \frac{1}{k^{\frac{1-\alpha}{2}}}$$
$$> A\widehat{G}_{2^{p(x)}}(x) \ge |x|^{\frac{1-\alpha}{2}-1}, \quad \text{if } |x| < \frac{1}{2^{N}}.$$

Here $G_{2^{p(x)-1}}(x)$ is a Borel-measurable and nonnegative function. Now we set

(31)
$$E_{N}(t) = \left\{ x \in 2^{\omega} ; |x+t| < \frac{1}{2^{N}} \right\}.$$

Then on the complement of $E_N(t)$, we have

$$|x+t| \ge \frac{1}{2^N}$$
 and so $|x+t|^{\frac{1-\alpha}{2}-1} \le 2^{N(1-\frac{1-\alpha}{2})}$

Therefore, returning to (24), since

(32)
$$\left[\int_{2^{\omega}} |x+t|^{\frac{1-\alpha}{2}-1} d\mu(x)\right]^{2} \leq \left[\int_{E_{N}(t)} |x+t|^{\frac{1-\alpha}{2}-1} d\mu(x) + 2^{N(1-\frac{1-\alpha}{2})}\right]^{2}$$
$$\leq 2 \left[\int_{E_{N}(t)} |x+t|^{\frac{1-\alpha}{2}-1} d\mu(x)\right]^{2} + 2^{2N(1-\frac{1-\alpha}{2})+1},$$

we have

(33)
$$I' \leq A \int_{2^{\omega}} \left[\int_{E_{N}(t)} |x+t|^{\frac{1-\alpha}{2}-1} d\mu(x) \right]^{2} dt + A$$
$$\leq A \int_{2^{\omega}} \left[\int_{E_{N}(t)} G_{2^{p(x+t)-1}}(x+t) d\mu(x) \right]^{2} dt + A$$
$$\leq A \int_{2^{\omega}} \left[\int_{2^{\omega}} G_{2^{p(x+t)-1}}(x+t) d\mu(x) \right]^{2} dt + A.$$

Then

(34)
$$I' \leq A \int_{2^{\omega}} \int_{2^{\omega}} \int_{2^{\omega}} G_{2^{p(x+t)-1}}(x+t) \cdot G_{2^{p(y+t)-1}}(y+t) dt d\mu(x) d\mu(y) + A$$
$$= A \int_{2^{\omega}} \int_{2^{\omega}} \sum_{k=0}^{2^{q(x,y)-1}} \frac{\psi_k(x+y)}{[k]^{1-\alpha}} d\mu(x) d\mu(y) + A$$
(where $q(x,y) = \min(p(x+t), p(y+t))$)

$$\leq A \int_{2^{\omega}} \int_{2^{\omega}} K(x+y) d\mu(x) d\mu(y) + A \qquad (\text{from (1.12) and (1.13)})$$
$$\leq AM + A.$$

Consequently, from (12), we have $I < +\infty$. But this contradicts (6), so that Theorem I is also established for the case 1 .

4. Proof of Theorem II. Suppose $\alpha + \varepsilon$ -capacity of E is not zero. Then we have a positive constant M and an equilibrium distribution μ for E such that

$$\int_{2^{\omega}} \{x+t\}^{-\alpha-\varepsilon} d\mu(x) \leq M$$

on 2^{ω} , and so by the relation (1.1), we have

(35)
$$\int_{2^{\omega}} |x+t|^{-\alpha-\varepsilon} d\mu(x) \leq AM$$

on 2^{ω} . Arguing in an entirely similar way as before, we arrive at (6):

(36)
$$I = \int_{\mathbf{z}^{\omega}} S_{n(x)}(x) d\mu(x) \to +\infty \quad (n \to +\infty),$$

On the other hand, since

$$(37) \qquad \int_{2^{\omega}} |x+t| \frac{1-\alpha}{p} d\mu(x) = \int_{2^{\omega}} |x+t| \frac{-\alpha-\varepsilon}{p} \cdot |x+t| \frac{1-p+\varepsilon}{p} d\mu(x)$$
$$\leq \left[\int_{2^{\omega}} |x+t| -\alpha-\varepsilon} d\mu(x) \right]^{\frac{1}{p}} \cdot \left[\int_{2^{\omega}} |x+t| \frac{1-p+\varepsilon}{p} d\mu(x) \right]^{\frac{1}{q}}$$
$$\leq A \left[\int_{2^{\omega}} |x+t| \frac{q}{p} \varepsilon^{-1} d\mu(x) \right]^{\frac{1}{q}},$$

we have

$$(38) I = \int_{2^{\omega}} g(t) \left[\int_{2^{\omega}} G_{n(x)}(x+t) d\mu(x) \right] dt$$

$$\leq A \int_{2^{\omega}} \left[|g(t)| \int_{2^{\omega}} |x+t|^{\frac{1-\alpha}{p}-1} d\mu(x) \right] dt$$

$$\leq A \int_{2^{\omega}} |g(t)| \cdot \left[\int_{2^{\omega}} |x+t|^{\frac{q}{p}\varepsilon-1} d\mu(x) \right]^{\frac{1}{q}} dt$$

$$\leq A \left[\int_{2^{\omega}} |g(t)|^{p} dt \right]^{\frac{1}{p}} \cdot \left[\int_{\omega} \int_{\omega} |x+t|^{\frac{q}{p}\varepsilon-1} d\mu(x) dt \right]^{\frac{1}{q}}.$$

Remembering that $\int_{2^{\omega}} |g(t)|^p dt < \infty$, it is enough to estimate

(39)
$$\int_{2^{\omega}}\int_{2^{\omega}}|x+t|^{\frac{q}{p}\varepsilon-1}d\mu(x)dt.$$

We set

(40)
$$E_k = \left\{ t \in 2^{\omega} ; \frac{1}{2^{k+1}} < |x+t| \leq \frac{1}{2^k}, k = 0, 1, 2, \cdots \right\}$$

Then
$$2^{\omega} = \bigcup_{k=0}^{\infty} E_k$$

and the measure of E_k is $\frac{1}{2^{k+1}}$. Therefore it follows that

(41)
$$\int_{\mathbf{2}^{\omega}} |x+t| \stackrel{\frac{q}{p}\varepsilon-1}{=} dt = \sum_{k=0}^{\infty} \int_{E_k} |x+t| \stackrel{\frac{q}{p}\varepsilon-1}{=} dt$$
$$\leq \sum_{k=0}^{\infty} 2^{(k+1)(1-\frac{q}{p}\varepsilon)} \cdot 2^{-(k+1)}$$
$$= \frac{1}{2^{\frac{q}{p}\varepsilon}-1}.$$

Consequently, we have $\int_{2^{\omega}} |x+t|^{\frac{q}{p}\epsilon-1} dt \leq A$ on 2^{ω} and so I is finite which clearly contradicts (36). This completes the proof of Theorem II.

References

- L. H. HARPER, Capacities of sets and Harmonic analysis on the group 2^ω, Trans. Amer. Math. Soc., 126(1967), 301-315.
- [2] G. W. MORGENTHALER, On Walsh-Fourier series, Trans. Amer. Math. Soc., 84(1957), 472-507.
- [3] N. T. FINE, On the Walsh Functions, Trans. Amer. Math. Soc., 65(1949), 372-474.
- [4] R. SALEM, Sur les transformations des séries de Fourier, Fund. Math., 33(1945), 108-114.
- [5] SH. YANO, On Walsh Fourier series, Tôhoku Math. J., 3(1951), 223-242.
- [6] SH. YANO, Cesàro Summability of Fourier series, Tôhoku Math. J., 5(1953), 196-197.
- [7] N. K. BARY, A treatise on trigonometric series, Vol II, Pergamon, 1964.
- [8] J. P. KAHANE AND R. SALEM, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.
- [9] B. FUGLEDE, On the theory of potentials in locally compact spaces, Acta Math., 103(1960), 139-215.
- [10] C. WATARI, Multipliers for Walsh Fourier series, Tôhoku Math. J., 16(1964), 239-251.

DEPARTMENT OF MATHEMATICS Tokyo Metroporitan University Tokyo, Japan