
Tόhoku Math. Journ.
21(1969), 419-433

CAPACITIES OF SETS AND HARMONIC

ANALYSIS ON THE GROUP 2ω

MASAKO KOBAYASHI

(Received October 1, 1968)

1. Introduction. In this paper we shall work on the dyadic group 2ω

which consists of all sequences x — (xu x2, •), x% = 0 or 1, where addition is
defined coordinatewise mod 2. The topology is the product topology which is
the same as that given by an invariant metric ΰ(x,y), where if x = (xίf x2, •)
and y = (yl9y2, •) are in 2ω, then

After this we shall write \x—y\ instead of δ(x,y).
In particular, we first define the Rademacher function φo(x) by <po(x) = 1

if 0 ^ x < l / 2 , φo(x)=-l if 1 / 2 ^ Ξ < 1 , and <po(x) = φo(x + ϊ) for real x.
Next, we define φn(x) — φo(2nI) for every nonnegative integer n. Then the Walsh
function tyn(x) is defined by setting ψo(x) = 1, ψn(x) = <pni(x) <pnr(x) where
?ι — 2nχJr +2 n r and the nt are uniquely determined by nί+1<ni. As is well
known, {-ψ-nj n°!0 form a complete orthonormal system and every function f(x)
which is integrable on (0,1) may be expanded in a Walsh-Fourier series

71=0

), where an = I f(x)ψn(x)djr, n = 0,1, 2,

φn{x) is defined on 2ω with x = (xl9x2 , •) by setting φn(x) = l if xn+ί=0,
φn(x)=—l if xn+1 = l. ψn(x) is defined on 2ω by setting ψo(x) = 1, ψn(x)
= φnχ(x)' ψnr(x) where as before /ί = 2Wι+ +2 n r and the Wj are uniquely
determined. We note that [ψn}^0 gives us the full set of characters of 2ω.
N. J. Fine in his paper on the Walsh functions, [3], shows that the natural map
λ : 2ω->[0,l] defined by

71 = 1

is continuous, one-to-one except for a countable set, preserves Haar measure and
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carries the characters of 2ω onto the Walsh functions.
The main purposes of this paper depend on the note [1] by L. H. Harper.

As regard terminology and notations we shall follow it as a rule. In order to
facilitate progress we set up some results of L. H. Harper which are needed in
the sequel.

For x £ 2ω, let {x} = 2~n, where n is the number of zeroes in x preceding
the first one ({0} =0). Then

(1.1) | * | = YJxn2-n^{x
n=l

Fix 0^tf<l. Let

(1.2) K(x)= {x}-" if 0<a<l or logl/{*} if a = 0.

(All logarithms shall be taken to the base two.)
Then K is continuous except at zero and nonnegative so that a potential theory
with respect to K is valid.

If E is a closed subset of 2ω, then 3R(E) is the set of all nonnegative, Borel
measures of norm one on 2ω supported on E. Fix O ^ Λ < 1 , let v£ 2K(2£) and
form the energy integral

(1.3) I(y)=[ [ K{x-y)dv{x)dv(y\

Then there are two cases : Either I{y)— +oo for all p in 3Jl(E) or

(1. 4) V = inf I(v) < + oo, v € m(E).

E is said to be of capacity zero if I{v)= +oo for all v in 2R(fS), or if
the capacity of E is

(1.5) C = y - 1 / α i f O < ^ < l o r C=2~v if ct = 0.

(1.6) t / ( * ; ^)= Γ X(*-^)Ji<y)
J 2 ω

is the potential function associated with v. The following two statements are
standard results in potential theory (See [8] and [9]).
(1. 7) If E is of positive capacity, then there exists a unique μ in 3Jl(E) such
that I(jι) = V.
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(1. 8) The potential function U(x μ), of the equilibrium distribution has the

following properties

( i ) U(x μ)^V except for a set which is of measure zero with respect to

every measure of finite energy.

(ii) U(x μ)t==iV for all x in the support of μ.

(iii) U(x μ) is bounded on 2ω.

The nth Dirichlet kernel for the Walsh functions is defined by

(1. 9) Dn(x) = Σ ΨA:(^)

oo

If f(x)~~ Σ antyn(χ)> then partial sums can be written as

(1.10) E «***(*)= \ J(x+t)Dn(t)dt.
k=0

The size of Dn(x) is given by

(1.11) \Dn(x)\

Moreover, for some constants A and B independent of x and n,

(1.12) ( 2 1 - - l ) Σ 2 i ^ ϊ ) D*(x)

Let [n] denote the greatest power of 2 in n ([0] = 1 for convenience) then

we have

(1.13)

Henceforth, the letter A will be reserved to denote positive constant independent

of x and n, which is not always the same number.

Now we arrive at the main theorem of L. H. Harper :

THEOREM. Let f(x)~~ Σ anψn(x) be such that
n=0
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Then if sn(x f) =Σ akψk(x) diverges on a closed set E, the a-capacίty of

E is zero.

This is a variant of the results for the trigonometric series which are
summarized in Chapter 4 of Kahane-Salem [8].

Recently, in connection with the result of L. H. Harper, Professor Sh. Yano

proposed the following problem : L e t ^ anψn(x) be the Walsh-Fourier series
71 = 0

n-ί

of a function f{x) z L\2% l^p<oo, and let £ — ^ f r f n O ^ tf < 1) diverge on

a closed set £ . Then what can we say about the ^-capacity of E ?
In the present paper, we shall give some partial answers to the above

problem. Main results are as follows :

THEOREM I. Suppose that l ^ / > ^ 2 , 0 : g t f < l and that Σ anψn(x) is

71-1 . / \

the Walsh-Fourier series of a function f(x) £ 1/(2"*). Then if Σ ' "1=7
fc=o [k]~P~

diverges on a closed set E, the oί-capacity of E is zero.

For the case p—2, this is reduced to Harper's theorem mentioned above.

THEOREM II. Suppose that p>2, 0^a<l and thatΣanψn(x) is the
71=0

n-1

Walsh-Fourier series of a function f{x) € Lp(2ω). Then if ^ α * i_α diverges
k=o [k]~p~

on a closed set E, the a + S-capacity of E is zero, where S is any positive
number.

In both theorems, the trigonometric-Fourier series analogues have already
been established in [6],

The author gratefully acknowledges the help and guidance of Professor
Sh. Yano in the preparation of this paper.

2. In order to prove Theorem I and II, we need the following lemmas.
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LEMMA 1. Let Σ ^nψn(x) be the Walsh-Fourier series of a function
n = 0

fix) € Z/(2ω), where! ^p<oo. Then

ί \<rn(x;f)-
J2 ω

where σn(χ / ) = Sl + 5 " 5, =

p=l9 the result was proved in [2].)

PROOF. Let p{x) be a Walsh polynomial, that is, a linear combination
Λ ' - l

Σ such that

J2ω

For />(Λ:), we can show that

KOr; p)-p{χ)\ -

in essentially the same way as Fine proved Theorem XVII in [3]. Then

f ω

since for any h(x) e L"(2ω), by Minkowski's inequality,

Γf \σn(x;
L /2ω

f h(t)Kn(x
J2ω
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[ [/ \h(x+t)\»dx^dt

where

" k = l\j=O

and it is known ([5]) that

This proves the lemma.

oo

LEMMA 2. If Σ ^kψk(x) satisfies

J' I σn(x)-~σm(x) I pdx —» 0 (m,n —> oo), where 1 ^ />< oo,
2 ω

oo

ί/lere ĵ:/5ί5 α function f(x) € Lp(2ω) 5wcΛ ί/iαί / ( J : ) ^ ^ ak^rk{x).

For the case />= 1, the result was proved in [2] and we can easily extend
it for any p, 1 ^ / > < O O , so we omit the proof.

oo

LEMMA 3. Let Σ a/cψk(x) be the Walsh-Fourier series of a function f(x)

<=Lp(2ω), l ^ i ^ < o o . Then there exist g(x)zLp(2ω) and a function Q(ri),
n = 0,1,2, , which is positive, nondecreasing and tending to infinity with

oo

n9 while Σ a/cQ(.k)ψk(x) is the Walsh-Fourier series of the function g(x).

For the case p=l, the result was proved by R. Salem in [4]. By the aids
of Lemma 1, 2 and Minkowski's inequality, the assertion for p> Kp<oo9 is
proved in an entirely similar way.
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3. Proof of Theorem I. Suppose the ^-capacity of E is not zero. Then
we have an equilibrium distribution μ for E and constant M such that

K(x+t)dμ(t) = U(x μ)^

on 2ω.
From Lemma 3 we can find a function g(x) £ Lp(2ω) and Q(n), n = 09l,

2, , where Q(n) is positive, nondecreasing and tending to infinity with n,
CO

such that Σ akQ(k)ψic(x) is the Walsh-Fourier series of g(x). Then the partial
fc=0

sums

of the series ^ rV a r e unbounded on £. For, if not,
[k]

ωviMΓj: i_i
vt? LQ(*) Q(*+i)J

and so 5n(α: f) would converge. Define

( 4 ) E+= {χz2ω; fim"5n(^)= +oo}, Έr = [xz 2ω; li

Either μ(E+)>0 or μ(E~)>0, so without loss of generality we assume the
former. Also for w = 1, 2, ••• let w(α:) = the least ^ ^ n such that

( 5 ) Sk(k)

Then Sn{x)(x) = max ^j^nS^x) is a Borel measurable function, 5n ( a 0 (α:)^
and goes to +°° for all α: in E+. The upshot of all this then is that
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1= { Sn{x)(x)dμ(x)-> + oo (n _> + oo).

However, if p— 1,

( 7 )

where

K(x+t) "ψ* / _1 1__

1
[n(x)-iγ-a Σ ^ P a Γ t i a l summation)

nίx)-rl

Then applying relations (1.12) and (1.13) to φ e first part and the second part

respectively we can find constants A and B such that

( 9 )

Therefore, it follows that

(10) 1= f SMx)(x)dμ(x

= B[ \g(t)\dt+Af \g{t)\\ϊκ{x+t)dμ{x)1\
J 2 ω J2ω

 L 2 J

But this contradicts ( 6 ) so that the assumption that E is of positive tf-capacity
must be false.
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Now we consider the case l < / > < 2 . We express / in the following way

(11)

where

1= - J 9(t)[juGn<»(a:+t)dμ(x)\ dt

From Holder's inequality it follows that

(12)

where + = 1.
P ?

Since I | g(t) \ vdt < ooy it is enough to estimate

(13)
/ # " = f I ί Gn{x)(χ + t)dμ{x)\ dt.

Here we prove that

(14) \Gn(x)\^A\x\ψ-\ where \x\ =

For n<-,—r we have
- \x\

(15) |G.0r:)| ^

For n >
\x

(16) Gn(x) - ^ 7 7 ® + Σ ), say,
k=ι+i
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where / is the integral part contained in -.—p. By the fact proved above, we
\x\

have |<SΊ(.r)| <O(\X\~P *). By Abel's transformation,

(17) S ( ) Σ ( ^
E* ) Σ*/*)

1 n-1 1 I

1] U + l]

by (1.11),

Since

(18)

we have

(19)

From (15), (16) and (19) the proof of (14) is completed. (We may prove (14)
also applying the relation which is used in the proof of Lemma 1 in [10].)

Returning to the estimation of JΓ, from (14), we have

(20) Γ =

Remembering the condition for p, we have q>2 and so,

(21) [ £ \x+t\ \x+t\ |x + i I

We know from (1.1) and (1. 2) that

(22) \

Hence we have



CAPACITIES OF SETS AND HARMONIC ANALYSIS 429

(23)

on 2ω. Consequently

(24) Γ^A [ \ [ \x + t\1-^-1dμ{x)\ dt.
J2ω\_J2ω J

/\ 1 1

W e define functions G2PW(X) and G2p(*)-i(.r) as follows. L e t ~ 9 P ~ = \χ\ < ™ ^ ϊ '

then we w r i t e

(25) &*» ^
fc=0 ^ 2 fc=0 L^J 2

We denote by α:p = (0, 0, 0, 1, 0, •) an element of 2ω consisted of zeroes

except the p-ύϊ number. Then

^ 2 p - ! - l i 2 P - 1 ..

(26) G2p^)(x) £ έ E 7ΈZ
k 2

^ Σ

where CΛ = — Ϊ = ^ - and ΔCk = Cfc

From the fact that

ψ*(*) = ψ*(*p), if ^ ^ 1̂ 1 < ^ Γ Ϊ and 0 ^

we have

2 p ~ ι - l

(27) G2p(χ)(α:) = &(*,>(*„) ̂  E (* + 1)ΔC4, if ^ ^ | Λ | ^ ^ n .

We know (See [7, p. 228]) that for any sufficiently large n, say, n^N> there
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exists a constant A such that

(28) -1, if \x\ <~ψ,

where / is the integral part contained in η . Therefore, combining this fact
I x

with (27), we have

(29) AG2p^{x)^\x\~7~~ι if p-l^N, that is, \x -~.

Consequently, we have

(30)
^ - 1 n

^ I χ | "ϊ5""1, if ~o^-

Here G 2PW-(J:) is a Borel-measurable and nonnegative function. Now we set

(31)

Then on the complement of EN(t), we have

^-^r and

Therefore, returning to (24), since

(32) \[ \x + t\l7- -Γ-> I
J

we have
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(33) Γ^Aί \ [ ix + tl^-'dμixU dt+A

^ A l Γ G2p(χ+D-i(x + t)dμ(x) \ dt + A
J*»Y.JEN{1) J

^ A ί ί GzP(χ+t)-.i(χ + t)dμ(x)\ dt + A.

Then

(34) Γ^Af Γ Γ

= A [ f
J 2 ω J2ω k=

(where q(x, y) = m'm(p(x + t\p(y + i)))

f K(x+y)dμ(x)dμ(y) + A (from (1.12) and (1.13))
J2Oi

Consequently, from (12), we have / < + ° o . But this contradicts (6), so that
Theorem I is also established for the case 1

4. Proof of Theorem II. Suppose α: + £-capacity of E is not zero. Then
we have a positive constant M and an equilibrium distribution μ for E such
that

f \x + t}-«-ε dμ{x)^M

on 2ω, and so by the relation (1.1), we have

(35)

on 2ω. Arguing in an entirely similar way as before, we arrive at (6) :
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(36)

On the other hand, since
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/ = [ Sn{x){x)dμ{x)->+oo

(37) f \x + t\ψ-1dμ(x)= [
J 2ω J2ω

] x + t l

we have

(38)

^A[ \ \g(t)\

Remembering that / \g(t)\pdt<oo9 it is enough to estimate

(39)

We set

(40)

J 2ω J2ω

Then 2°=\J Ek

*=«
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and the measure of Ek is 7 ^ 7 . Therefore it follows that

(41)

1~" -yε) 2~{lc+1)

Consequently, we have I l r + ί l i ^ " 1 dt^A on 2ω and so / is finite which

clearly contradicts (36). This completes the proof of Theorem II.
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