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1. Introduction. Let

(1) flx)~ _e;o_ + i} (ancos nx + b,sin nx) = iAn(x)

n=0

and let s,(x) and o}(x) (a>—1) denote the n-th partial sum and n-th (C, a)
mean of Fourier series (1), respectively. If the series

> o) — o)

n=0
is convergent, we say that the series (1) is absolutely summable (C,a) or
summable |C, «| at the point .
We have

Ta(x)

{on(x) — on_((x)} = n

where

ri(@) = —pr 3 ArbeA(x)

k=1

As— (n+ct> .
n

For f(x)e LP(1 = p< o) we define

and

] 1/p
o 0.1 =sp | [ i =fla—nindz
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and

1/p
ope.N= g | [ 1fwtm+fa-w-2f@ide]

SUNOUCHI [7] proved the following theorems.

THEOREM A. Let 1<p=2. If

ot/ =0 (1)} @0,
then the series (1) is summable |C, a| almost everywhere for a>1/p.
THEOREM B. Let 1<p=2. If
o0.f)=0] (1og ) 1 @0,

then the series (1) is summable |C,1/p| almost everywhere.

We prove the following theorems which generalize SUNOUCHI’s theorems.

THEOREM L Let f(x)e L» 1 < p=2) and let {p,} (n=1,2,3,-+-) be a
monotonic non-increasing sequence tending to =zero, and satisfying the
condition

(2) i“—nl—‘a<oo.
"=ln(2#k)

If
- 1
(3) > /‘na’:(;)(T:f)<°°

n=1
then the series (1) is summable |C,x| almost everywhere for a>1/p.
THEOREM Il Let f(x)e L» A< p=2) and let {p,}(n=1,2,--+) be a

monotonic non-decreasing sequence such that p,[log(n+1)]""*s non-increasing
and satisfying the condition :
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oo

1

w 2 npilon(n+ 1) =
Iy
e poo( 1
(5) 5 Pnp<n,f> .

" pflog(n+1)]» "+
then the Fourier series of f(x) is |C,1/p| summable almost everywhere.

Using an equivalence theorem of LEINDLER [6] (Satz III), we get from
Theorem I and Theorem II the following corollaries.

COROLLARY I Let flxr)e L” (1 <1§§ 2) and let p(x) (x=1) be a non-
increasing function. 1f p,=u(n) satisfies the condition (2) and if for a
certain B(>0) [log(x+ 1) =2 u(x)=[log(x + 1)17"(v,<1s), then both conditions

f #.<t};) (f Ao +20)+f(x—26)—2f ()] ”dx)w dt < oo
and

S MBS, )< oo

are sufficient for the summability |C,al(a>1/p) of the Fourier series (1)
almost everywhere.

COROLLARY IL. Let f(x)e L* 1< p=2) and let p(x) (x=1) be a non-
decreasing function. If p, = p(n) satisfies the condition (4) and if for a
certain a(>0)

[log(x+ 1)]% -y =z p(x) = [log(x+ 1)]% -y m

1
(1<), furthermore i f p(n)[log(n+1)]" * is nonincreasing, then both conditions

. ,,LL) . "
f — (f lf(x+2t)+f(x—2t)—2f(x)l”dx) dt < oo
Y t|logt| » "2 \7°

1) En(f,p) denotes the best approximation of f(z), in the sense of the metric of L?, by
trigonometric polynomials of order (n—1).
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and

S PWELD)
n=1 nflog(n+1)]» "~ v

are sufficient for the summability |C,1/p| of the Fourier series (1) almost
everywhere.

It is easy to see that in the case

p,,:n‘l[log(n+l)]£_2i <0<8<min(-;—,3))

Theorem I includes Theorem A and if

P, = [log(n + 1)) (0<8<—;—)

then Theorem II implies Theorem B.
It is also easy to verify that if
_ [loglog(n + 2)]'**

v = allog(n+ 1)1 (>0

and
-1/2 —3/2—38
o (t, f)=0 j (log—1—> (log log L) } (O<E<min(-l—,8)>
( t t 2
or’
P = [log log(n+2)]**

and

m{,"(t,f):O{(log%—)%_g_(log 1og%)"%"’} (0<8<m1n( > 3))

then the conditions of Theorem I or Theorem II are satisfied, thus the series
(1) is |C,a] (a>1/p) or |C,1/p| summable almost everywhere, respectively.

2. We require the following known lemmas :

LEMMA 1, Jf f(x)e L? 1< p<<oo), then



ON THE ABSOLUTE SUMMABILITY 527

| F(@)=su(@)l, = 0{ of? (%f)

(See, e. g. [9] p- 339 and [8] p. 226.)

LEMMA 2. (CHOW [3],Theorem I). If f(x)e L? (1< p=2)
then the series

i | Ta(x)| *
n=1 n
is convergent for almost all x, where a>1/p.

LEMMA 3. If f(x)e L» 1< p=2), then the series

s _mal

n[log(n+1) -7

n=1
is convergent for almost all x.
This lemma follows from Theorem I of KoziMa [4].

LEMMA 4. Let 0<a<1 and {N,} be a sequence of positive numbers
such that N,on™' is non-increasing and Ah, = N,—Npy; = O{‘%—} If the

series

5_1:7»,. [T (2)]

n

n=1

is convergent, then the series Y NAu(x) is summable |C,e|.

n=0

The proof of Lemma 4 runs similarly to that of Lemma 4 of CHOW [2].
LEMMA 5. (KOGBENTLIANTZ [5]). If the series )_a, is summable

n=0

|Cat|(a>—1), then it is also summable |C,a+B| for any 8>0.
3. We prove the following lemmas :

LEMMA 6, Let f(x)e L? (1< p=2) and let {u,} be a sequence of positive
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numbers. If

(6) 5wl (i,f) <o
n=1 n
then 3 N An(x) is the Fourier series of a function of class L?, where No=1
n=0
and Np=Y w, (n=1,2,---).

k=1

PROOF. Let us denote by #,(x) the n-th partial sum of the series 3_ N, A,(x),

n=0

i e, t(x) ZZZ: L A(z), then
142) = @)y = [ o) = (@) + E Redli 2,
= I (50~ F@) AR + sa@) — Dl
=T I @) — A ARl + sa(2) — S @, %
-3

By Lemma 1 and (6) we have

> = "Zlmm( )u,‘+(/zm (%l—f)z

II/\

el sgor (o)

II/\

i;j ( )uk<C

Hence

(@) = 2a(x) — f(@)l + [ F (@)= O(1

From this it follows the statement of Lemma 6,
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LEMMA 7. Let f(x)e L» A< p=2) and let {v,} be a sequence of positive
numbers. 1f

n=1

oo

then the series Y 1,A,(x) is the Fourier series of a function of class L7,

n=0
n

where l,=1 and I, = > villog(k + DFY"? (n=1,2,--+)
k=1

PROOF. It runs similarly to the proof of Lemma 6.

LEMMA 8. Let f(x)e L* A< p=2) and let {x,} be a sequence of positive
numbers, such that «,/n is non-increasing and Ax, = Olk,/n). If

oo IC2
2
n=1

then the series

(7) S kao(2)

n=>0

is summable |C, a| almost everywhere, for any a>1/p.

If

= k2[log(n+1) -7
2 ”

< oo

n=1

then the series (7) is summable |C,1/p| almost everywhere.

PROOF. Let 1/p<a’ <1. Applying Schwarz’s inequality we have

oo o o 12 [ o ‘T 1/2

n=1 n=1

From this inequality, by Lemma 2 and Lemma 4, we get that the series (7)
is summable |C,a’| almost everywhere, and by Lemma 5, we get that the
series (7 ) is summable |C, a| almost everywhere, for any a>1/p.
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The proof of the second statement follows the same lines as that of the
first statement. Applying Schwarz’s inequality we have

5 mlnol o (5 el ) 5 s )

n nflog(n+ 1;‘)]2 et n

n=1 n=1 n=1

From this inequality, by Lemma 3 and Lemma 4 we obtain the statement.

4. Proof of Theorem I. Let Ay=1 and A, = > m (n=1,2,---). By
k=1

condition (3) and Lemma 6 we have that 3" N,A,(x) is the Fourier series of a
n=0
function in L?.
Let now «,=A,! (#=0,1,---). By condition (2) {k,} satisfies the
conditions of Lemma 8, so we have that the series (1) is summable |C,«a|
almost everywhere, for any a>1/p, as it was stated.

- Pa ce
5. Proof of Theorem II. Let v, = i/ Tog(n 1) (n=1,2,--+). By

condition (5) and Lemma 7 we have that ) /,A,(x) is the Fourier series of a

n=0

. . i ) p
function in L?, where [, =1 and [, = kzﬂ'k[log(k—i-kl)]l/”“/z .

Let now x,=1/.;* (n=0,1,---). Since

1
Ak =Kpn—Kns1= T - 1
n n+1

- Pr+1
(n+D)[log(n+2)1P~12 L,

P

v n+1
] log(k + DI
n+1)[log(n+2)VP121, Pellog 1)
Nlog(n+2) 2 logthr 1)

A

Pas1
(n-+1)[log(n+2)]/»-v2.,Er*

IA

[log(n+2)]-v»
~Tog(n+2)

1 Ky
DL, n

and since on the other hand



ON THE ABSOLUTE SUMMABILITY 531

5 ellos (et DI _ 5 Uog(at )P

n nl?,

n=1 n=1

IA

é _ logr+DFr

o Log(k+ D)
n v@mm% k )

— [log(n+1)pP~*»
€2 pillog(n+ P

- CZ ' np;, log(n+1)

the sequence {«,} satisfies the conditions of Lemma 8. By using of Lemma 38
we have that the series (1) is summable |C,1/p| almost everywhere.
This completes the proof of Theorem I
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