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1. Introduction. Let

( 1 ) f(x) - -~ + Σ (*«cos nx + bnsm nx) = Σ An(x)
n = l n — (\

and let sn(x) and σ"τ(x) (a> — 1) denote the n-th partial sum and n-\\\ (C, a)

mean of Fourier series (1), respectively. If the series

is convergent, we say that the series (1) is absolutely summable (C, a) or

summable \C9a\ at the point x.

We have

where

τίl(*) - 4^ Σ
^^ fc=l

and

n Γ

For f(x) £ Lp(l rg ρ< oo) we define

0</ι<ί
Γ \f(x + lτ)-f(x-K)\*dx\

J-π )
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and

U \f(x + h) + f(x - λ)
-JC

SUNOUCHI [7] proved the following theorems.

THEOREM A. Let l<ρ^2. If

" (8>0) ,

the series (1) z's summable \C,ct\ almost everywhere for a>1/p.

THEOREM B. Let Kf^2. If

ί he series ( 1 ) z's summable \ C, !//> | almost everywhere.

We prove the following theorems which generalize SuNOUCHΓs theorems.

THEOREM I. Let f(x) € Lp (1< />^ 2) αwrf /^ {/*n} (w = 1, 2, 3, •) be a
monotonic non-increasing sequence tending to zero, and satisfying the
condition

(2) Σ

(3) Σ .̂

then the series (1) is summable \C,cί\ almost everywhere for

THEOREM II. Let f(x)&L» (1<J>^2) and let [ρn}(n = 1,2, •) be a
monotonic non- deer easing sequence such that pn[\og(n-\-ϊ)]~1/2is non-increasing
and satisfying the condition :
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^ 1

if

(5)

Fourier series of f(x) is C, l/p\ summable almost everywhere.

Using an equivalence theorem of LEINDLER [6] (Satz III), we get from
Theorem I and Theorem II the following corollaries.

COROLLARY I. Let f(x)zLp (l<p^2) and let μ(x) Cr^l) be a non-
increasing function. If μ.n = μ(n) satisfies the condition (2) and if for a
certain /9(>0) \\og(x + ΐ)]-7l^x/3μ(x}^[\og(x-^l)]-j2(rγl<j^h then both conditions

/•'

Λ

and

l/p

are sufficient for the summability \ C, oί\(cO\/p) of the Fourier series (1)
almost everywhere.

COROLLARY II. Let f(x)zLp (l</>^2) and let ρ(x) (x^l) be a non-
decreasing function. If ρn = ρ(n) satisfies the condition ( 4) and if for a
certain

_ ^
)? furthermore if p(n)[\og(n + ~L)] 2 is nonίncreasing, then both conditions

r1 P -^ } 2π 1/p

/ V

1) jEτι(/,/>) denotes the best approximation of /(.r), in the sense of the metric of Lp, by
trigonometric polynomials of order (n— 1),
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and

n=ι n[log(n + 1)] P 2

sufficient for the summabίlity |C, 1//>| of the Fourier series (1) almost
everywhere.

It is easy to see that in the case

Theorem I includes Theorem A and if

Pn = [logCw + 1)?

then Theorem II implies Theorem B.
It is also easy to verify that if

[loglog(»~ 2 ^ ( > }

and

k -1/2

or

and

«ί1)(ί,/) = 01(lθflr^-l
i \---/ i \---0 / / i \\
— * 2 log log-±- 2 0<£<min -^-,δt I \ * I ) \ \ Δ II

then the conditions of Theorem I or Theorem II are satisfied, thus the series
(1) is |C, CL\ (a>l/p) or |C, 1//>| summable almost everywhere, respectively.

2. We require the following known lemmas :

J^EMMA 1,
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(See,e.g. [9] p. 339 and [8] p. 226.)

LEMMA 2. (CHOW [Si/Theorem I). I f f ( x ) z L *
then the series

is convergent for almost all x, where a > !//>.

LEMMA 3. If f(x) z Lp (1< p^ 2) , then the series

~

is convergent for almost all x.

This lemma follows from Theorem I of KOZIMA [4].

LEMMA 4. Let 0<α<l and {\n} be a sequence of positive numbers

such that \n n~l is non-increasing and Δλn — λn — λn+1 = O \~ — — |. If the

series

is convergent, then the series Σ \nAn(x) is summable \C,cL\.
n=0

The proof of Lemma 4 runs similarly to that of Lemma 4 of CHOW [2].

00

LEMMA 5. (KOGBENTLIANTZ [5]). If the series Σan z5 summable
n=0

I C,Λ I (#> — !), then it is also summable |C, cL+β\ for any /3>0.

3. We prove the following lemmas :

LEMMA 6, Let f(x) € Lp (1 < ρ^±2) and let {un} be a sequence of positive
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numbers. If

/ r \ V* (2) I -*- ΛΓ
(6) I*u»»?\^- f

λn ^4.n(X) ^ £^£ Fourier series of a function of class Lp

y where λ0
71=0

λn = Σ tt* (w = 1, 2, •) •
fc = l

00

PROOF. Let us denote by £w(;r) the n-th partial sum of the series ̂  \nAn(x\
w = 0

7Z

i.e., ί»(Λ;) = 2Z"λJfcA4(Λ:), then

I Σ ~

λ.

By Lemma 1 and ( 6 ) we have

= , «ί.2) -,/ «*2) - } -./ Σ

^ c, Σ
*-ι

Hence

liα^ll,^ K(*) -/Wll, +

prom this it follows the statement of Lemma 6,
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LEMMA 7. Let f(x) z Lp (L<p^2) and let [vn] be a sequence of positive
numbers. If

-, / l o g ( M + l)]'-1^ oo ,

then the series ]P lnAn(x) is the Fourier series of a function of class L7J,
w=0

n

where I, = 1 αrcJ /Λ = £ v*[log(A + ϊ)γ-1/p (n = 1, 2, •)

PROOF. It runs similarly to the proof of Lemma 6.

LEMMA 8. Let f(x) € Lp (1< ̂  2) αwύ? /ίtf {ιcn} 6^ α sequence of positive
numbers, such that κn/n is non-increasing and Δ/en = O(ιcn/n) . If

then the series

i: κ«

is summable |C, Λ | almost everywhere, for any a>l/p.

If

then the series (7) is summable C,I/p\ almost everywhere.

PROOF. Let 1/^><#'<1. Applying Schwarz's inequality we have

n=l n \n=l n / \n = l H /

From this inequality, by Lemma 2 and Lemma 4, we get that the series ( 7 )
is summable | C, oί\ almost everywhere, and by Lemma 5, we get that the
series ( 7 ) is summable \C9ct\ almost everywhere, for any a>l/p.
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The proof of the second statement follows the same lines as that of the
first statement. Applying Schwarz's inequality we have

t—1 n
71 = 1

From this inequality, by Lemma 3 and Lemma 4 we obtain the statement.

n

4. Proof of Theorem I. Let ~λ0 = 1 and ~λn = ]£ μk (n = 1,2, ). By

condition (3) and Lemma 6 we have that ^P λΛAw(.r) is the Fourier series of a
71 = 0

function in ZΛ

Let now κn = λw

-1 (n = 0,1, •)- By condition ( 2 ) {κn} satisfies the
conditions of Lemma 8, so we have that the series (1) is summable |C, OL\
almost everywhere, for any #>!/ f p, as it was stated.

5. Proof of Theorem II. Let vn = —-=p" ^ (n = l,2, •). By

condition ( 5 ) and Lemma 7 we have that ̂  lnAn(x) is the Fourier series of a

n

function in Lp, where 10 = 1 and ln — ^

Let now κn = ln

l (n = 0,1, ). Since

1 1

Pn

^nΛ

and since on the other hand
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- = y [Logll+l)]2^
~ h nl*»

_JI?g(^
n=ln

the sequence {κn} satisfies the conditions of Lemma 8. By using of Lemma 8
we have that the series (1) is summable |C, 1//>| almost everywhere.

This completes the proof of Theorem II.
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