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1. Introduction. In this paper we shall construct a certain spectral theory
for closed linear operators on a Banach space.

These operators have a suitable spectral behaviour on subsets of their
spectra but we must eliminate some residual part which do not offer information
about the intimate structure of the considered objects, at least from our point
of view.

It will be easy to see that this theory contains many examples of operators,
bounded or not, having a functional calculus on their spectrum [1], [2], [3], [6],
(81, [91.

A permanent model for our construction will be the theory of decomposable
operators on a Banach space [7], [2].

Throughout this paper the sets of points will be taken in C.= CU {oo}
(the complex compactified plane).

We shall denote by ¥ a complex Banach space, by B(X) the algebra of
bounded linear operators on X and by C(X) the set of closed linear operators
on ¥. If T« C(%), we shall denote by D, its domain of definition.

Many considerations are valid in a more general space, for example on a
locally convex one endowed with a suitable structure, in particular on a Fréchet
space, using a good definition for the spectrum of an operator [10].

2. The residual single valued extension property. The single valued
extension property for bounded operators is a notion due to Dunford [3], [4].

Our definition is a generalization for closed operators, including the fact
that only a part of their spectrum is considered.

DEFINITION 2.1. An open set QCC. is of analytic uniqueness of
T e C(X) if for any open ®SQ and analytic function f; : @—Dy verifying the
equation AW [—=T)f,(AM) =0A € ®N C) it follows f,(A)=0 in .

PROPOSITION 2.1. For any T e ((X) there exists a unique maximal
open set Qr of analytic uniqueness.
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PROOF. The family of open sets {£,} of analytic uniqueness of T contains
at least the set p(T") (the resolvent set of T'). Let us put

QT == UQ,.

It is easy to see that £, is an open set of analytic uniqueness. Indeed, if
®C )y is an open set and f, : @Dy an analytic function verifying AW [ —T) fo(A)=0
(M€ ®N C) then for any A\, € ® there is a neightourhood V,, completely contained
in a set Q,,. Since Q,, is of analytic uniqueness then for the pair (V,, f,|V.,)
it follows f,|V, =0. The point A, € ® being arbitrarily chosen, we obtain f,=0
in . Obviously the set Q; is a maximal unique one with required property.

DEFINITION 2. 2. We shall denote by S; = (Qr(Qr given by the preceding
proposition) and call it the analytic residuum of T e C(¥).

From the properties of g, it follows easily that S; has no isolated points
and if its interior is void then the set itself is void.

DEFINITION 2.3. An analytic function f,: e—D; verifying the equation
AW=T)f{(AM)=x (WconC) is called T-associated of x < ¥ (T €« C(X)fixed).

For T« C(X) and x <€ X fixed we shall denote by 8,(x) the (open) set of
points A, € C.. with the property that A, has a neighbourhood where there
exists a T-associated function of x.

Let us also put

Yr(x) = C8r(x),
pr(x) = 8(x)NQr,
ar(x) = vr(x) USr = Cpr(x).
It is easy to see that on p,(x) there is a unique T-associated function of
x, denoted by x( - ).
- Therefore we can write:
and by complementing

P(T) S 8(x)N (Sr=pr(x)Sd:(x).

PROPOSITION 2.2. Let T < (%), x, € X and Ny € 8:(x0)N C. Then for any
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T-associated function f, of x,, defined in Ny, we have the relations:

(i ) r)’T(f;:uO"o)) = fYT(-Z‘O) >
(ii) Sr ) = ).

PROOF. The second .equality follows immediately from the first. Now, let
po € 8(fz(No)), therefore it has a neighbourhood V,, and a function f:
Vuw—Dy, T-associated with f.(\,), hence

(BI=T)f(1) =Fei(M0) (peV,,NC).

But f, (M) € Dr and (NI —T) f() = fo(No) +(No— ) f(p) is an analytic function
with values in Dj, therefore

(=TI =T)f (1) = I = TXI=T) f (1) = (I = T) frl(Mo) = %o

Consequently p, € 8,(x,).
Conversely, if py< 8;(x,) it has a neighbourhood V, where there is a

T"-associated function g, (u) of x, If py =N, we take for g, even the initial
function f,.

In these conditions we can define the following analytic function
I(p) = » '“_?\'0,
_f;?o()")) [L=7\,0

which verifies the equation (ul—T)h(p)= fo(No) if peV,NC. Therefore
o € 87(fz(M)) and now both equalities are verified.

BFENy

DEFINITION 2. 4. For an arbitrary set McC,, we shall denote

\iT(M) = {xcX; ()M},
E(M) = {2 < X ; o2)S M}

If M=£.S,, the set X,(M) is void and if M2S; then ET(M):%T(M).

Furthermore, the mapping M—%,(M) (or %,(M)) preserves the inclusion
relation.

PROPOSITION 2.3. For every set M cC.. the vector sets X,(MUSy) and
X, (M)are lincar manifolds.
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PROOF. Indeed, it is straightforward to verify the following relations

"(z) = "r(@z) | any r< X, a0,
or(x) = ar(ax)
Yr(x+y) S V() UVr(y)

§ any x,y< X,

'YT(O) =@, UT(O) =Sr
and from these we obtain the assertions.

DEFINITION 2.5. A closed subspace 9 X is invariant for T < (%) if
9< Dy and TIHCY).

Obviously, since T is closed, by Banach theorem it follows T°|9 < B(9).

PROPOSITION 2.4. Let T < C(%X), S;cM,cC.. and 9,=%,(M,) with the
properties :
1) 9, closed in %,
2) 9.<Dry.

Then 9), is invariant to T and o(T|Ds) S M,Na(T).

PROOF. Let us prove that 9, is invariant to 7.

Namely, if y<€ 9,2 D, then we have WI—T)y(\) =y for any Ae p(y)NC
and the function Ty(N)=Ay(AM)—y is analitic, with values in Dy.

From this it follows (N[—T)Ty(A) = Ty, therefore ar(Ty)Sao(y)S M, and
the space 9, is invariant to 7.

For any A e ((M,No(T))N C we can define the linear operator
Ay=yN) (<D,

well defined since, by Proposition 2.2, orx(y(A))=or(y). If A;,y=0 then
y=AI-T)y(\) =0, therefore A, is injective. If z€ 9, and y =(AI—T)=z then
Ay =AMN-T)z=((AN-T)2)(N) = (M —T)z(\) = z(where the third equality is
true since outside M,2.S, any T-associated function is uniquely determined for
the elements of 9),).

Therefore A, is also surjective.

On the other hand
AI=T)Ay = M-TiH(\) =y

and
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ANI=-T)y = (M=T)y)N) = MM-T)HN) =y.

Therefore, by Banach theorem, we conclude that A, € B(X) and A,=(AI|9,
—T|9)™, Nep(T|Dp) and this finishes the proof.

COROLLARY 1. For any Te(C(X) we have the relation U or(x)

rxeX

=S:u\J vo(x) =o(T).

xeX

Indeed, we have obviously

\J ar(@) = Sru\_J m(x) co(T)

TeX zeX

and if M€ a(T)ﬁC( U ¥r(x) UST) (A€ €) then in such a point we should be

zeX

able to define the operator
Ax = x(N) (xeX).

As in the previous proposition, we should obtain A € p(T") and this is preposterous.
The proof of the following proposition is similar with the proof of the
preceding proposition.
However, we shall give it because its specificity.

PROPOSITION 2.5. Let T € C(%X), M,c McC.. and 9, = Z+(M,), D=%,(M)
with the properties

1) Do, 9 closed in %X,

2) 9cDy.

If 9=9/9, then T induces naturally on §) an operator T < B()) with
o(T) cit.

PROOF. As in the former proposition, for any y € Dy we have Y(Ty) S Y(y),
therefore the closed subspaces ¥, and 9 are invariant to 7.

Therefore, we have T|9< B(Y). Let 9=9/9, and T be defined as
Ty=(TD)y (ycyecd). We shall define for any A e (M N C the operator

;{13" =7:(-7T)

where y €y and f, is T-associated with y. To see that T is coherently defined,
let y,¥: €y, thus y,=y,+2 with 2¢9,. Therefore f(A) €9, for any defined
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in A, T-associated function of 2, hecause by Proposition 2.2, v:(f.(N)) = v.(2).
Therefore

FolN) = frcd D) = Lo+ 0 = F (0

The second equality is true since

.

Fomremn O = at, Fo(N) + oM

Indeed :

A=T) fairanN) =i fy (M) — s f,(M)] = 0

for any corresponding T-associated functions, therefore, by Proposition 2.2,
Yol Foiraa M) — & for(N) — o fi(A)) = ¥2(0) = ¢ =M,. In particular, A, is a linear
mapping.

It is easy to see that A, is injective. For any ye9Pc D, we have the
equality

Foaro®) = =TV =5

since (uI—T) far-rp(w)—M—=T)fs(w)] =0
and frem this is not difficult to see that A, is surjective.
Furthermore

(M- A, = Z;(?\f— T)=1, hence n¢ o(T)
and the proof is finished.

3. Invariant maximal spaces of a closed operator. We shall introduce
the notion of invariant maximal space, corresponding to the notion of spectral
maximal space in the theory of decomposable operators [7], [2].

We shall denote by 4, the family of invariant subspaces of T (see Definition
2.5) and if F is a closed set in C. we put :

JT,I" = {@E jT 5 O‘(T[@)(;F} .

DEFINITION 3.1. Whenever the family Jr » is directed and has a maximal
element X7, (with respect to the inclusion relation) we shall call it a maximal
invariant space of T (on F).

It is easy to see that a closed subspace Y<X is a maximal invariant one

of T if and only if for any 8 < 4, the relation (7| 8)Ca(7TY) implies 3<9).
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Consequently our definition is a natural extension of the definition of
spectral maximal spaces |7].

DEFINITION 3.2. A closed subspace 9< X is called T-absorbing if for any
x € the equation (M —T)y = x has solutions y only in ¥, for any A€ o(T|Y).

PROPOSITION 3.1. Let Q< X be an invariant maximal space of T < C(X).
Then 9) is a T-absorbing subspace of X.

PROOF. Since the proof is similar with one of [2], we shall only sketch it.
If Mea(T}Y) and x,€ Y the assumption that there exists y,&¥ with
(MI—=T)y, = x, leads to a contradiction. Indeed, if

Vo= {x+ay,; x€Y; acC}

then 9, Dy and T 9,< s, therefore Yo € Fr. Furthermore if Nep(T|9) the
operator A —T is injective and surjective (here the uniqueness of the representation
for the elements of ¥, is essential), therefore Nep(T|9,). But this is a
contradiction, since 9,%% which is maximal invariant.

COROLLARY 1. Let 9 be an invariant maximal space of T < C(X) and
fo: o>Dr, fiM)=£0 in w, an analytic function verifying (N—T)fo(N) = 0.
If o is connected and wNao(T|Y) contains an open set then o <a(T|9).

PROOF. Indeed, if ®No(T]9) contains an open set D then, by Proposition
3.1, fo(A) €9 (M€ D). By analytic prolongation we obtain easily that fo(A)e 9
with all its derivatives, if N € ®. Since Tfo(A) = A fo(N) and T is closed it follows
that T/ = MFEPN)+(B+1DFP(N) and since fo(A)=£E0, for any A€o
there exists an 7, such that f{(\)#0 and Tf{"(No) = Nof0"”(N0o), thus
Mo € (T D).

COROLLARY 2. If 9<X is an invariant maximal space of T e C(X)
then o(T|D)ca(T).

PROOF. Indeed, if A € p(T")N C then for any x < 9 the element y = R(\, T)x
is a solution of the equation WI—T)y=xz. If Aea(T|9) then ye9 for any
x € 9 and being uniquely determined, we obtain easily that RO\, T)| 9 =R\, T1D)
and this is preposterous.

COROLLARY 3. If 9.€9, are invariant maximal spaces of T < C(%X)

then o(T'|9.)Sa(T|Dy).
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The proof is simlar with the preceding proof.

PROPOSITION 3.2. Let T<((X) and {¥Xrr} be a family of invariant
maximal spaces of T. If the family of sets {F,} is directed on the left

(by the inclusion relation)- and if F= ﬂ F, then there exists the invariant

maximal space X r and Xrp= ﬂ Xrr.

PROOF. Let us put 9= m Zrr,. Obviously 9 is an invariant subspace

of T. We shall show that o(T|9)CF.

For, let A e(CFNC. The operator (Ml — 7)Y 1is injective since if
(NI —T)xy =0 there exists an index a, such that ‘A&F,, and from
o(T)| ET_FGO)_C;F‘,,, it follows x, = 0.

The operator (AMI—T)|9) is also surjective since if y, €Y then for indexes
B with A& Fs we have 2, = R(N\o, T'| XT_,-B)yoexT,pﬁ and the solution 2, is
unique for (WoI—T)zo =2y, Indeed, if (WoI—T)zs, = Nel—T)zs, =73, then if
FeC F,N Fywe have (NI—T)zg =1y,, therefore (AN I—T )(25,—25) =0=NI-T)
(2s,—2s) on the spaces %T,pﬁl and %T,%, thus by injectivity, zs=2s==2g, On the

other hand, let us remark the equality 9 = m Xrry since the family {F.} is
2Py

directed by the inclusion relation. Consequently z, € 9). A Banach theorem gives

us N € p(T'|Y). Now, if B is an invariant subspace of 7" with o(7T"|8)S F then

8c m X, r, therefore we have indeed Y = Xrr .

For every operator A € B(X) we shall denote by F(A) the family of complex
valued functions analytic in a neighbourhood of o(A).

It is known that for any fe F(A) there exists an operator f(A)e B(X)
given by the formula :

F@ =5 [ 70 Rov, Ay

where I' is a suitable system of curves in p(A) (see[5], Ch. VII).

PROPOSITION 3.3 Let Te (%), A € B(X) and 9= X a maximal invariant
space of T. If AT<TA and R(No, AYTSTR(No, A) for a No€ p(A)NC then
the subspace ) is invariant to f(A), for any f< F(A).

PROOF. Since (Mo—2)™* € p(R(No, A)), if M€ p(A), then we have the equality
RN, A) = (M=) '[RG, A)—(No—N)™F I]17'R(No, A) and it will be easy to see
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that TR(N, A)x = R(\, A)T'x for x € Dy (because from A;DC D7 and R(\,, A)Dy
€ Dy we have R(\o, T)D; = Dy).

Now if Ne p(A)NC, then Y,= R, A) Y is a closed subspace of X and for
any y € 9(&Dy) we have Ty = TR(N, A)x = R(N, A)Tx € 9, (where x € 9< Dr).

Consequently 9,€ Jr. The relation Ty = R\, A)YT(M—A)y shows that
T|9, = [RON, A DT DI —A)| Y.] and since W —=T)| Y, : 9.— Y, is bounded,
we obtain o(7) 9),) = o(T'| D), therefore 9, 9.

So R(A, A)PcY for any A e p(A) and if fe F(A) the approximation of the

integral with finite sums leads to the desired result.

PROPOSITION 3.4. With the conditions of Proposition 2.4, the space
Xp(M,) is invariant maximal of T.

PROOF. Indeed, if 3¢ Jr and o(T| B)cM,2S; then (M| B—T|8)" exists
outside M,, hence 3< X, (M,).

4. Residually decomposable operators. In this paragraph we shall define
the notion of residually decomposable operator, a natural generalization of the
notion of decomposable (bounded) operator [7]. Our definition is valid for any
closed operator. Let SCC.. be a closed set.

DEFINITION 4.1. A family of open sets {G,}7,U {Gs} is an S-covering
of the closed set AcC.. if :

)  \UJG,uGs=2AauS,

(t%‘2) GjnS= ) (j:l,"',ﬂ).

DEFINITION 4. 2. An operator T € C(X) is called S-residually decomposable
if ¢

(8,) For any closed set FCC. with FNS= @ the family 9, r is directed
and has a maximal element X7,

(8,) For any S-covering {G,}7,U {Gs} of the set o(T) there exist the
invariant subspaces {¥;}}-, of 7" with the properties :

&)  oT\%)SG;, (G=1,---,n),
(8)  every x< X has a decomposition of the form :
T=2,+ T+ + o + T+ Ts

where z;€ X,(j=1,++-,n) and or(xs)SGs.

First of all we must observe that we may always suppose SCo(T’) since it is
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straightforward to see that any S-residually decomposable operator is SMo(T)-
residually decomposable and conversely.

PROPOSITION 4. 1. If 1" c C(X) is @ -residually decom posable then T ¢ B(X)
and T is decomposable |7].

PROOF. If S= @ then any covering {G,}}-, of o(T") is an S-covering of
o(T). Corresponding to this covering there exist the invariant subspaces ¥
(j=1,+--,n) such that any £ € X has a decomposition of the form r=x,+ ---
+x,+xs with 2;€¢X; (j=1,--+,n) and op(xs)= @. The mapping N— xs(\)
is analytic in the whole complex plane (by(d;)). From this it follows easily
25 = 0. Indeed, if he— oo then y, = ﬁ%&f —0and Ty, = 2e(h)— ~1> > 5(o)
k k

and 7 being closed it follows x5(c0)=0. By Liouville theorem we have xs(A\)=0,
thus xg=0.

If F;=a(T|%;)<G,then, by (8,), there exist X7 ,2%, (j=1,--+,n) which

are maximal spectral [7], and)_ X, r =X, therefore T is decomposable.
J=1

LEMMA 4.1. Let T<C(X) be an operator S-residually decomposable
and G an open set with the property GN(a(T)\S)+ (. Then there exists an
invariant maximal space Y+ {0} such that o(T|Y)SGN (e(TH\S).

PROOF. With no loss of generality we may assume that GNS= §.

Then we choose an open set G, such that GecGcG,, G,NS= ¢ and let us
consider the S-covering {G,, Gs} where Gs = (G. Then there exists an invariant
subspace ¥ with o(T|9)cG,. If Y= {0} then any x < X would have the form
x=2x;s, and since o7(x5)SGs we should obtain, by Corollary 1 of Proposition
2.4, that o(T)CSGs. This is preposterous since we have, by our assumption,
that GNa(T)# ¢ and Gs<(G.

Thus necessarily 9=+ {0}.

PROPOSITION 4.2. If T < C(X) is an operator S-residually decomposable
then S;SS. Moreover for any open G, Goo(T), GNS=¢, we have
oT/%:,5)=G.

PROOF. Let f: o— Dy be (0<(S) an analytic function which verifies
W=T)f(M)=0 if AewnNC. We shall show that f(A)=0 for A€ . We can
suppose with no loss of generality that o Zo(T)\S.

Let us assume the contrary. We shall choose the connected open sets G
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and G, with GSG<G,Cw and we suppose f(A) %0 in G,. Let now the
invariant maximal space X,,7. We have the equality o(1'|¥; ;) = G. Indeed, if
G\o(T|%,.7)# @ then this set contains a non-void open set and if F is a closed
subset of G\o(T'|¥,.7) with I:‘iﬂ (107‘ is the interior of I), on account of
Lemma 4.1, we have X7 .+ (0}. On the other hand o(1'|¥,,) S FCG, thus
Xr rC%r .By Corollary 3 of Proposition 3.1, we have o(T)| OET, »Co(T|Xr )
and this fact is impossible. Thus o(7T"| %, 5)=G and obviously G+ ¢, therefore
by Corollary 1 of Proposition 3.1, we have G,Co(T|%r, ) =G and this is a
contradiction. Consequently f(N)=0 in ® and, by Proposition 2.1, S;<S.

Till now we have introduced, for an operator 7€ C(X) and a closed set
Fc (., some types of linear manifolds : X,(FuUSy), fT(F) and X,r. We have
the following obvious inclusions : X7 »CX(F) and %7, %,(F)= %,(F) when
Sr=0.

A natural question is: which is the “true” relation among these linear
manifolds when the operator 7" is an S-residually decomposable one, for a certain

closed ScC..

THEOREM 4.1. Let T < C(X) be an operator S-residually decomposable
with Sy = @. Then for any compact FCC, FNS= @ we have X; r = X(F).

PROOF. Let FEC be compact with FN.S= ¢. We shall choose the open
sets G, an Gg so that G,NS= @§,GsNF= ¢, G,2F, Gs=S and G, UGs24(T).
So the system {G,,Gs} forms an S-covering of o(7T"). Then there exists an
invariant subspace X, with o(T|%,)cG, such that any x <€ Xy(F) has the
representation x = x,+xs with x, € %, and a,(x5)SGs. We shall take a suitable
contour [, round F, which separates the sets F' and Gs, in (FN(GsNC. In a

neighbourhood of I', the T-associated functions x(\), xs(M)and x,(N) exist, thus
we can write

1 1 1 1
i x(N)dN = —Eﬁoxl(ﬂ)dk"' “—-froxs(h)dk': %Loxl(h)dh

r 2mq
since xg(\) is analytic in the domain delimited by T.
Because X, can be supposed invariant maximal, it is T-absorbing (Proposition
3.1), therefore x,(A) € X, for any A, thus—z%ﬁ.—f x,(N)dN € X,.
T,

On the other hand, since Sy = @, the function x(\) is analytic outside the
domain delimited by T%, thus we have :

1

Smi fr oa:()w)d)\, = lli_rg)\,x(),) = .
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Indeed as in Proposition 4.1, we have x(c0)=0, thus in a suitable
neighbourhood of o we can write

(since x(oc) = 0).
From the relation (T being closed)

0=Tx(c0)=1lim px(u)—x
imsco

it follows lim px(u)= x.
f—ro0
Hence x < X, and x € X7(F) being arbitrarily chosen, we obtain

X(F)c [ #r.a, -

_ G\ oF
G nS=¢

Since the family {G,; G,2F, G,nS= ¢} is directed, on account of Propo: ..
3.2, we shall have

£T. (3', = xT’p.

GinS=¢

Because the inclusion %, »C Z(F) = X,(F) is obvious, the proof is finished.

The linear manifolds %,(F) with FSC., closed are generally not closed in
X. However, it seems to be interesting the following result :

THEOREM 4.2. Let T < B(X) be an operator S-residually decomposable
with SCC. Then for every FCC compact with FNS=@ we have the
relation :

Eo(F)=%rr+%:(0)

(where “+” denotes the direct sum between two linear not necessarily
closed manifolds).

PROOF. Let us remark that if ye ¥,-N%/ (@) then we can define the
T-associated function :

_ (7\,I| xr'F—Tle,F)_ly A€ CFﬂC
Fm= y(\) Ae(S:NC
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because or(y) = Sr. Since }im f+(A) =0, by Liouville theorem it follows f, =0,
thus y =0.

Now, let us consider two systems I'; and I, which surround and separate
F, S respectively in pr(x), where x € Z,(F) is arbitrary. Also, let T' be another

system which surrounds I'; and I', (this construction is possible since F and S
are compact in C).

We shall have the equality :

_ 1 _ 1 1
2= fr 2N = 5 fr O+ fr .

2t

Let us denote by xr= ?17; f x(A)dN and x5 = “Q}r—z f x(N)dN.
r, I,

Obviously, the elements xr and xs do not depend by the particular choosing
of the systems T'; and T',. We have v (xr) S F and v.(xs)SS.

Indeed, if o€ CF then there exists a system I'] “into” I'; such that p, be
“outside” I}, thus for u in a neighbourhood of u, we shall have

1 x(\)

_ 1 1 [ x
WI=T) 55 y u—n = j;}x()&)d?»+ i fr,p—x ar

1 1
= ot ’x()u)d)\, = om frlx(h)dk = Zr.

1

Analogusly we have v, (xs)<S.

On the other hand v;(xs) = yr(x—xr) S F, so vr(xs) = @, thus xse X(@).

Let now {G,,Gs} an S-covering of the set o(T) with G,2F, G,nS= ¢,
GsnF=4¢. ,

Corresponding to this covering there exists a maximal invariant space %,
and thus the element x has the form x =1y,+ys where y, € ¥, and or(ys) < Gs.

Since the system I', can be chosen in (FN{Gs, then in a neighbourhood of

I, there exist the functions x(A), y,(A), ys(A) and ys(A) is analytic in the domain
delimited by I';. From x(A)=y,(N)+ys(N) we have

1
P— fny,a)dxeael

because X, is T-absorbing.

As in the preceding theorem, we shall obtain x, € X, =%rr and
- hS—o
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this

(81
[91]
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finishes our proof.
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