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1. Introduction. Let us consider an evolution equation
(1.1) (d/dtyu(t) = Au(t), u(0)=x

in a Banach space X. Here A is an operator, not necessarily linear, in X and
is assumed to be time independent. And we introduce an approximating scheme
to the evolution equation as follows. Take a sequence {h,} of positive numbers
going to 0 as n—oo. The solution u,(¢) to the n-th approximating equation is
calculated inductively, for ¢ integral multiples of 4,, by the following system
of equations :

(1.2) un((k+1h,) = Cottn(kha), un(0) = x

for k=0, 1, 2,---and n, where each C, is an operator from X into itself. In
case when A is a linear operator whose domain D(A) is dense in X, Trotter
[13] proved the following results which show the existence of solution w(¢)=u(¢;x)
of (1.1) and the convergence of approximating solutions, that is,

wa([2/hnlhy) = Col"™x — u(t ; x),

where [-] denotes the Gaussian blacket.

THEOREM A. Let {C,} be a sequence of bounded linear operators
satisfying the consistency condition and the stability condition:

(Cy) lim A Y(C,—D)x = Ax  for x< D(A)

and the domain D(A) is dense linear in X,

(S1) 1C¥| = Ke™ ™ for k and n,
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where K and M are some constants independent of k and n. Suppose that
(T) for some Ne>M, CI[R(NI—A)]=X(or RONI—A)=X), where RN —A)
is the range of NI—A and CI[R(NI—A)] is the closure of R(NI—A).
Then the closure A of A (or A) generates a linear semi-group {T(t)} of
class (Cy) and for each x< X

(1.3) T@®)x =lim C,¥x  for t=0.

Now, for the approximating scheme (1.2) to the nonlinear evolution
equation we set the following two basic requirements, instead of the conditions

(C1) and (S1);

©) lim A,”(C,—1)x = Ax for x € D(A),

(S |Crx—Coyll = e¥™|z—y| for z,ye X and n,
where M is a constant independent of x, y and n.

The main purpose of this paper is to extend the Trotter theorem to the
case of nonlinear operators for which there exist approximating schemes
satisfying the above conditions (C) and (S). In §2 we shall state the main
results, and in §3 we shall prepare some lemmas. The proofs of the theorems

mentioned in §82.1 and 2.3 are given in §84 and 5, respectively.

2. Theorems. In this section we shall state the main results of the present
paper.

2.1. We first introduce some notions of nonlinear semi-groups. Let

{T(¢t); t=0} be a family of operators, not necessarily linear, from X into itself
satisfying the following conditions :

(2.1) T(0) = I (the identity mapping), T(¢)T'(s) = T(¢+s) for s, t =0;
(2.2) for each x <€ X, T(t)x is strongly continuous in £=0;
(2.3) there is a constant @ =0 such that
I T@x—T@)y|=e"|x—y| for x,yecX and £=0.
Then we call such a family {7(#)} simply a nonlinear semi-group of local

type. And we define the infinitesimal generator A, of a nonlinear semi-group
{T@®} by
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2.4 Ax = }ll_m h(T(h)—ID)x
and the weak infinitesimal generator A’ by

2.5) Az = W’llj’l;l hY(T(h)—ID)z,

where “w-lim” means the weak limit in X.

In view of these notions, the main theorem is stated in the following
form.

THEOREM 1. Let X* be uniformly convex. Suppose that

(1) (C) and (S) are satisfied, and D(A) is dense in X,
(ii) CIUR(I—hA) =X for some hy<(0,1/M).

Then we have the following:
(@) The closure a° of A, which is not necessarily single-valued,
generates a nonlinear semi-group {T(#)} of local type such that for each

x e DA), T(t)x is strongly absolutely continuous on every finite interval,
T(#)x € D(A) for all t=0 and

(@/dt)T(@t)x e ATt)x  for a.a. t=0.
(b) For each x < X, the convergence
(2.6) Tz = 311}01 C,tm g
holds true, uniformly with respect to t in every finite interval.

(¢) In particular, if we assume R(I—h,A)= X instead of (ii) then A=A,
A is the weak infinitesimal generator of {T(t)} and for each x < D(A), T()x
has the weak derivative AT({t)x which is weakly continuous in t=0.

(b) of the above theorem states the convergence of the approximating
scheme (1.2). We shall say that the approximating scheme is convergent to
the semi-group {T(¢)} if (b) holds true, in the following.

Next, let us assume that the evolution equation (1.1) is well posed in the
following sense :

"1) An operator T, not necessarily single-valued, is said to be the closure of A if G(T)=
CI[G(A)], where G(+) denotes the graph of operator ; we write T=A.
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(E) There is a nonlinear semi-group {T'(¢)} of local type such that for each
x < D(A), (w-d/dt)T(t)x = AT(t)x for a.a. t=0, where (w-d/dt)u(t) is the
weak derivative of w(t).

Then (b) of Theorem 1 holds true without the uniform convexity of X*
and the assumption (ii), that is, we have the following

THEOREM 2. Suppose that (C), (S) and (E) are satisfied, and that
D(A) is dense in X. Then the approximating scheme is convergent to the
semi-group {T(t)}.

The proofs of the above theorems are given in §4.

2.2. In this paragraph we shall consider some relations between abstract
Cauchy problems and nonlinear semi-groups.

Let A be a not necessarily single-valued operator in a Banach space X. For
such an operator A, we introduce the following abstract Cauchy problem :

(CP) Given an element x < X, find a function y(¢; x) such that

(@)  y(t; x) is strongly absolutely continuous on any finite subinterval of
[0, o=);

®  ¥0; x)=x and

2.7 (d/dt)y(t; x)e Ay(t; x) for a.a. t.

Here, if A is single-valued then “<€” in the above problem is replaced by “=
In the above (CP) we may con51der the following equation

2.8) (w-d/dt)y(t; x)e Ay(t; x) for a.a. ¢,

instead of (2.7). We write (w-CP) for the (CP) in which (2.7) is replaced by
(2.8). But in view of (@), any solution of (w-CP) is necessarily a solution of
(CP) (see [4; Theorem 3. 8. 6)).

Before stating the theorem, we introduce a notion of the duality mapping
J of X. The duality mapping of X is a multi-valued mapping from X into
X* defined by xz— {z*¥e X*; <x,2*> =|zx|* = |=*|?} (see, for example,
Browder [1]). By virtue of Kato’s results [5; Lemma 1.2], the assumption that
X* is uniformly convex implies that the duality mapping J is single-valued
and uniformly continuous on every bounded set of X.

THEOREM 3. (a) Assume that
(D) A—wl is dissipative for some ©=0, that is, for every x, y < D(A),
Z' € (A—wl)x and y' < (A—wl)y there is an f< J(x—y) such that
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re<x’ —y, f>=0.

And suppose that for each x € D(A) there is a solution y(t; x) of the (w-CP).

Then there is a unique nonlinear semi-group {T(t)} of local type defined
on CI[D(A)) such that T(t)x = ¥(t; x) for all t=0 and x € D(A). In particular,
if A is single-valued then A coincides with the weak infinitesimal generator
of {T(t)} on a dense subset of CI[D(A)].

(b) Conversely, if X is reflexive and if A is the weak infinitesimal
generator of a nonlinear semi-group {T(t)} of local type, then the property
(D) is satisfied and for each x< D(A), T(t)x is a unique solution of the
(w-CP).

PROOF. (a) We first note that if A satisfies the condition (D) then the
(w-CP) has at most one solution for each initial value. For, let y(¢; x) and
2(t; ) be the solutions of the (w-CP) for an initial value x, and set
u(t) =y(t; x)—=2(t; x) for t=0. Then u(s) has the weak derivative (w-d/ds)u(s)
(=u,(s)) e Ay(s; x)—Ax=z(s; x) at a.a. s and |u(s)|| is absolutely continuous in
any finite interval. Then by the Kato lemma [5; Lemma 1. 3], for a.a. s

le()I(d/ds)|uls)| = re <u\(s), f>
for every f <€ J(u(s)). Combining (D) with this, we have
lu(s)|(d/ds)|uls)| = wllu(s)|I*  for a.a. s.

Hence

lu@®)]® =2 f lu(s)I(@/ds)|uls)]| ds= 2@ fn lu(s)||* ds

for all £=0. This inequality implies that «(¢) =0 for £=0.
Next, for any pair x, 2€ D(A) and £=0 we put v(¢) =y(#; x)—y(E; 2)
Since (w-d/ds)v(s)e Ay(s; x)—Ay(s; 2) for a.a. s and |v(s)] is absolutely

continuous in any finite subinterval of [0, o), similarly as in the above, we get
t
lo@ = lz—2l*+20 [ Jo@l* ds  for zo0.

This integral inequality implies that |[v(¢)|*=e™'|x—=z]|*, that is,

Iy ; ) — y(t; 2)|=e"|x—z|
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for all x, z€ D(A) and t=0.
If we define T',(¢) by

T ()x=3(t; x) for z€ D(A) and ¢t =0,

then T'\(¢)x is strongly continuous in =0, T'(¢)x € CI[D(A)] and | To(&)x—To(2)y|
=e“|xz—y| for x,y< D(A) and £=0. So that each T,(¢) has a unique extension
T(¢) which maps CI[D(A)] into itself and satisfies the same Lipschitz condition.
Moreover, for each x € CI[[D(A)], T(¢)x is strongly continuous in £=0. Finally,
the semi-group property follows from the unicity of solution of (w-CP). In fact,
let x € D(A) and set E, = {s=0; y(s; ) D(A)}. Then from the unicity of
solution of (w-CP) we see that y(¢+s; ) =5(; y(s; x)) for t=0 and s< E,,
that is, T(t+s)x = T(¢)T(s)x for t=0 and s< E,. Thus we have

T@+s)x =TET(s)x  for t,s=0,

because s € E, for a.a. s=0 and 7(s)x is strongly continuous in s=0.

Now, suppose that A is single-valued, and let A" be the weak infinitesimal
generator of {7'(¢)}. Then from the semi-group property, for each x € D(A), we
have A'T(t)x =(w-d/dt)T(¢)x = AT(¢t)x for a.a. t=0. Hence we see that for
each x € D(A), there is a sequence {£,}, going to 0, such that AT'(¢,)x=A"T(t,)x

for all n. Since T(¢,)x—x, if we put D= U {T@®)x; AT()x=AT@)x},
2 D(4)

then D is dense in D(A). Consequently CI[D]=CI[D(A)].

(b) Let {T'(#)} be a nonlinear semi-group of local type, and let A be its
weak infinitesimal generator. Then there is an =0 such that |T@)z—T¢)y|
=e“|x—y| for x,y€ X and ¢=0. For each pair x,y< D(A) we have

re<Ax—Ay,f>=h"(e"—-1)|z—y|?*
for every fe J(x—y), where A, =h"(T'(h)—1I); and hence
re<Az—Ay,f>=olz—y|*

for every f€ J(x—y). Thus A satisfies the condition (D).

Let x be an element of D(A). Then sup{|A.,z|; 0<h=1} =K< o and
Tt +h)x—TE)x| = Ke*h for t=0 and h<(0,1]. This shows that T(¥)x is
strongly absolutely continuous on every finite interval. Since X is reflexive, the
strong absolute continuity of 7'(¢)x implies that it is strongly differentiable at
a.a. ¢t and (d/dt)T(t)x=A,T(t)x for a.a. t, where A, is the infinitesimal



30 I. MIYADERA AND S.OHARU

generator of {7(¢)} (see Komura [7; Appendix]). Since ADA,, Tz is a
solution of the (w-CP) for A. The uniqueness follows from the fact that A
has the property (D). Q.E.D.

REMARK. 1) Since any solution of (w-CP) is necessarily a solution of
(CP), in (a) of the above theorem we may also conclude that A coincides with
the infinitesimal generator of {7°(¢)} on a dense subset of CI[D(A)] if A is
single-valued.

2) The above theorem is an extension of the Dorroh theorem [3; Theorem
2.5] which is stated as follows:

If a single-valued operator A satisfies

(M —A)x—NI-A)y| =N|z—y| for x,y€ D(A) and A>0

(this is equivalent to the condition that A is dissipative, by the Kato lemma
[5; Lemma 1.1]), and if for each x € D(A) there is a continuously differentiable
funciton y(¢; x) from [0, o0) into X such that y(0; x)=x and (d/dt)y(¢; x)=Ay(t;x)
for all £=0, then A has an extension which is the infinitesimal generator of a
(nonlinear contraction) semi-group of class (C, CI[D(A)]).

Now, we consider the (CP) for an operator A with dense domain and
suppose that there is an approximating scheme {C,} satisfying the following

condition
(C") there is a subset D of D(A) such that

lim hXC,—Dzx = A,z
exists for each x € D and the closure A, of A,, not necessarily single-valued,

coincides with A.
Then in terms of the (CP), we may restate Theorem 1 in the following

form.

THEOREM 4. Let X* be uniformly convex. Suppose that
@) (C) and (S) are satisfied,
(i) RI—hA)=X  for some h,<(0,1/M).

Then for each x < D(A) there is a unique solution y(t; x) of the (CP) and

2.9 Mt; x) = lim C,“™ig
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unif ormly with respect to t in every finite interval.

PROOF. It follows from A, = A and CI[D(A)] = X that D is dense in X.
Thus (i") states that (i) of Theorem 1 is satisfied for the operator A,. Take any
ye X. Then there is an x € D(A) with ye (I—hA)x, i. e., (x—y)/ho € Az. Since
A=A, we may take a sequence {x,} such that x,—z and A,x,—(x—y)/ho,
ie, (I—hyA)x,—y. This means that C/[R(I—h,A;)]=X. So that (ii) of
Theorem 1 holds true for A,. Thus by Theorem 1, A generates a nonlinear
semi-group {7'(¢)} of local type such that for each x < D(A), T(¢)x is strongly
absolutely continuous on every finite interval, T'(¢)x € D(A) for all ¢=0 and
(d/dt)T(t)x € AT(#t)x for a.a. t=0. Moreover the approximating scheme is
convergent to the semi-group {7%¢)}. Thus if we put y(¢; x)=T(¢)x for each
x € D(A), then y(¢t; x) is a solution of (CP) and the convergence (2.9) holds
true. Now we note that the operator A satisfies the condition (D). For, by (S),
re <h;¥{C,—Dx—h;(C,— Dy, Jx—y)> = h; (" —1)|x—y|? for z,ye D. In
view of (C’), passing to the limit as n— co, we have re <A, x— Ay, J(x—y)>
=M)|x—y|? for x,y<€ D. Now, take any pair x,y <€ D(A) and any z’ < Ax and
vy € Ay. Then there exist sequences {zx,} and {y,} in D such that z,—x,
A x,—x" and y,—y, Ay,—Y. Since re<A,x,—AYn, Zn—y,)>=M|zx,—y,|?
for each 7, and since J is strongly continuous, we have

re<x’ —y, Jx—y)>=M|zx—y|*.

This is nothing else but the condition (D). Consequently, y(¢; £)=T(t)x (x € D(A))
is the unique solution of (CP) (see the proof of Theorem 3 (a)). Q.E.D.

Finally, by combining Theorem 3 with Theorem 2, we may obtain an analogy
of the Lax theorem on the difference approximation of initial value problems
[12; p. 45] in the following form.

THEOREM 5. Let A be a single-valued, densely defined operator, and
suppose that for each x < D(A) there is a solution u(t; x) of the (w-CP).
And assume that the approximating scheme (1. 2) satisfies (C) and (S). Then
there is a unique nonlinear semi-group {T(t)} of local type such that
T@t)x =ut; x) for each x< D(A) and t=0, and the approximating scheme
is convergent to the semi-group {T(t)}. In particular, for each x < D(A),

u(t; x) = lim C,"“™lx

n—so0

uniformly with respect to t in every finite interval.
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PROOF. As we see from the proof of Theorem 4, (C) and (S) imply that
A satisfies the condition (D) with @ =M. Thus the conclusions follow from
Theorems 3 and 2. Q.E.D.

2.3. The proofs of Theorems 1 and 2 are based on the convergence
theorems of nonlinear semi-groups and Lemma 4 in §3. By using the same
lemma, we may also deal with the representation of nonlinear semi-groups. For
linear semi-group {7(¢)} of class (C,), the {following exponential formulas are
well known (see, for example, Hille and Phillips [4; p. 354]):

For each x<¢ X,

(2.10) T@)x = }g& exp(tA,)x,
(2.11) Tz = hf}, exp[tA(I—n"tA)"] -z
2.12) T@)x = liglo [I—(t/n)Al""x

uniformly with respect to ¢ in any finite interval, where A, =h""(T(h)—1)
and A is the infinitesimal generator of {7°(¢)}.

We shall deal with an analogy of the above formulas for nonlinear semi-
groups of local type. In the following, we assume that {7°(#)} is a nonlinear
semi-group of local type with

(2.13) | T@x—T@)y| = e*|x—2y| for z,ye X and t =0

where ©=0 is a constant, and that A" is the weak infinitesimal generator of
{T'(¢)}. And for shorter statements, we write C'([0,); X) for the set of all
strongly continuously differentiable X-valued functions defined on [0, ). First,
corresponding to (2.10), we obtain the following

THEOREM 6. If we put A,=h"'(T(h)—1I) for h>0, then each A, is
the infinitesimal generator of a nonlinear semi-group {T(t; A,)} of local

type such that T{; A)x<C'(0,x); X) for each x<X; and for each
x € CI[D(AN],

(2.14) Tz = lim T(t; Az

uniformly with respect to t in any finite interval.

Next, corresponding to (2.11) and (2.12), we obtain the analogy in the
following forms.
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THEOREM 7. Let X* be uniformly convex, and sup pose that CI[R(I—h,A’)]
=X for some hy,<€(0,1/w). Then for each he<(0,1/0), I—hA)™" exists and
it has a unique extension J(h) defined on X such that |J(h)x—J(h)y|
=1 —hw) | z—y| for x, ye X; and then we have the following :

(@) For each n>w, A,=n[J(1/n)—1] is the infinitesimal generator of a
nonlinear semi-group {T(t; A,)} of local type such that T(t; A,)x € CY([0, o0); X)
for xe X; and for each x < CI[D(A")],

(2.15) T@)x = li_rg T(t;A)x

uniformly with respect to t in any finite interval.
(b) For each x < CI[D(A"),

(2.16) T@)x = lim J¢/n)"x

uniformly with respect to t in any finite interval, where we define J(0) by
I

The proofs of Theorems 6 and 7 are given in §5.

REMARK. 1) In the previous paper [8], Miyadera proved that the
convergence (2.14) holds true for x € CI[D,] under an additional assumption that

“there exists a set D, such that DyC D(A,) and for any x € D,, T(¢)x < D(A,)
for a.a.t=0, where A, is the infinitesimal generator of {7T(¥)}.” Also, see
Dorroh [3; Theorem 2. 9]. \

2) If, in Theorem 7, we assume “R(I—h,A")=X for some h,<(0,1/0)”
instead of “CI[R(I—h,A’)]=X”, then we have that J(h)=(I—hA")™* for h (0,1/w)
and A, =AI—n1tA)™? for n> .

3) Oharu [10] showed that the convergence (2. 16) holds true for x € CI[D,],
in an arbitrary Banach space, if there exists a set D, such that D,c D(A,) and
for any xe D, the strong right-hand derivative D*T(¢)x exists and it is
continuous for £=0 and if CI[R(I—h,A,)] =X for some h, < (0,1/w), where A,
is the infinitesimal generator of {7T'(#)}. Under the similar conditions, Dorroh
[3; Theorems 4.5 and 4.8] has also treated the convergences (2.15) and (2. 16).

3. Lemmas. In this section we prove some basic lemmas for the proofs of

the theorems stated in the preceding section.
Let C be an operator (not necessarily linear) from a Banach space X into

itself satisfying

(3.1) ICz—Cyll = a|x—y|  for z,ye X,
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where a=1 is a constant independent of x and y.
We start from the following

LEMMA 1. C—1 is the infinitesimal generator of a wunique nonlinear
semi-group {T(t; C—I)} of local type satisfying the following conditions;

(3.2) IT@; C—Dx—T@; C—Iy|=e“|z—y|

for z,yeX and t=0,

(3.3) for each xeX, T(t; C—Dz < CX[0, ); X) and
@/anT@; C—Dx = (C-DT; C—Dx  for t=0,

and

3.4) g.(t) =x+ f eCle*g(s)ds for x€X and t=0,

where g,(t) =e'T(t; C—I)x.

PROOF. It follows from (3.1) that the integral equation (3. 4) has a unique
solution g,(t) € C'([0, o0); X) for any x € X, and that

lg:(8)— gl = lz—vl +e f: lg=(s)—gu(s)ll ds

for £,ye X and £=0. This inequality implies that
19:(8)—gv@®)| = e“lx—y|  for x,y€ X and £=0.
1f we define T(¢; C—1I) by
T@it; C—Dzx = etg,(t) for t=0 and < X,
then {T'(t; C—I)} is the desired nonlinear semi-group of operators. Q.E.D.
Setting T(t; U)=T(h™'t; C—I) (h>0), we have the following
COROLLARY 1. Let h>0. Then U=h"(C—I) generates a unique

nonlinear semi-group {T'(t; U)} of local type such that
(a) for every x,ye X and t=0,
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175 Dx=T(; Uyl = e“>"|x—yl,
(b) for each x< X, Tt; U)x e C([0,); X) and
@/ayrt; Nx=U0Tt; U)x  for t=0.
LEMMA 2. For each x€ X and t=0,
lga(8)—e'z| = e“t|(C—Dx] .

PrROOF. By (3.4),

g«t)—e'x = _/; e’[Cle™*g.(s))—x] ds

= f t e(C—De*g.(s)ds+ j: (g(s)—e*x) ds.

Since |[(C—D)e*g.(s)| = [(C=D)T(s; C—I)x| = e“*|(C—I)z| for all s=0,

we have
89 Lo - etat = ([ e as)ic-Dal + [ lout9-eralds.

Then it follows from the induction that

60 leo-ca= ([ £ G e alic-na

12
+ 2 [ e=9rlgs—eal ds
n:. Jo

for all £=0 and non-negative intergers n. Passing to the limit as n— oo in
(3.6), we get

11 .
gtV —e'x| = ¢ fo e ds |(C—Dzx|

< e"t|(C-I)z|. QUE.D.
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LEMMA 3. Let x< X. For any t=0 and positive integer m,
oo . — t.f J .
IT(¢t; C—Dz—Crz|<etam- ZMUJ# (C=D)z].

PROOF. By (3.4),

g:(8)—e'Cmrx = (x—Cmx)+ ‘/; e [Cle*g.(s)—Cmx] ds;

and hence

t B
l9:0)~'Crzl < |z —Crall +a [ lguls)—eCnriz| ds.
Repeating this argument, we arrive at

@.7 lg=(&)— e‘C'"xll<Z —llx —Cm 'z

s oo [ eolg 0ol ds

for £=0. Since |z—Ckz| = z; |G- 2 —Clz| < ka*='|2z—Cx] ,

we have

D < P T M L P
=y R g

By Lemma 2,

j: E—s)" " guls)—e'x| dSé fo (t—S)”‘"SE“’dS IC—-Dx|

=X

jo]‘

f (t—sym-is ds [(C—D)a]
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because
1
f (t__s)m—xsjﬂ ds — tm+}+1f (1—5)'"_15"“ dS
. 0
tm+1+1 (J+1)'(m__ 1)_‘
(m+j+1)!
Consequently
a™ m-1 s
3.9) s [ e igo-eal

) '+1 t‘m-+j+laj
= d’"zm(‘l(m_zw |C—D)x|

=i ﬁ—””—“"—nw —Dya.

J=m+1

By (3.7), (3.8) and (3.9), we have
IT¢; C—Dx—Crx| = e~ g.(t) —e‘Cmx|
=e~tam™! ZH 1 [(C-D)x]| . Q.E.D.
LEMMA 4. For any x< X and positive integer m,

IT(m; C—Iz—Cmz|

same™* "V {m¥(a—1)2+m(a—1)+m}*|(C—Dzx| .
PROOF. Putting t=m in Lemma 3,

IT(n; C-Dz—Cral S ave xS, V=2 yC-Dai

It follows from the Schwarz inequality that
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Z“ lj—mlmj“’<em/z Zw G mia \V?
! = =0 71

= e™(m*(a—1)*+m(a—1)+m)'/*.
This completes the proof. Q.E.D.

In particular, if @ =1 in the above lemma, we get the following

COROLLARY 2. If C vis a contraction operator from X into itself
(G.e, |Cx—Cy| = |z—y| for x,y<€ X), then

IT(m; C—Dx—Crx|| = m'?|(C—Dx]|
for every x< X and positive integer m.

In case of linear contraction operators, this corollary has been proved by
Chernoff [2]. (Note that T(m; C—1I) = ¢™°-D if C is linear.)

4. Proofs of Theorems 1 and 2.

4.1. Let {T™()}n1, 33 ... be a sequence of nonlinear semi-groups of local
type satisfying the stability condition

IT™@®)z — TEy] = ez -yl

for t=0, n and z, y < X, where o is a non-negative constant independent of
x, ¥, t and n. Let A be the infinitesimal generator of {T®(¢)}, and suppose
that lim Ax = Ax is defined on a set D. The following theorems have been

proved_»‘;)y Miyadera ([8; Theorem 2.1] and [9; Theorem 1]).

THEOREM B. Suppose that
(i) A is a restriction of the weak infinitesimal generator of a nonlinear
semi-group {T ()} of local type,

(i1) there exists a set D,C D such that for each x < D,,
(ii,) for each n, T({#)x € D(A™) for a.a. t=0,
(i) T@®xe D for a.a. t=0.

Then for each x < Cl[D,] we have
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T@)x = lim T(@¢)x  for each t=0,
n—sco0
and the convergence is uniform with respect to t in any finite interval.

THEOREM C. Let X* be uniformly convex and assume that for each
n, RU—a,A™) = X for some a,<(0,1/0).
Suppose that

(i) D is dense in X,
(i) CI[R(I—hoA)] = X for some hy<(0,1/w).

Then we have

(@) the closure A, not necessarily single-valued, generates a nonlinear
semi-group {T(t)} of local type such that for each x < D(A), T(¢)x is strongly
absolutely continuous on every finite interval, T(t)x € D(A) for all t=0 and
(d)dOT@)x c AT(t)x for a.a. t=0;

(b) for each <X,

T@)x =lim T™(@)x  for each t=0,

and the convergence is uniform with respect to t in every finite interval ;

(¢) in particular if we assume that R(I—h,A)= X, instead of (ii), then
A=A and A is the weak infinitesimal generator of {T(t)} and for each
zxeD, T(t)x has the weak derivative AT(t)x which is weakly continuous in
t=0.

REMARK. Theorem C remains true even if A is the weak infinitesimal
generator of {T™(¢)}.

4.2. We shall now prove the theorems. In both Theorems 1 and 2 we
assumed that the approximating scheme satisfies the following conditions ;

© liﬂ h{(C,—Dx = Ax for x < D(A),
) |Crx—Coy| = M| x—2yl| for x, ye X and n.

Throughout this paragraph we set
e A, = h;'(C,—1I) and M, = h;'(e*-1),

and let M, be a constant such that M,=M, for n. Then it follows from
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Corollary 1 (§3) that each A, is the infinitesimal generator of a nonlinear
semi-group {T(¢; A,)} of local type satisfying

4.1) 1T@; An)x—T(t; An)yl = e™|x—y|=e*|z—y|
for t=0 and x, y < X, and that for each ¢ X,
(4.2) T(t; Ap)xecC'([0,00); X) and (d/dt)T(t; Az)x = AT(E; Ap)x

for t=0. For the semi-groups {T(¢; A,)} we have the following

LEMMA 5. Let t=0 and set k, =[t/h,]. Then for each x< X and n,
(4 3) " T(t > An)x—T(knhn > A’n)x" é eudhn " Anx"’
(4. 4) (T (knbn; An)x—Cplrx|| = ME)h,'*| Anxll »

where M(t) = e+ ¥ {t2M2c, + tMoc, + t}'? and ¢, is a constant such that
h,=c, for all n.

PROOF. It follows from (4.1) and (4.2) that

t

T(t; ApDx —T(khy Ap)x = f A, T(s; A)x ds

Enhn

and |A,T(s; A.z| =e**|A,x| for s=0. Hence we get (4.3). Applying
Lemma 4 with C=C,, a=e** and m = k,, we have

1T(ks 5 Ca—I)x—CyFx|
= MNP M, + tM, + t/h,} 2(Ch — D
= MM M 2R, + tMoh, + t}2h,?| Az
= M@®)ha'?|| Anz| .

Since Tk, ; C,—I) = T(k,h,; A,), we get the desired estimation (4. 4).
Q.E.D.

PROOF OF THEOREM 1. Since each A, is Lipschitz continuous uniformly
in £ € X, we have that
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R(I-a,A,) =X for sufficiently small «a, > 0.

Thus if we set T™(t) = T(t; A,), A™ = A, and D=D(A), then the assumptions

of Theorem C are satisfied. Consequently, A generates a unique nonlinear semi-
group {T(®)} of local type with the properties in Theorem C; ‘and for each
xe X,

(4.5) Ttz = lim T(t; Az

uniformly with respect to ¢ in every finite interval.
Let x< D(A), t=0 and put k, = [t/h,]. It follows from Lemma 5 that

IT®x—CoFz| = | T@)x—T(¢; An)x|
+1T(@; An)z—Tknhn; An)zl| + T (knhn; An)z—Colz|
= |T@z—T(t; Azl +("hn +M(Dh,')]| Anzl|

for all #n. Thus the condition (C) and the convergence (4.5) yield that
(4.6) T(t)x = lim C,*x

uniformly with respect to ¢ in any finite interval.

Since [C,frx—Coy| = e™|x—y| and |T(O)x—T @)yl = e|x—y| for all
z, y€ X and £=0, the assumption CI[D(A)] = X implies that the convergence
(4. 6) holds true for every x< X. Q.E.D.

PROOF OF THEOREM 2. Let {T(¢#)} be the semi-group in the assumptionv
(B), and set E,= {T(®)z; (w-d/dt)T(#)x=AT(t)z} for x< D(A) and D= \_) E..

xe D(A)

Obviously, Dc D(A), lim A,x = Ax for x< D (by(C)) and the restriction of A

n—oo

to D is a restriction of the weak infinitesimal generator of {T'(¢)}. Thus the
condition (i) of Theorem B is satisfied. And the condition (ii) is also satisfied by
taking D, = D. For, (ii,) is obvious from “D(A,) = X", and (E) shows that for
each xe D(c D(A)), T()x< D for a.a. t=0. Moreover, it follows from (E),
CIl[D(A)] = X and the strong continuity of T'(f) that D is dense in X. Therefore,
by Theorem B, we have that for each < X,

T@x =lim T(t; A)x

uniformly with respect to ¢ in every finite interval. Combining this with Lemma
5, as in the proof of Theorem 1, we obtain that for each x < X,
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T@)x = lim C,¥™x

uniformly with respect to ¢ in any finite interval. Q.E.D.

5. Proofs of Theorems 6 and 7. Let {T(¢)} be a nonlinear semi-group
of local type satisfying

6.1) ITOz-T@y| =e”|z—y|  for x,y€ X and £=0,

where ®=0 is a constant, and let A" be the weak infinitesimal generator of

{T@)}.

PROOF OF THEOREM 6. Fix an A>0. Since |T(h)xz—T(h)y| Ze*"|x—2y)|
for x, y e X, Corollary 1 (§3) yields that A, = A~ (T(h)—1I) is the infinitesimal
generator of a nonlinear semi-group {7°(¢; A,)} of local type such that
(5.2) 1T®; Ax—T(t; An)y| = e ™|z~
for x, ye X and t=0, where w(h) = h~'(e*—1), and for each ze X
(5.3) T(t; Ap)x e C'([0, 0); X) and (d/dt)T(t; Ay)x = A T(¢; Az for £ =0.

Let £=0 and put 7n,=[¢/h]. Then by Lemma 4 (with C=T(h), a=e** and
m=mn,) and T(hn,; A,) = T(n,; T(h)—1I), we have

| T(hny; Ay)x—T(hny)zl| = M(¢; h)h""’"A,,xll »

where M(¢; h) = e“+*™" {2 0(h)*h+to(h)h+t}*. Next, by (5.2) and (5.3),

we have
ITGms ADe=TG; Adel = | [ AT(s3 Ada sl = e Bl Ayl

Hence for each x¢< X,

IT@x — T(¢; Azl = | T@x—T(hnp)x|| + | T(hny)x—T(hny; An)x|
+ | T(hny; An)x—T(t; Azl
= | T@—hny)z—z| + M@ | Anz|| +e"@'h| Anz].

This shows that for each £ <€ D(A") the convergence
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T()x = ’!np T(t; A)x

holds true, uniformly with respect to ¢ in every finite interval. Then it follows
from (5.1) and (5.2) that the above convergence holds true for x e CI[D(A")].
Q.E.D.

PROOF OF THEOREM 7. Since re<h™(T(h)—Ix—h(T()—1)y,
Hx—y)>=h"'e*—1)|z—y|? we have

re<Az—AyJx—y)> = o|x—y|* for x, ye D(A’),
that is, A"—wl is dissipative. From this and CI[R(I—h,A")] =X we have the
following properties (see [9; Lemma 2]):

For each h€(0,1/w),
@) CIR(I-hAN =X,

(b)) (I—hA’)™! exists and it has a unique extension J(h) defined on X such
that

5. 4) |JR)x —Jh)yl = (A —ho)|x—y]  for x, ye X,

() A’ —hlI is dissipative and J(h) = (I—hA’)"!, where A’ is the closure of
A’. (If we assume “R(J—h,A")=X" here, instead of “CI[R(I—h,A)] =X,” then A’
coincides with A’.)

If we set

Ayn = h'(J(R)—I)  for he(0,1/@),

then each A, generates a nonlinear semi-group {7(¢; A,;)} of local type
satisfying the following conditions (see Corollary 1);

(5.5) 1T(t; Ayyn)e —T(t; Ayn)yll = exp (ot/(1—ho))|xz—y|
for £=0 and x, y< X, and for each x< X
(5.6) T(¢; Ayn)x € C([0, 0); X), (d/dt)T(¢; Ayp)x = AT (A 0)%

for t=0,
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Since A’ has the property (c), by Katos generation theorem [6] we see that

A’ generates a nonlinear semi-group {T(t)} of local type defined on CI[D(A")]
(= CI[D(AN)) such that

(@”) for each x<CI[D(A)],

Tl)x = lim T(t; A,z
h—0+

uniformly with respect to ¢ in any finite interval,

(") for each xeD@'), ?‘(_t)./x\ is strongly absolutely continuous on any
finite interval and (d/dt)T(¢)x < A"T(¢)x for a.a. £=0.

Now it is easy to see the convergence (2.15). In fact, the above (b”) shows
that for each x < D(A"), i‘\(t)x is a solution of (CP) for A’. On the other hand,
for each x < D(A"), T(¢t)x is a solution of (w-CP) for A’ (see Theorem 3(b))
and a fortiori it is a solution of (w-CP) for A" because A'c A". Since A" —hl is
dissipative, the (w-CP) for A’ has at most one solutlon for each initial value
(see the proof of Theorem 3(a)). Consequently, T(t)x T(@)x for x< D(A’) and

t=0, and hence T(t)x T@®x for xeCI[D(A’)] and £=0. Thus for each
x € CI[D(AN],

5.7 T)x = Illlrgl T(t;A )z

uniformly with respect to £ in any finite interval.
Next we shall prove the convergence (2.16). We first note that

.8) lA 2zl < 1 —ho) | A'z| for z< D(A’) and h<(0,1/w).

For, by the property (b"), |J(B)x— x| =|J(h)x—J(WYI—hA)x|=1—ho)h|A’z|
for x€ D(A’) and < (0,1/w). Fix a £>0 and let n be a positive integer such
that n=2wt. We now use Lemma 4 with C= J(¢/n), a=(1—wt/n)"! and m=n.
Then, by nothing that (1—et/n)™™ < & and 7n[(1 —et/n)'—1]=2et, we have

1T (3 (t/n)—Dx—J(¢/n)"x|
= " (40’t* + 20t + 1) 2| [J (¢ /n) — Iz

= "' (40’2 + 20t + 1) 2%tn~ 12| Ay n x| «

Since T(n; J@t/n) —I) = T(t; Aym) and |Aynzll =1 — 0t/n)7|A'z| = 2| Az
for £ < D(A") (by (5. 8)), we have the following estimation

(5. 9) 1Tt Ay — Kt /n)" x| < 2t (40%* + 208 +1) 20| A x|
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for x< D(A"). Now, it follows from (5.7) and (5.9) that for each x e D(A"),

(5.10) T@)x = }gr: J(t/n)"x

uniformly with respect to £ in any finite interval, where we define J(0) by I
And the convergence (5.10) remains true for each xe CI[D(A")], since
|J(t/n)"x—Jt/n)"y| =1 —wt/n)""|x—2y|. This completes the proof. Q.E.D.

APPENDIX

After this paper was submitted for publication we obtained the following
which is a generalization of Lemma 4.

LEMMA 4. Let X, be a closed subset of a Banach space X, and let C
be an operator from X, into itself satisfying condition (3.1) on X,. If

(%) RI-MC—-I1))DX,  for every nc(0,1/(a—1)),

then (i) C—1 is the infinitesimal generator of a unique nonlinear semi-group
{T(¢;C—1)} of local type defined on X,, satisfying conditions (3.2) and (3. 3)
on X,, and (ii)

|T(@n; C—1)xz—Crz| = a™e™ "V {m*(a—1)’ + m(a—1)+m} 2| (C—I)x|
for any x < X, and positive integer m.

Indeed, one can directly prove (i). Setting g,(¢) =e'T(¢; C—I)x for xe X,
13
and £=0 we obtain g,({) =x+ ‘/‘; e’Ce~*g.(s))ds. We then have the conclusion

(ii) in the similar way to the proof of Lemma 4.
In particular, if X, is a closed convex subset of X, then using the fixed
point theorem we see that (¥) holds true. Hence we have the following

COROLLARY. Let X, be a closed convex subset of a Banach space X.
If C is an operator from X, into itself satisfying condition (3.1) on X,, then
the conclusions in Lemma 4° hold true.

This corollary was first obtained by Brezis and Pazy in a Hilbert space.
(See Brezis and Pazy “Semigroups of nonlinear contractions on convex sets”, to

appear). Recently Professor Pazy informed us that they also obtained the same
results as ours.
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We have discussed in this paper the case of approximating scheme {C,} such
that each C, is defined on X. But in view of Lemma 4 we may proceed with
similar arguments for the case of approximating scheme {C,} such that C, is
defined as an operator from a closed subset of X into itself. Also, as for the
operator A which is to be approximated, we may replace conditions for A to be
an m-dissipative operator by other weaker conditions. For instance our main
theorem can be extended as follows:

THEOREM 1'. Let X* be uniformly convex. Let {C,} be a sequence of
operators such that D(C,) is closed convex, C, maps D(C,) into itself, and
the following conditions are satisfied :

®) ICz—Coyl| = e*™|z—yl  for z, y e D(Cy);

D(C)>D(A)  and

C
© lim A, (C,—Dx = Ax  for x< D(A);

(%) Sor A€(0,1/M), R(I—NA) N co(D(A)) is dense in co(D(A)).

Then there is a semi-group {T(¢)} of local type defined on D(A) such that

T@)x = lim C,“™x  for xe D(A).

Furthermore, Lemma 4" turns out to extend our results on the representation
to the case of semigroups of local type defined on closed subsets of X.

It is sometimes convenient for applications to extend our results in these
forms. For details, we shall publish elsewhere.
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