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1. Let f(2) be a meromorphic function in the plane |z|<+oo, T(r,f)
Nevanlinna’s characteristic function of f(z) and

M(r, f) = max |fz)].

2|

We define the order p and the lower order A of f(z) as follows:

_p=log T'(r, f) _ 1. 1og T'(r, f)

F= g r 7 N_JFL% log r

If f(z) is an integral function, we may define the order # and the lower order A
of f(z) by using log M(r, f) instead of 7T(r, f). About a composite function of
integral functions f(z) and g(z), Pélya [4] proved the following theorem.

POLYA’S THEOREM. If f(2) and g(z) are integral functions and if
9(f(2) is an integral function of finite order, then there are only two

possible cases: either
(a) the internal function f(z) is a polynomial and the external function

g(2) is of finite order; or else
(b) the internal function f(z) is not a polynomial but a function of
finite order, and the external function g(z) is of zero order.

Ozawa [3] treated this theorem in detail and Baker [1] discussed the order
of an integral function f(f(z)) in the case when f(z) is of order zero. In this
paper we consider the converse problem of Pélya’s theorem, that is, the problem
to investigate the order of ¢g(f(z)) under the condition (a) or (b). The main part

will be the problem corresponding to the condition (b).
The author wishes to express his hearty thanks to Professor Toda for his

kind discussions with the author.

2. About the case (a) of Pélya’s theorem, it is obvious from the maximum
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modulus principle that if g(z) is a transcendental integral function of finite order

p and if f(z) is a polynomial of degree n, then g(f(z)) is of order un.

3. From now on, we shall investigate the case (b). We start from the
following.

LEMMA 1 (Valiron [5]). Suppose that f(z) is a transcendental integral
function of finite order. Let r = 1l(u) be the inverse function of w= M(r,f).
Then, given &€ >0, there exists a constant A(E) such that the equation f(z)=a
has a root in the annulus

[lal)= |zl =Ual)*
provided that |a|> A(€).

Using this lemma we can prove the following lemma which will be used in
the proof of Theorem 1.

LEMMA 2. Suppose that f(z) and g(z) are integral functions of finite
order and put

(1) log M(r, g(z)) = (log r)*".

Then, for any €>0,

(2) log log M(7'**, g(f(2))) = @(M(r, f(z))) log log M(r, f(2))
and
(3) log log M(r, 9(f(2))) = @(M(r, f(2))) log log M(r, f(2))

for all sufficiently large values of r.

PROOF. By Lemma 1, given £>0, there exists a constant A(E) such that
the equation f(2)= a has a root in the annulus

[la]) =zl =Ulal)*

provided that |a|> A(€). Now we choose a number 7, such that

M(ro, f) > A(8),
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and we take p=p(r, f)=M(r, f) for any r=r, Then, there exists an a, such that
la,| =p and

max|g(w)| = | 9(a,)|
and such that the equation f(2)=a, has a root in the annulus
r=(lal) =zl =(la,|)re=r'"
"Thus, there exists a 2, such that
lzo| = 7' and f(z,) = a,.
Therefore, we have
M, g(f(2) = [ 9(f(=))| = | 9(a,)| = M(p, 9(w))
for all »=7,, where p= M(r, f(z)). Hence we see
log M(r'**, g( f(2))) = log M(p, g(w))

= (log p)*® = {log M(r, f(z))}?Hr7

and
log log M(r'**, g( f(2))) = @(M(r, f(2))) log log M (r, £(=))

for all r=r,.
On the other hand, by the maximum modulus principle, clearly we have

M(r, 9(f(2))) = M(M(r, f(2)), 9(w)).

Thus we obtain

log log M(r, 9(f(2))) = p(M(r, f(2))) log log M(r, f(2)).

This proves Lemma 2.

We note that it is possible to show a similar result to Lemma 2 by Pélya’s
method (by using theorems of Schottky and Bohr).
Now we can prove the following theorem.

THEOREM 1. Suppose that f(z) is an integral function of positive and
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Jfinite order w and that g(z) is a transcendental integral function of zero

order. Then g(f(2)) is of infinite order if f(z) has the positive lower order \
and

limg(r) = o,

or if f(z) is of zero lower order and
i ) = .
PrROOF. By (2), for any €>0, we have

i 108 log M(r‘“, 9 = gy M7, ) log log M7, f)
Ferco log 7'* o0 1+8&logr

If f(z) has the positive lower order A\ and lim @(r) = oo, then taking &= %

2

we see
log M(r, f) > 1= = 12

for all sufficiently large values of 7. Thus

Jim log log M(r'*, g(f) _ - @(M(r, £)) log r**

. log 7 = 2 @+ O/2)logr

— Ml (M, ) = oo,

since M(r, f) is increasing, continuous and unbounded in ». If f(z) is of finite
positive order x and of zero lower order and if

lim @(r) = oo,
then for any € >0, it holds that

Tim log logM(r1+ ,9(F)) ~ Tim @(M(r, 1)) log log M(r, f)

pas log 7 roo log '+

— log Iog M(ra f)
>}iri1q7(M(7',f)) 17 o (14+&)logr
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B —
= e lim p(M(r, ) = oo

This proves Theorem 1.

4. In this section we shall show that conditions in Theorem 1 can not be

weakend, that is, even if Iim @(r) = oo, the function ¢g(f(z)) is not always of
infinite order if f(z) is of zero lower order and if lim () is finite. (In this

case, g(f(2)) is of order greater than or equal to p. This is easily seen from
the proof of Theorem 1.)

For that purpose, we have only to give an example.

First we construct two functions Y(R) and y(r) defined on (0, o) which
satisfy the following conditions, respectively :

Y(R) has the properties that EY(R)< +oo and that (log R¥"8® is

increasing, convex of log R and is of zero order and y(log ) is increasing, convex
in log r and is of the order 1 and of the lower order zero.
(i) We put

YI(R) =2, (0 <R= Rl) s

where R, is a fixed and sufficiently large value, for example, R,=e*+1, and
further we put

ywr)=r, O<r=rn)
where ;= R,. Next we put
y(r)=e'=A,, (n=r=r),
where A, is determined by the equation y,(r,) = y«(r,), and r, is determined by
the equation y,(r;) = —1—er', whence

2

Ay=¢e"—r, and r,= log2(e""—r,)>r,.

For this r,, we take R, = —%—e” and put

Yz(R)z 2, (Rl éRéRz)-
We put
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y(r)=er—A, (mn=r=r),

where 7; will be determined after R; is determined and A; is determined by
the equation y,(7y) = y,(rs), so

Ayj=¢€"r, ———;—e” = e“(r2 —*;—)

We choose 7,,; such that vy(7s,) = (75,,)%. Hence
(re,)? = €™ery, —e™ (r, - ‘*2‘*) s

(ro )} —e€tery, + e (7’2 - hl‘) =0,

oy = €N ==/

For this 7,,;, we choose R, such that for any fixed €>0,
Rm = (1 + E)Rm ’
Where Rg’l = y3(7”2,1) = (7’2,1)2. We put

Y3,1(R) =2, (R2 =R = R2,1) s

and
2’ (R2,1 é R é R2,2) >

Y, (R) =
’2( ) logR—Bg, (R2,2§R§R2,3);

where B, is determined by the equation
Y, o(Ry ) =2,
so B, =1logR,, —2>2. Next we choose R, ; such that
Y,s(Re) =5 log Ros.
Thus

log Rg,g - log Rgvg +2= % log R2’3



468 S. MORI

and
R2,2 ’
ngs = 762 ) > ngg .

We next determine Y; 3(R), (R, ;=R=R;) such that

RY++'B) = ksR - B:s ’ (R2,3 = R = Rs,l) »

2log Ry ; — B,
R, ;

R, ., and B; is determined by the equation

where k; = ( ) R, ,°8F2s=B) ig the derivative of R¥**® at the point

RT3 — bR, . — By = R, A/M0gRus
S0
B; =k Ry ; — R, ;M/2108%s > ()
Thus

log {k;R — By}

Y3,3(R) = IOgR ’

(Rz,z =R= R3,l) .

Here R,,, is determined as follows: Y, s(R) is monotone decreasing in R (= R;,,)
for some R; (=R,,;) and tends to 1 as R— oo, Thus there exists an R;; such
that

Y3,3(R3,1) =2.
For this R;,; we choose R;=(1+ &)R;,; and put
Ya,s(R) =2, (R3,1 = R = Rs) .

We choose an 7; such that yi(r3) = R;, so

ery—e” (r, — %) = R;,

and

_ (= (1/2)+ Ry

e

2,1 -

Now we put
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(r) =€ —A,, (r=r=r),

where A, and 7, are determined by the equations y,(r;)=2y(rs) and y,(r,)= %e" ,

respectively, so

A, =e*"—R; >0, ro=1og2A,>r;.
1,
We take R4=~2—e‘ and put

Y(R)=2, (Rs=R=R,).

(ii) Similarly, we define y;u(7), Yon+1(7), Yoa(R), Ysns1,i(R) (i=1,2,3), as
follows.

Assume that y,,-,(7) has been defined. Then clearly

Tan-1<YVan-1(Tan-1)<r3n-1.
We put
yzu(r) = e — Asn, (ropn =r= T3a)»
where A,, and 7,, are determined by the equations

yzn(an—1> = y2n-1(r2n—1>

and

1
y?n(rw:): 2 eT’",

respectively. Hence

Agp = € — y3n1(T9n-1) >0,
7on = log 2 Ayn > log 2(e" — 13,_,)
> log 2(—;— e’“*‘) = Tyno1.
Next we put
You(R) =2, (Ry-i=R=Ry.),

where Ry, = ¥:a(734), and put
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y2n+1(r) =eer— Ay (Ton =7 = Tonsr)

Here 73,.; will be determined after R;,.; is determined and A,,.; is determined
by the equation

Von+1(T2n) = Yan(Ten) .
Hence it holds that

1
€ Tyy — Agpir = Te“"

and
1
Agpr= €™ (rzn - ‘2*) .
We choose next 7y, ; such that ¥sn+1(7en,1) = (7'an,1)* or

1
2 _ =
(Tan,1)? = €7rgp, —e™™ <r2n a9

CoMS A T m U (51, ),

Tan,1 =

For this 7y,,,, we take Ry, = (1 + &R,, ;, where

Ron,y = (720,,)" .

We put
Y2n+l.l(R) =2 ’ (Rzn é R _S_.Rzn.l) >

and
2, (Rw1=R=R,,,)

Yoni1o(R) =
e 2( ) IOg R—Bzm (R2n,2 é R é R2n.3) ’
where B,, and R,,; are determined by the equations

Y2n+1,2(R2n,2) =2
and

Y2n+1,2(R2n,3) = 'é_ log Ryn,s »
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respectively. Hence
2
an = IOg R2n,2 —2 and R2n,3 = (__e‘g_'—> > Rzn,z .

We next determine Yg,.;3(R) in Ry, s=R=R,,,, as follows. First we put

RY#ers® = kR — Byt (Rens = R= Rynir,1)

where

k2n+1 -

(2 log Ryy,s — Bsn

R (log Rzn, 3~ Ben)
R 2n,3
2n,3

and B,,., is determined by the equation

R3zgs o) = kyp 1 Ryp s — Bapsy = R;}E/,zglogn,,,,,’
SO
Binii = kni1Ron,s — RER8% >0,
Thus

log {£3n+1R — Bypai}

Y2n+1.3(R) = IOgR

’ (RZn.S é R é R2n+l.1) .

Here R;,41,; is uniquely determined in the following way ; Yn41.5(R) is monotone
decreasing in R(=R,,.1,0) for some Ry,.1 (= Rsns), and tends to 1 as R— oo,
Thus there exists an R,,.,,; such that
Y2n+1.3(R2n+1.1) =2.
We take R2n+l = (1+8)R2n+1.‘ and put
anﬂ.s(R) =2, (R2n+1.1 =R= R2n+l> .
For this Ryn+1, we choose 75,,; such that

y2n+l(r2n+1) = R2n+l .

Hence

_ e (ryn—(1/2)) +R2£4_-1

efz'n

> Toana > Tan«

Tan+1
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Thus, we obtain

Y(R)-log y(r)

Yiu(R) log yon(r) = A, (ren-y =7 = 13,) and (Ryn-y = R = Ry,)

_ Yons1.1(R) 108 ¥2nsi(7) = B, (ren S 7 = 735.1) and (Ryn = R = Ryn,y)

C ) Yenns(R)log Yania(r) = G (Tana =7 =1303) and (Ryn,1 = R = Ry s)
Yons1.s(R)l0g yonii(r7) = D, (7303 = 7 = 73p41) and (Ryns =R = RMH) .

From the above construction, we have
1
A=2log *2*6’< 2r,
B=2loge = 2r,

1
C= 5~ 108 Yansi(r)* 108 Yanss(r) = —5- (108 Yuner(r)'

= (log r*)? = 2(log r)*

o=

and
D = log yan+1(7) 10g Y2n+i(r) = 4 (log 7)*.
Now, by using these functions Y(R) and y(r), we show the existence of f(2)
and g(z) which satisfy the property stated at the beginning of this section. By

a result of Edrei and Fuchs [2], there exist integral functions f(z) and g(z)
such that, given any &> 0, estimates

(1—}—‘6) yr)=log M(e", f) = (1+8&)y(r)
and

(11?) R¥® < log M(e*, g) = (1 + §RT®

hold for all sufficiently large values of » and R, since y(r) and R¥‘® are positive,
increasing, unbounded and convex functions of 7 and R, respectively. Here R=2y(r)

and log M(e®, g) = R**®. Thus we see
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[ = 1L, (ron-1 =7 = 14a,,) and (Ryn-1 =R = Rjn.1)
Y(log M(e f)) <'—OSM = I_OgL = log r, (rzn =rs r2n+l) and

Y(R) 2
(Rzn.l é R é R2n+l)

for all sufficiently large values of 7.
Further, we have

lim 2D _ 1 and lim 08l M f) _ |

mom Y(R) and IR Tog ()
since
. log M(e R#®
}zﬂw = R”(“") ) - hm - RT® = 1
and

. logM(e’, f) _
lrl_.m y(r) =1

We also have
p(M(e’, f)) log log M(e’, f)

_ @(M(e, f))  Y(log M(e', f)) log log M(e’, )
~ Y(log M(¢", ) Y(R) log y(r) Y(R)-log y(r)

and
Y(log M(e’,
Y(R)
=12r,(rgn-1 =7 =732n1) and (Ryp-y = R= Ry )
= log - 4(log )’ = 4(log ), (Pon 1 =7 =7241) and (Ren1 =R=Ryn+1)

I y(R) 1og y(r)

for all sufficiently large values of 7. Therefore

Tm log log & 1\4(6 (e",9(f)) <Tm @(M(e’, f)) log log M(e", f)

r—oc0 r—00 r

¢(M(e f)) Y(log M(e',f))log log M(e’, f)
-Y(logM(e ) YY) Tog y(r) Y (7)) log y(r)

T—boo r

=2.
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Further we have

»1——log log M(e f)<l log (1+8)y(r) < 10g_e’+19g£1+8) -1

r—o00 r—o0 r—-oo r

l—log log M(e f)> T log (1/1 +8)y(r) = Tim log (1/2) €™ + log(1/1+€)

700 r—roo

Typ—roo Ton

=1,

loglogM(e f)<1 10g(1+8)y(7)<1 log {(14+8)73nei} _ —o0,

Tanr1—oo Tan+1

lim

=3 T—oo

lim

R o0 R—oo Rooo

1:—log log M(e g)<l log{(l-ll—ze)R"“”} <Tm log{(1+I§) R}

l]_{tlrp(d*) = hm Y(R)hm ;((R; oo,

and

lim p{e®) = lim Y(R) Tim ‘)’;((;3 2.

RS5w

Therefore we can see that there exist integral functions f(z) and g(z) such
that f(z) is of order 1 and of lower order zero and such that g(z) is of zero

order and llmcp(R)— o and lim @(R) < oo and further such that g(f(2)) is of

RS

finite order.
However, we note that, by Lemma 2, the order of ¢g(f(z)) is greater than

or equal to that of f(z).

5. Now we shall deal with the case (b) where limg(r) is finite.

THEOREM 2. Suppose that f(z) is an integral function of the positive
and finite order p and that g(z) is a transcendental integral function of

zero order. If lim @(r)= M is finite, then the order of g(f(z)) is finite and
less than or equal to pM, where @(r) is defined as in (1).

PROOF. If f(z) is of order p, then for any & >0, we have

p(r)<M+¢&
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and

log M(r, f) < rt+e

for all sufficiently large values of 7. Hence (3) implies

i Jog log M(r, 9()) _ 1, #M(r.f) log log M(r. f)
P log 7 P log r

Tim (M+¢&)log r**

=
T e log

=(M+8&(u+é.
Since € is arbitrary, the order of g(f) is less than or equal to uM. This proves
Theorem 2.
We note that the order of ¢g(f(2)) is equal to pM if the limit
lim p(r) = M

exists.
When f(z) and g(z) are both of zero order, we can prove the following.

THEOREM 3. Suppose that f(z) and g(z) are transcendental integral
Sfunctions of zero order and satisfy the following condition (1) or (1I):

limlggﬁgw = A, >0,
= (lOg 7‘) '

= Pr)
1752 (loglog r)& — B, >0

()

for any ¢, and d, satisfying 0<c,<1,d,>0 and c,(d,+1)>1;

lim lﬂglgngf) =A,>0,
== (loglog )
- loge(r) —B,>0

lim o log 7

(I1)

for any c, and d, satisfying c;,>1, 0<d,<1 and c,d,>1. Then g(f(2))
is of infinite order. Here ¢(r) is defined as in (1).

PROOF. Suppose that (I) holds. Then we see
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log log M(r, f) > % A, (log r)»

for all sufficiently large values of » and there also exists a sequence {r,} such
that 7,-— oo as n— oo and such that

P(M(ro, ) > % B, (log log M(r4, £))",

since M(r, f) is continuous, increasing and unbounded of 7. Thus, by (2), we
have for any &€>0,

Tim L0g log M(r, 9(f) — ji @(M(7, f)) log log M(r, f)

lrl},g log r Fproo 1+¢&) logr,
= Tip 1/2)B. - {log log M(r, f)}* log log M(ry, f)
= e 1+¢&logr,

(1/2)B,{(1/2)A,(log )"} #*!
A+&logr,

= lim
Tp—r00

11m (1/2)dl+231 ° Aldl+1(10g rn)cl(d1+l) _
o (1) log 7 -

oo,

since ¢,(d,+1)>1 by our hypothesis. In particular, if A,B, = o, we may replace
a part of the condition (I) by ¢,(d,+1)=1 instead of ¢,(d,+1)>1.
Suppose that (II) holds. Then for any sufficiently small € >0, we have
log log M(r, ) > (A, — &)(log log )

for all sufficiently large values of r and there also exists a sequence {r,} such
that 7,— oo as n— oo and such that

@M(ra, f)) > exp{(B, — &)(log log M(r, f))"} .

Thus by (2), we have for any sufficiently small &> 0,

Tim log log M(r, 9(f)) > Tm @(M(ry, f)) log log M(r,, f)
00 IOg r ra—ro0 (1+8) log Tn

= T, €xPl(B: —&) {log log M(ry, £)} ] log log M(rs, f)
s 1+8&)logr,
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= i &XPLB: =8 (A, —€)(log log 7,)*} “)(A, —€)(log log 7,)"
rrmsco (1+¢&)log 7,

_ To _lexp(loglog )} - s=0ogiogr®h I 4, — &) (log log 7,)*
‘rw 1+8&)logr,

— Tim (log 7)) ¥ -0emsowr 257 A, —g) (log log 7)
Tyreo 1+¢&logr,

:OO,

since ¢,d;—1>0 by our hypothesis. In particular, if Af*B,>1, we may replace
a part of the condition (II) by c,d,=1 instead of c,d,>1. This proves Theorem 3.

REMARK 1. In (I) or (II), it can be shown in the similar way that we

can replace lim and lim by each other.

REMARK 2. If the conditions (1) and (II) do not hold, then the assertion
of Theorem 3 is not valid. In fact, about the condition (I), for any z,,y,(0<x,
<1,5,>0 and x;(y,+1)<1), we can find integral functions f; (z) and ¢, .(z)
such that these functions satisfy

. 10g 10g M(r, fl v @..4(7)
1712 (log 7)™ >0 andlrg;:(l logr’“>0 Z=1,2,3)

and that ¢,,(f1.1)s 91.2(f1.2) and ¢.s(f1.s) are of order infinity, finite and zero
respectively, and we can also find integral functions f3 ,(z) and ¢, ,(z) such that
these functions satisfy

~— log log M(7, f5..) @2,4(7) _
M g 70 M (g log 7 O =129

and that ¢, ,(f3 1), 92.2(f2.2) and gs.5(f25) are of order infinity, finite and zero,
respectively. We can have the similar result about the condition (II).

The following can be easily proved by the same argument as that in the
proof of Theorem 3.

THEOREM 4. Suppose that f(z) and g(z) are transcendental integral
Sfunctions of zero order and satisfy the following condition (1)’ or (II) :
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lim log log M(r, f)
m
e (log )

: ()
lrfi (log logr)*"

< oo
(Iy

for any ¢’y and d’', satisfying 0<<c';<1,d’1>0 and ¢’ (d'|+1)<1;

lim log logM(r,ﬁ < oo
= (loglog )"

— logo(r)
1713.} (loglogr)*"

11y

for any ¢, and d, satisfying ¢, >1,0<d,’ <1 and c,’dy <1. Then g(f(2))
is of zero order.

The proof may be omitted.

REMARK 3. For any x,, v,(0<x,<<1,y,>0, x,(y,+1)>1), we can find
integral functions f; (z) and ¢s;(z) ({ =1, 2, 3) such that these functions satisfy

—loglogM(r,fa :) oo T Ps t(r) oo (1 =
1752 (log )™ < co and 171_1.2 (log log r)¥ <o (=123

and such that ¢s.(fs.1), gs.o(fs.) and gs3(fss) are of order infinity, finite and
zero, respectively. Further for any s, ys(xs >1,0<<y; <1 and x;y;>1), we can
also find integral functions f; ;,(z) and g, (), (z=1,2,3) such that these functions
satisfy

E—nlog logM(r,fm) < oo and hml_ogw)_ < oo, (i=1,2,3)

e  (loglog )™ r- (log log r)»

and that ¢,.(fi1), 94.2(f12) and g.s(fis) are of order infinity, finite and zero,
respectively. Here @, ,(r) (k= 3,4,/ =1,2,3) are functions corresponding to g (z)
defined as in (1).
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