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0. Introduction. It is well known that a commutative noetherian ring
with identity is artinian if and only if its injective (directly) indecomposable
modules are finitely generated. If R is left noetherian, but not necessarily
commutative, the latter property implies the minimum condition on left ideals
(cf. [4, Corollary 2.3]), the converse, however, is false in general (cf. [12, p. 375]).
Therefore, two interesting questions arise:

1. What additional ring theoretical properties must a left artinian ring
have to make its injective indecomposable left modules finitely generated.

2. What exactly is the class of all rings with identity for which the
minimum condition on left ideals is equivalent to the maximum condition
on left ideals plus the property that injective indecomposable left modules
are finitely generated.

Similar problems have been investigated by numerous authors, the best
contribution to 1 can be found in [12]. The purpose of this paper is to give a
few partial solutions of these two problems. In §2, we restrict ourselves to
reduced left artinian rings, i. e. rings which are direct sums of division rings
modulo their Jacobson radical J. If R is such a ring and if ER(R/J) denotes
the injective hull of the left i^-module R/J, it turns out that injective
indecomposable left R -modules are finitely generated if and only if the module
ER(R/J)/R/J has finite dimension in the sense of Goldie (Theorem 2. 2). In §3
we restrict the discussion further to rings which are direct sums of finitely
many local left artinian rings. These rings have the property that their injective
indecomposable modules are cyclic and their submodules are linearly ordered if
and only if the dimension of ER(R/J)/R/J is equal to the number of prime
ideals of R which are large left ideals. In § 4, we show that for the class of all
rings which are commutative modulo the square of their Jacobson radical the
minimum condition on left ideals is equivalent to the maximum condition on
left ideals plus the property that injective indecomposable left modules are
finitely generated (Theorem 4.1).

DEFINITIONS AND NOTATIONS. Throughout this paper each ring R will



334 G. KRAUSE

be a (not necessarily commutative) ring with identity element 1, each module M

will be a unitary left i?-module in the sense that lm = m for all m^M.

E(M)=ER(M) denotes the injective hull of the left R-module M, π(M) is
a set of representatives of the isomorphism classes of indecomposable injective
submodules of E(M).

A submodule N of M is large in M (denoted by JVc' M), and M is an
essential extension of N if NΠX^O for every nonzero submodule X of M.

Dually, a submodule N of M is small in M, if X+N^pAl for all proper
submodules X of M. A module M is said to be small, if it is a small submodule
of some module. Xt = Xι(R) = {r £ R \ rX = 0} denotes the left annihilator in R

of the subset X of the left R-module M. Yr = Yr(M) = {mz M\ Ym = 0} denotes
the right annihilator in M of the subset Y of i?. A prime ideal P of R is
called associated with the module M, if P = JVί for all nonzero submodules JNΓ
of some submodule N of Λί. The set ch(M) of all prime ideals associated with
M is called the characteristic of M. The set suρp(M) is the set of all prime
ideals of R wτhich contain the left annihilator Mt of M.

J = J(R) = Jacobson radical of the ring JR.

S(M) = socle of the module M.

C(M) = heart of M = M n /°\ ker/9
£ € J ( Horn R{E(M)

Z(M) = singular submodule of M.

M(BN = direct sum of the modules M and 2V.

M£ = (discrete) direct sum of the modules Mt.

= dim(Λf) = Goldie-dimension of the module M.

A ring R is called local, if R/J is a division ring, R is called reduced, if

R/J is a direct sum of division rings.

1. Preliminaries.

1.1. DEFINITION. (Bass[2]) Let Σ be a non-empty family of cyclic left
R-modules. A Σ-module is a nonzero direct sum of modules eachof which is
isomorphic to a member of Σ. Σ is called an injective basis fori? if every
nonzero injective R-module contains a Σ-module.

1.2. EXAMPLES, (a) Σ = {R/I\I any proper left ideal] is an injective basis
for any ring R with identity (b) (Matlis[ll]) if R is a commutative noetherian
ring, then Σ = { i ? / P | P any prime ideal] is an injective basis for R.

1. 3. DEFINITION. A left noetherian ring R is called a Matlis ring if the
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set Σ = [R/P\P any prime ideal} is an injective basis for R.

1.4. REMARK. Matlis rings (although not under this name) have been
studied in the author's previous papers [6] and [7]. Since a left noetherian left
uniform prime ring has no zero divisors by [5, Lemma 3. 3 and Lemma 3. 8], it
is clear that the class of all Matlis rings is a subclass of the class of all left
noetherian rings whose prime ideals are completely prime. The two classes,
however, are not the same (cf [10, Exemple 10.1]). In certain cases one knows
the inner structure of Matlis rings quite well, one result being the following :

1. 5. THEOREM. A ring R with minimum condition on left ideals is a
Matlis ring if and only if it is reduced.

PROOF, cf. [7, Theorem 3. 6]

1. 6. COROLLARY. A ring is a semi-simple Matlis ring with minimum
condition if and only if it is a direct sum of finitely many division rings.

The following result will be needed in section 3.

1. 7. LEMMA. Let R be a left noetherian ring, let Σ = [Ei9 i £ /} be a
set of injective left R-modules with small socles, and let F be a direct
sum of modules isomorphic to elements in Σ. Then S(F) is small in F.

PROOF. Without loss of generality it may be assumed that Σ consists of
injective indecomposable modules. For let E be injective with small socle and
let E be the direct sum of injective indecomposable modules Ek, k £ K. If

+ X = Ek9 with X*Eko for some Koz K, then S(E)+ XΘ φ Ek = E,
\ k*k0 I

where X 0 ^ ^ Ek^E, a contradiction to the smallness of S(E) in E.

Assume now that S(F) is not small in F, let N ^ F be a submodule of F
such that S(F)+N= F. Since F is injective, E(N) can be imbedded in F,
whence F= S(F) + E(N). Since S(F)φN,N cannot be a large submodule of F,
so that E(N)±pF. Thus there exists a nonzero submodule M such that
F=M®E(N), whence S(F) = S(M)0S(E(N)). Therefore, F=S(F) + E(N)
= (S(M)®S(E(N))) + E(N) = S(M)®E(N). Therefore, S(M) is injective and
hence a direct sum of modules in Σ by [11, Theorem 2. 5] and[l, Theorem 1],
But this implies that some module in Σ is equal to its socle, contradicting the
assumption that all elements in Σ have small socle. Therefore S(F) must be
small in F.
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2. Reduced left artinian rings.

2.1. PROPOSITION. Let R be a left artinian ring and let Pu , Pn

denote the finitely many prime ideals of R. Then :
(a) / / R is reduced, then R/J ^R R/P, Θ Θ R/Pn and ER(R/J)
^R E^R/Pi) Θ Θ ER(E/Pn).
(b) If R is a direct sum of local rings, then HomR(ER(R/P),ER(R/P)) is a
left and right perfect local ring with nilpotent Jacobson radical for
every prime ideal P. Furthermore, the ring HomR(ER(R/J),ER(R/J))
is isomorphic to the direct sum of the rings Hom^E^jR/Ps), ER{R/Pi)\
i = 1, , n.

PROOF, (a) It follows from [7, Theorem 3. 6] that prime ideals of R are
n

maximal left ideals. Since J=f^Piy R/J is a left i?-module of length n.
i=l n

Since R/J can be imbedded monomorphically in the module ^ft R/Pι of length

n, it follows that this imbedding is an isomorphism from R/J onto

and can be extended to an isomorphism of ER(R/J) onto ^ ^ ER(R/Pi).
ί = l

(b) Since prime ideals are maximal left ideals by [6, Satz 4.2], each
ER(R/Pi) is injective and indecomposable, which by [9, Theoreme 2.1] implies
that Hi = UomAEAR/Pi), ER(R/Pi)) is a local ring. Thus it suffices to show
that the Jacobson radical of each Ht is nilpotent. Let P be a prime ideal, let
E = ER(R/P). Since R is left artinian, Pn = Pn+1 for some n. Since supρ(M)
= ch(M) for every left i?-module M by [6, Satz 4.2], we get

ch(E/PXE)) = supp(£/P?(£))<= supp(E) = ch(£) = {P}

Therefore, E/P?(E) = 0, since otherwise E/P%E) would contain a nonzero
submodule whose annihilator is P, contrary to the fact that pn = pn+\ Thus
PnE = 0. Let now φl9 φ2, , φn £ g = J(UomR(E, £)). By [6, Satz 4. 2 and
Lemma 3. 5]

Pr(E)<zC(E) =

whence (Pn~ιe)φι = 0 for every e$ E. Thus

{P*-ιe)φy c Pr(E) c

for every e <Ξ E, whence (Pn~2e) φλφ2 — 0. Continuing this way, we finally
obtain (Pe)φ1φ2 φn-λ = 0 and hence eφx φn-1 € Pr(E) c; (φ^E) for every
e € E. This shows that gn = 0.
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To prove the last statement, let φ £ HomR(E(R/J), E(R/J)). By (a),
ER(R/J) = Ex Θ Θ E», where Et^E^R/Pt)9 i = 1, , n. Assume E ^ φ E*
for some fixed £, Then α:<p ==.*;!-f ••• + x n , where x5^E5 and .r, ^ 0 for at
least one j ^ i. Since maximal left ideals of R are prime ideals (cf. [7, Theorem
3.6] and since supp(£j) = ch(E,) = [P3] by [6, Satz 4.2], it follows that
(xj\ c P,. Thus

whence Pj € supp(E0 = ch(£i) = {Pi}, a contradiction. Hence Etφ c Ei for all
z = 1, , n. If we define φX = (φ \ Eu , φ \ En) for all φ € Hom^E^R/J),
ER(R/J))y then λ is clearly a ring isomorphism of the ring HomR(ER(R/J),
ER(R/J)) onto the direct sum of the rings Hom^E*, Et)9 i = 1, , nt

2. 2. THEOREM. The following properties of a ring R are equivalent:

((a) R is a Matlis ring.

l(b) Injective indecomposable modules are finitely generated.

ί(a) R is a reduced left artinian ring.

|(b) dimR[ER(R/J)/R/J]< 00.

PROOF. (l)-»(2) Since R is left artinian by [4, Corollary 2.3], (2a)
follows from [6, Hilfssatz 4.1] and [7, Theorem 3. 6]. Since R/J is a noetherian
left i?-module, E{R/J) is a direct sum of finitely many indecomposable modules.
Therefore, E(R/J) is finitely generated and hence noetherian, since R is left
noetherian. Thus E(R/J)/R/J is noetherian which implies in particular (2b).
(2) —> (1): Let JF\, , Pn denote the finitely many prime ideals of R. Then

n n

R/J=R 0 R/Pt and ER(R/J) s 0 E(R/Pt) by Proposition 2.1. By [7, Theorem

3.6] R is a Matlis ring, so (la) holds. Let now E = ER(R/P) be an injective
indecomposable module and assume without loss of generality that P=P1. Then

^(ECR/Pt)® 0 R/Pt)/0 R/Pic φ JW-P*)/φΛ/Λ

which implies that E(R/P)/R/P has finite dimension. Since P is a maximal left
ideal, R/P is the socle of E = E(R/P). Define St(E) = S(E) and S^/St-^E)
=S(E/Sί-ι(E)) for ί > l . Since i? is left artinian, S(M)=Jr(M) for every unitary
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left jR-module M. Therefore, the nilpotence of J shows that the lower Loewy-

series Sλ(E) c S2(E) c terminates at E after finitely many steps. Thus it

suffices to show that for every i the module E/St(E) has finite Goldie-dimension

since this implies that 5t+1(JE)/5t(JE) = 5(J5/5t(£)) is a direct sum of finitely

many simple modules and thus finitely generated. From this (lb) follows

immediately since Sλ(E) = R/P is simple and extensions of finitely generated

modules by finitely generated modules are finitely generated.

By the above E/Sλ(E) has finite dimension. Assume that E/St(E) has finite di-

mension m for z'i^l. Then S(E/Si(E)) = Si+ι(E)/Sί(E) is a direct sum of m simple

modules and thus of the form ^ ^ R/Pι with prime ideals Pt. Since R is left
ί = l m

artinian, every module has a large socle* so that E(E/Sι(E)) = ζ^ E(R/Pi).

Thus,

s 0 ΈKR/Pi)/ 0 */P ts 0 [E{R/P0/R/Pi],
ι=l i=l i=l

where the last isomorphism is given by

VI

φ : (<?, + •+ em) + 0 R/P^ie, + R/P,) +•••+ (en + R/Pm).
1 = 1

Since each E{R/Pi)/R/Pi has finite dimension, E/Si+1(E) can be embedded in a

direct sum of finitely many finite dimensional modules and is thus finite

dimensional.

Condition (2b) in the theorem is indispensible, since there exists even a

local left artinian ring which has no finitely generated injective modules.

2. 3. EXAMPLE (Rosenberg and Zelinsky [12, p. 375]). Let K be a field, σ

an isomorphism of K into itself such that [K: Kσ]= oo. Define a ^-bimodule

N in the following way : As left iί-module, N is isomrphic to K, on the right

define nk = (kσ)n for k £ K, n^N. If we define iV2 = 0, the two-sided X-module

direct sum R = K 0 N is a ring with minimum condition on left ideals with

Jacobson radical N. R/N is a field, whence R is a local ring. But R admits no

injective finitely generated modules by [12, p. 375].

2. 4. REMARK. Together with Theorem 2.1 the preceding example shows
that the module ER(R/N) is a module with Goldie-dimension 1 with an infinite
dimensional factor module ER(R/N)/R/N.
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3. Finite direct sums of local left artinian rings.

3.1. NOTATION. If M is a left i?-module and A is a subset of HomΛ(M, M),

and N a subset of M, we define At = {m £ M\mA = 0} and iVr =

{fl € HomR(M, M) I iV/β = ()}.• Λr is called the closure of A.

3. 2. THEOREM. TΛe following properties of the ring R are equivalent:

r(a) i? is a Matlis ring.

/ .. v J (b) For every prime ideal P of R there exists an integer

\ n = n(P)>0 such that PnER(R/P) = 0 .

1 (c) Injective indecomposable left R-modules are finitely generated.

!

(a) R is a Matlis ring.

(b) R has the Art in-Rees-property for left ideals.

(c) Injective indecomposable left R-modules are finitely generated.

!

(a) R is a direct sum of finitely many local left artinian rings.

(b) The Jacobson radical of HomR(ER(R/J\ ER(R/J)) is the closure
of a finitely generated right ideal.

{ (a) R is a direct sum of finitely many local left artinian rings.

(b) άϊmR[E(R/J)/R/J]<oo.
PROOF. ( l)->(2) : By [6, Satz 4. 2] it suffices to show that ch(M) = supρ(M)

for every left i?-module M. Let E be injective and indecomposable, E = ER(R/P)

for some prime ideal P, and let Q £ supρ(Έ). Since Pn QQ for some natural
number n,P=Q since prime ideals of R are maximal. Thus ch(E) = supp(i£).

If M is any module, E(M) = ξ y Et with injective indecomposable modules

Et (see [11, Theorem 2. 5]). Since R is left artinian, there exist finitely many
n

Ek,k = ±, --,n among the Eίf i e I such that E(M\ = / ^ ( Έ ^ Thus, if

Q e supp(M), Q contains at least one of the (Ek)h k = l, ,n, whence

Q e suppCE*) = ch<Έ*) c ch(£(M))=ch(M).

( 2 ) -> ( 3 ) : (3a) follows from [6, Satz 4. 2]. By 2.1 and (2a), £ = EB{R/J)
n

is finitely generated and thus artinian. Therefore, by [3, Theorem 3.1], C(E)= j \

ker βι for finitely many βt in the Jacobson radical ^ of H = HomR(ER(R/J),

ER{R/J)). Since ker βt = (&)«(£) - (β HUE) and since C(£) = <&(£), we get
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whence glr = ΠΓft/ ίL If /9e/Ir, then C(E)β = ̂ β = 0, whence C(JE)cker&

Since C(£) is a large submodule of .E, keτβ £ '£, whence £ e ^ by [3, Theorem
3.1]. Thus # = # l r and (3b) is proved.

(3)->(4) : If 8= ( Σ & ^ U t h e n C{E(R/J)) = ̂  =

= /^\ (AH), = /^\ker A Since E(K/J)/ keτβi^E{R/J)βi Q E(R/J) for every

ί and since E(R/J) is finite demensional, this implies that E(R/J)/C(E(R/J))
is finite demensional. Since R/J is a semi-simple module and since C(E(R/J))
= S(E(R/J)) by [7, Theorem 4.2], this implies (4b).

( 4 ) - > ( l ) : It follows from [6, Satz 4.2] that R satisfies (la) and that
ch(M) = suρp(M) for every left i?-module M. Since ch(E(R/P)) = {P} for every
prime ideal P, it follows that P/E(R/P)ι is the lower Baer nil radical of the
ring R/E(R/P)i and is thus nilpotent since R is left noetherian. But this implies
(lb), and (lc) follows from Theorem 2. 2.

3. 3. REMARK. It would be interesting to know whether in the situation
of the preceding theorem the Jacobson radical of HomR(E(R/ J), E(R/J)) is
itself a finitely generated right ideal. In any case, condition (3b) of the theorem is
indispensible as Example 2.3 shows. It may be noted that with the notation of this
example it follows from 2.1 that the endomorphism ring of the module ER(R/N)
is a left and right perfect local ring with nilpotent Jacobson radical which is
not right artinian.

3. 4. PROPOSITION. Let R be a direct sum of finitely many local left
artinian rings. Then:

(a) dim [E(R/P)/R/P] Ξg 1 for every prime ideal P which is a large
left ideal.

(b) dim [E(R/J)/R/J] is not smaller than the number of prime ideals
which are large left ideals.

PROOF, (a) Let P be a prime ideal with dim [E(R/P)/R/P] = 0. Then
R/P=E(R/P) and R/P is injective. Since ch(RR) = supp(Λi?) = {P\P any prime
ideal] by [6, Satz 4. 2] and since R is a Matlis ring, R/P can be imbedded in
R. Thus R^RR/PφX for some left ideal X. Since R/P is a simple module,
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X is a maximal left ideal and therefore a prime ideal by [7, Theorem 3.6.]
Since R/X^RR/Py it follows that X=(R/X)ι=(R/P)ι = P, so that P is not
large in R. (b) follows immediately from (a) and from the fact that E(R/J)/R/J

n

= φ [1%R/Pι)/R/Pt\> where the Pt denote the finitely many prime ideals of R.

If dim [E(R/J)/R/J] is equal to the lower bound given in 3. 4, i. e. if it
is equal to the number of prime ideals which are large left ideals, then much
information can be obtained about the structure of the injective indecomposable
left i?-modules.

3. 5. THEOREM. The following properties of the ring R are equivalent:

(a) R is a Matlis ring.

( 1 )
(b) R has the Artin-Rees-property for left ideals,

(c) Injective indecomposable left R-modules are cyclic and their
submodules are linearly ordered.

Γ(a) R is a direct sum of finitely many local left artinian rings.
) s (b) dim [E(R/J)/R/J] is equal to the number of prime ideals

\ which are large left ideals.

PROOF. ( l ) - > ( 2 ) : By 3. 2 it is clear that (1) implies (2a). Let Pl9 , Pn
n n

denote the prime ideals of R. Since R/J^B@R/Pt and E(R/P)^Rφ£(i?/P4)

by 2.1, it follows that dim [E(R/J)/R/J] = £ dim [E(R/Pi)/R/Pti. Since

the submodules of E(R/Pi) are linearly ordered, either E(R/Pi) is simple or
there exists a unique minimal submodule of E{R/P^) which contains R/Pi
properly. Therefore, it follows that άim[E(R/Pi)/R/Pi] is either 1 or 0. In
order to prove (2b) it thus suffices to show that dimiEiR/P^/R/P^ = 1 iff P t

is a large left ideal. By Proposition 3. 4 it is clear that dim[E(R/P)/R/P] = 1
if the prime ideal P is a large left ideal. Assume P is not large. Since R is a
Matlis ring, every nonzero submodule of E(R/P) contains an element ^F 0 whose
annihilator is P (cf[7, Theorem 2. 7]). Thus Z(E(R/P)) = 0, whence C(E(R/P))
= E(R/P) by [9, Propriete 3. 4]. Since C(E(R/P)) = S(E(R/P)) = R/P by
[7, Theorem 4. 2] this implies dim[E(R/P)/R/P] = 0.

(2)—>(1) : Assume the first k among the prime ideals Pl9 , Pn are large
left ideals. Since dim (E(R/PΪ)/R/Pι)^l for all i = 1, , & by 3.4 and since

n

dim [E(R/J)/R/J] = k, it follows from E(R/J)/R/Js±@ [E(R/Pd/R/Pt] that
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P4 is a large left ideal if and only if άim[E(R/Pt)/R/P^ = l. Let E=E(R/P) be
an injective indecomposable left i?-module. If P is not large, dim[E(R/P)/R/P]
= 0, whence E(R/P) is simple. If P is large, let SX(E) = S(E) and define
Si+1(E)/St(E) = S(E/Si(E)) for i ^ l . Then dim[£/51(£)] = dim [E(R/P)/R/P] = 1.
Assume dim [£/5 t(£)]^l for z^ l . Since E/S^^ς
^E(E/Si{E))/Si+ι(E)/Sί(E)^E{R/P)/R/P, we conclude that
Therefore, all the factors of the Loewy-series OcSΊc Sm = E are simple. Jf
A ^ 0 is a proper submodule of E and St the largest member of the Loewy-
series contained in A, then A = St since otherwise Si + 1/Sι <Ξ A/Si9 yielding
Si+ίQA. Therefore the members of the Loewy-series are the only submodules
of E. Clearly E is cyclic, every element e^Sm-1 generates E.

3. 6. REMARK. From the proof of 3. 5 it is clear that if dim [E(R/J)/R/J]
= k equals the number of prime ideals which are large left ideals, then this
number is also equal to the number of non-isomorphic non-simple injective
indecomposable left Λ-modules. Furthermore, if under the above circumstances
n denotes the total number of prime ideals, it is easy to see that then R is a
direct sum of n-k division rings and k local left artinian rings which are not
division rings. The special case k — 0 may be of some interest, and we add
another module theoretic condition necessary and sufficient for a direct sum of
finitely many local left artinian rings to be a direct sum of division rings.

3. 7. COROLLARY. The following properties of the ring R are equivalent:

((a) R is a reduced left artinian ring.

((b) The left R-module R/J is injective.

(2) R is a direct sum of finitely many division rings.

(a) R is a direct sum of finitely many local left artinian rings.

( 3)
v J (b) Extensions of small modules by small modules are small

modules.

PROOF. ( l ) - > ( 2 ) : By Proposition 2.1, R/J^Rff)R/Piy where Pu--;Pn

denote the prime ideals of R. Thus each R/Pι is an injective i?-module. Since
prime ideals of R are maximal left ideals and R is a Matlis ring, it follows
that all injective indecomposable left i?-modules are simple. Since R is left
noetherian, this implies that all left i?-modules are semi-simple (cf [11, Theorem
2.5]), so that R is a semi-simple Matlis ring with minimum condition whence (2)
follows from Corollary 1.6. (2)-»(3): Trivial, since every module over a
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semi-simple artinian ring is semi-simple. Therefore small modules ^FO do not
exist and (3b) is fulfilled vacously.

(3)—»(1) : It is clear that (la) holds. Let E be an injective indecomposable
left jR-module. Since R is left artinian, S(E) ^ 0. Since S(E) is the unique
minimal submodule of E, either S(E) = E or S(E) is small in E. We shall
prove that the second case cannot occur. Let again be S^E) = S(E) and define
Si+1(E)/Si(E) = S(E/Si(E)) for z '^1 . Assume St(E) is a small submodule of E.
Since ch(£/St(jE)) = supp(E/St(E)) <Ξ supp(£) - ch(£) by [6, Satz 4. 2] and since
R is a Matlis ring, it follows from [6, Folgerung 2.8] that EiE/S^E)) is a
direct sum of modules isomorphic to E. Since S{E) = Sχ(E) is small in E by
assumption, this implies that S^iffi/S^E) = S(2£/St(E)) = S(E(E/St(E))) is
small in E{E/Si{E)) by Lemma 1.7. Since St(E) is small by hypothesis, it
follows from (3b) that Si+1(E) is a small module and hence a small submodule
of E by [8, Theorem 1]. Thus every S^E) is small in E. Since J(R) is nilpotent,
E=Sn(E) for some n> which leads to a contradiction since E is not small in E.
Thus E is simple, and hence R/P injective for every prime ideal P. By Proposi-
tion 2.1 this implies (lb).

4. The case of a ring which is commutative modulo the square of its
Jacobson radical.

4.1. THEOREM. Let R be a ring such that R/J2 is commutative. Then
the following properties of R are equivalent:

( 1) R is left artinian.

(2) R is a direct sum of finitely many local left artinian rings.

((a) R is left noetherian.
(3)

I (b) Injective indecomposable left R-modules are finitely generated.

PROOF. (1)—>(2) : Since R is left artinian, its Jacobson radical is equal
to the lower Baer nil radical. Thus J, and hence in particular J2 is contained in
every prime ideal. Since R/J2 is commutative, this implies that prime ideals of
R are maximal left ideals. Thus R is a Matlis ring by [6, Hilfssatz 4.1] and
[7, Theorem 2. 7] and hence a reduced left artinian ring by Theorem 1. 5. In
order to establish (2) it suffices to show that S(M) = C(M) for every left
Λ-module M (cf. [7, Theorem 4. 2]). By [6, Folgerung 3.10] this is true if and
only if S(E) = C(E) for all injective indecomposable modules E. Let E be such
a module and let E = ER(R/P) for a prime ideal P. Since S(E) — Pr(E) and
P r (E)cC(E) by [6, Lemma 3.5], it suffices to show that C(E)^Pr(E). Since
Pr(E) is a large submodule of E, it is sufficient to show that E(E/Pr{E)) is a
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direct sum of injective indecomposable modules which are all isomorphic to E
(cf. [6, Satz 3.1]. Since R is a Matlis ring this will follow if we can show
that ch(E/Pr(E)) = {P} (cf.[6, Folgerung 2. 8]). Let therefore Q £ ch(E/Pr(E)).
Then there exists an element 0 ^F X = x+Pr(E) £ E/Pr(E) with Q = Xι. Thus
Qx <Ξ Pr(E), whence PQx=0. Therefore, J2Qxh and since R/J2 is commutative,
it follows that QPx = 0, whence Q c (Px)t. Since x £ PrCE)> P z =*= 0, so there
exists a submodule 0 * N ^ Px such that Nt = P. Thus Q <^ (Px)t Q Nt = P,
whence Q = P, since prime ideals of i? are maximal.

(2)->(3) : In view of Theorem 2. 2 it suffices to show that dim [E(R/J)/R/J]
n

is finite. Since E(R/J)/R/J^R@ [EiR/P^/R/P^ by Proposition 2.1, where

Pi> > Pn denote the finitely many prime ideals of R, it will suffice to show that
dim[E(R/P)/R/P] is finite for every prime ideal P of R. This is true if and
only if the socle of E(R/P)/R/P is the direct sum of finitely many simple
modules. Since suρp(M) = ch(M) for every left i?-module M by[6, Satz 4. 2], we
get

ch(E(R/P)/R/P) = suppGE(i?/P)/i?/P) c supp(£(i?/P)) = ch(E(R/P)) = {P}.

Since P is a maximal left ideal, this implies that

S(E(R/P)/R/P) = P2

r(E(R/P))/Pr(E(R/P)).

For simplicity let E = E(R/P). By [12, Lemma 1], Pl(E)/Pr(E)
^R HomΛ(P/P2, £), where HomΛ(P/P2,£) is a left i?-module by virtue of the
right operations of R on P/P2, viz p(rφ) = (pr)φ for r^Ryp^P/P2^
^ HoπUP/P 2, £). Since P/P2 is a left P/P-module and since R/P is a division
ring, P/P2 is a semi-simple i?/P-module and hence also a semi-simple left
i?-module. Since images of semi-simple modules are semi-simple and since
S(E)^R/P, it follows that

HomΛ(P/P2, E) = HomΛ(P/P2, S(E)) ̂ RHomR(P/P\ R/P)

Since R is left noetherian, P/P2 is a direct sum of finitely many simple modules
Xi9 i = 1, , m. Since (XJi Ώ (P/P2)ι = P for every z and since P is a maximal
left ideal, Xι=R/P for every i = 1, , n. Let now φ be an i?-isomorphism
of the direct sum of m copies of the left i?-module R/P onto P/P2. Then we
define a mapping

: HomB(P/P\ R/P) - Horn, ( φ i?/P,
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by Jψ = φf for every /e= HomΛ(P/P2, R/P). Clearly / is well-defined, additive,
TO

one-to-one and onto. To show that ψ is an P-homomorphism, let a € ^ ^ R/P

and rzR. Then
a[(rf)ψ] = a[φ(rf)] = (aφ)(rf) = «a<p)r)f

where the last equation results from the definition of the left operation of R on
Homβ(P/P2, R/P). Since R/J2 is commutative, R/P2 is commutative, whence sr-rs
€ P2 for all elements r, 5 £ R. Since aφ e P/P 2 and since φ is an jR-homomorphism,

TO

we get ((aφ)r)f=(r(aφ))f=((ra)<p)f. Since α£ 0 i ? / ? and since
ΐ = l

is commutative, ra = ar, whence ((ra)φ)f=((aiήφ)f=(ar)(φf) = (a
— a(r(fψ))> where the last equation follows from the definition of the left

operation of R on Horn* I φ R/P,R/PI. Putting these equations together it follows

that ψ is an R-isomorphism, whence UomR(P/P\ R/P) ^RUomR 0 J J / P , R/P\.
m m m \*=1 /

Let n o w / - X)/ t € 0 HomΛ(Λ/P, i?/P) and define 7̂: 0 HomΛ(P/P, RP)
ί=l i=l i=l

( m \ m m

φ i ? / F , i?/P by a(/i?) = Σ, aπifi f o r a 1 1 « € 0 ^ / ^ > where *,
denotes the canonical projection of £ft i?/P onto its i-th summand. It is well-

i = l rn

known that ?? is a group isomorphism of ^ ^ HomR(R/P, R/P) onto

0 i ? / P , 2?/Pl. In order to establish the fact that η is also an R-

homomorphism, let r^R and a£ ^ f t ^ / ^ Then a((rf)η) = ^(ΛTΓJ)(Γ/" {)
TO t = l ϊ = l

= ^{(a7ti)i')fi by the definition of the left operation of JR on HomR(R/P, R/P).
ί=l

Since α^4 € JR/P and since P / P is a commutative ring, {μn^)r— r(aπ^). Since π%

is an P-homomorphism we thus get
TO TO TO

ί=l t=l ί=l

Since α ^ ^ ^ i?/i^, ^ commutes with r, whence ]Γ] {j'c^itifi — X] (
i=l t=l i=l

= (μr)(fη) = a(r(fη))9 where the last equation follows again from the definition

( TO V

^ ^ R/Py R/P). Thus η is an i?-isomorphism.
/
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Putting all these isomorphisms together, it follows that

Pl(E)/Pr(E) sΛ(fP) Hom(R/P, R/P).

Since images of simple modules are simple, it follows that HomR(R/ P, R/P)
= HomR(R/P,E(R/P)\ whence HomR(R/P, R/P)^Pr(E)/Rr(E) = Pr(E)/O= S(E)
by [12, Lemma 1]. Therefore Pl(E)/Pr(E) is jR-isomorphic to a direct sum of
m copies of S(E)9 which implies that E(R/P)/R/P has finite Goldie-dimension.

( 3 ) - > ( l ) : This follows from [4, Corollary 2.3].

4.2. REMARK. Theorem 4.1 is false, if we only require that R/J is
commutative. The ring of Example 2.3 is commutative modulo its Jacobson
radical, but not commutative modulo the square of its Jacobson radical since
this is equal to 0. On the other hand, the fact R/J2 is commutative was only
needed to prove (1)—>(2) in 4.1. In the proof from (2) to (3) we only used
the weaker condition that R is commutative modulo the intersection of the
squares of its prime ideals. Therefore the question arises, whether this weaker
condition is also sufficient to get from (1) to (2).
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