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1. Introduction. Let {p,};° be a sequence of non-negative constants,
2, >0 and P, = > p,. A sequence {U,}; will be said to be absolutely
summable by the Norlund method defined by the sequence {p,}, or
summable | N, v, |, if ¢, = 3", (., U.,)/P, and

LD St = tial Sc< oo

Varshney [10] showed that if f(x) is a real-valued, 2rm-periodic func-
tion and of bounded variation over [0, 27] and if

L2) | f@+h) — f@)| < Alog ~H(%)<s >0,0<x<21,h>0)

then S(f), the Fourier series of f, is summable | N, 1/(n + 1)|. The
author [8] later proved this result under the following weaker hypothesis:

(1.3) i%w(%) < oo,

where o(t, f) = w(t) denotes, as usual, the modulus of continuity of f.
Recently Izumi and Izumi [3], Lal [5] and others have studied the
conditions for |N, p,| summability of S(f) for general {p,}. Lal has
shown that, if (i) p, >0, (ii) {p.} is non-negative and non-increasing,
(iii) lim,.. p, = 0, (iv) {P, — D.+.} is non-increasing, and if

oo

(1.4) Smat<e  (1<r=2),

and

(1.4) S on ) Prin < oo, <i 1_ 1) ,
1 r S

then S(f) is summable | N, p,|. In this paper we obtain conditions for
| N, p,| summability of S(f) when the series in (1.4) may fail to con-

1 The research work of the author is supported by National Science Foundation Grant
GP-19533.
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verge. Thus our results supplement those of Lal.

In what follows we will suppose that v is a fixed constant, 0 < v <
1/2, ¢, and ¢, are fixed positive constants and +r(x) is positive on [0, «)
and slowly oscillating in the sense of Karamata (see [2], [4]). Let {p,}
satisfy conditions (i)—(iv) and suppose that for n =1,

(v) enyr(n) < P, < eny(n) ,

These conditions are all satisfied if, for instance, we take p, = (n + 1)7'*7,
0 <v<1/2. Some further examples are given in Section 4. We prove
the following

THEOREM 1. Let f(x) be a 2m-periodic function of bounded variation
over [0, 2] and suppose that the modulus of comtinuity w(t, f) satisfies
(1.3) and

(L.5) L g (i> < oo

=1 nP, n

Then under the assumptions (1)—(v), S(f) ts summable | N, p,]|.

2. Lemmas. We shall denote by A a positive constant (possibly
depending on v, ¢, ¢,) not necessarily the same at each occurence.

LemMmA 1 [6]. If {p,} is mon-negative and mnon-increasing, then for
0<asb=s o, 0Zt< 7w and any n, we have

<

@.1) {P(t"‘) for any a,

At™'pr; for a = [t7'] .
Here [x] denotes the integer part of =, and P(x) = Pp,.

b
i(n—k)t
DI A
k=a

LEMMA 2 [6]. If {p,} is non-negative and non-increasing and {p, — 0,+.}
s non-increasing, them

nz(pn — pn+l) nz(pn—-l _ pn)
(2:2) P(n — 1) = P(n — 1) =4.
LemMMA 3. If P(x) satisfies (v) then
n = P(u)du
2.3) T S Wt < 4.

This follows from the properties of slowly oscillating functions [2]. We
have g w A (u)du ~ A (n) (/1 —7), and (n) ~(n—1) and (2.3) follows.
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LEMMA 4. Let

@2.4) I, = S“”H””wz(%)dt :

1/m

The series in (1.3) and the series
(2.5) > 27 eI

are both convergent or both divergent.

Proor. Since

1o ref)

311

the convergence of (2.5) implies the convergence of >\, @w(1/2") and
hence that of the series in (1.3). Suppose now that the series in (1.8) is

convergent. Then

I, < 0*(7) + 0*(1) + 2w2(—;—> +oeee + 2”*10)2( 2}_1) )

$ 2L < ) Sz + 52 S (L)
n=1 1 n=1

p=1

<4+3 2?%( )3 2

n=p+1

<A+AZwQ><A

3. Proof of Theorem 1. Let

f(t) ~ %ao + i‘, (a, cos nt + b, sin nt) = i Uy s
1 0

$(t) = f(w + t) +f(90 — 1) — 2f(@) ,

at) + 50 = 3, pie

a, = St¢(t)a(t) cos nt dt , Bn = Stgb(t)ﬁ’(t) sin nt dt .

We have (cf: [6], [8])
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ﬂltn—tn—-ll =

Sngb(t)ni (%: - i—’:) cos(n — k)t dt‘

A

g:szs(t) 3, e cos(n — bt dt‘

1
P’n—l

+

0

Sl/’n o
6(t) 2. pi cos(n — k)t dt'

p'ﬂ.
+ P.P,_,
1_1 |, fO{ S picostn — e + 5 PP cos (n - D]
= Ti(n) + Tu(n) + Ti(n) + Ty(n) say .

We have to prove that >)|t, — t,_,] < «. By Lemmas 1 and 3
Ln 2w(1/n) S P(u)du 1 /1
— go w(t)P( )dt < P ) w < A= co(n)

and by (1.3), 357, Ti(n) < oo.
Further, since p, |,

g 5(0) S, P. cos(n — k)tdt,

-+

Tz(n) <

Ty(n) < 2p,, « _1.>P0+"°+Pn—-1

P‘nPn—-l n n
20, o(1)p < 24(1
< g )Pens < o)
and so D, Ty(n) < oo.
Further
1 z D & _ sin(n — k& + (1/2))t
Tim) = 5| |, p0[ 5 + e — p) SREELL
P, [, sin(n —k+ (1/2)t 1
P {,,Z:o”" 2 sin(t/2) ohlk "“}]dtl
1 |fr ) (<
< - —
<5 | e 2 (P~ Pi) sin(n —  + = )¢)d|
D e (% _
TP Sun 2 sin(¢/2) \i \Z P sm(” Bt dtl

+ 211;:_ <1 IZ,, 1) len¢(t)dtl

= 41(”’) + 1’42(%) + T43(’ﬂ) .
By Lemma 1
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A(pn — pn-H) |¢(t) i —1
Tulm) = =25 Sun s .
A(pn - p'mH) SI w(t) dt
P,,,__l iUn ¢

< A(pnPn—lpnﬂ) (A + Z a)(k ))

Lemma 2 now shows that

71:2‘2 Tﬂ(n) é A 22 (

k=2

(1) <4 SIS
<A+ A 2:‘,% (%)<oo.

Further SI |6(t) | dt < A and so

oo o 9 oo 1
) A P A Dn A = < o,
2 Tulm) < E PP > @ ¥ Dpwprs >%<
By Lemma 1
Amg”wwll- AmS” 1 dat
T, = Pl=)dt < wl = )P(t)=,
™ =355 ). (t> PP, s (t) e

and

3, Tum) = A3, Pj;;;_ (4+ 30 _1_)&)

<A+ A

,;u
P
M

g
—~~
~
e

>
[
-

[l

S

+

b

Ml
VS /‘e\

;v|p—? =~ =~ 9

<A+ A i a)(
We now consider T.(n) < (|a,| + | Bul)/Poi.
Let ¥(t) = ¢t + Wa(t + h) — ¢(t — h)a(t — h). Then ¥(f) is even and
a(t) € L, for by Lemma 1, ‘

S:a%t)dt < S:P2<%>dt <A S:qﬁ(%)t—%dt c o
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By Bessel’s inequality we have for 0 < h < 7/4,
Sz sintnh| < A r[W(t)ldt
[5 @t + h) | {§(t + h) — 6t — h)) [dt

+ Y lge) |t + 2Ryt + Shh|¢2(t) | ()t

( | 6(t) | et + 2h) — a(t)}zdt]
[I(h) + Iy + LM + L] .

By (v) and Lemma 1,

L) < AS w0 P t +12h )at

< Aw(h) gh P{%)dt < Ahw*(h)Pz(-ilL-) ,

and
Lk = g':h |6(t) | @(t)dt < Aw*(h) Sih Qi (t)dt
< Aw(h) S:P2<%>dt < Aw?(h)hpz(_};) .
Since [6]
|a(t + 2h) — a(t)| = ARt™'P(h7) ,
< () -0 < e ()

We now estimate I,. Since f is of bounded variation over [0, 27] we
have

St e+ F) - oler -0} | < a0(F)P(3)-

Integrating from 0 to = (cf. [8; p. 241-2]) we get

2NI(S%) < Aw(%)S:P(%)dt < Aw(%)gl zf)dt < 4o(Z N)

Taking h = 7/(2N) we get
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a, sin’ (2N>l < A{N (JEV) + fvl'wz(zN)P (2N>
=P )L (3
<afgol(§) + wEON. ()
Letting N = 2* we have
{5 1al}” < af$jessin (22))"

2v 7141 Qv+l
<afiefg) - L ()"
<Al - 2N i)

Z 1 2
E i < A——
w1 P2, P2

and an application of Schwarz inequality gives

& ]a'nl < A 2012 { 1 w'? i) .lP( . Szyﬂ/” 2 l)dt)llz}
2"§+1 P, - P2 L2+ <2" + 2v T >( 1z @ (t ’

By (1.5),

>

By (v) we have

1 nf T
i C A ,
25 (z) <
and by Lemma 4,

S EE ([, ()" < a.

Hence 35, |a,|/P,—,< co. Similarly 37, |B8,|/P.—,< e and so 3. [t,—t,,|<
A <  and the proof is complete.

4. Remarks and Examples.

(@ If (1.3) holds and >;1/(nP*n)) < o, then an application of
Schwarz inequality shows that (1.5) holds.

(b) The condition (1.5) implies that
w(%) < A(P(t)flog*t, t=2.

Consequently
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> w<—21—> < AT (PH2M)/nt .

Hence if (1.5) holds and
(4.1) 2L (PH2M)/n* < oo

then the series in (1.3) is convergent.

If we take, for instance, p, = (n + a)~'(log (n + a))™*, a = 3, then by
considering y(z) = (x + a)~'(log (x + a))~* we see that p, satisfies the con-
ditions (i)-(iv). Further P, ~ loglog » and so (4.1) and (v) are satisfied
(with v = 0).

(¢) Zygmund [11; 241-2] proved that if f(x) is of bounded variation
and

(4.2) S, nwn ) < oo

then S(f) is absolutely convergent. Our theorem gives the following
analogue of Zygmund’s result:

If f(x) is of bounded variation and if (4.1) holds, the then convergence
of the series in (1.5) implies the absolute summability | N, p,| of S(f).

Note that if we take p,=1 and p, =0 (n > 0) then (1.5) is the
same as (4.2) and the summability | N, p,| is the same as the absolute
convergence.

Example. Let

P, = ¢ log(n + ¢)
" (n+e)loge’

Then p, >0, {p.} ], {P. — Duri} | (cf: [6]). P,~ A(log n)’. Hence condi-
tion (v) is satisfied (with v = 0) and 3, 1/(nP?) < . (This implies that
(1.5) is satisfied if (1.3) is.) By considering %’(x) where

loge=2.

(x + ¢ log(x + 1 + ¢)
(®+1+c¢) log(x+ ¢

y(@) =

we see that p,../p, ] and so by a known inclusion theorem [6], | N, »,|C
|C, 1].

5. Weighted Arithmetic Means. We now consider the weighted
arithmetic mean ([7; pp. 16-17], [9; p. 32]) of the series > u,. Let
Sy =>¢u,, Let »p, =0, P,>0 and o,=1/P,>: ,».S.. To avoid
trivial cases we shall suppose that p, > 0 for an infinity of n. The
sequence {S;} is said to be absolutely summable by the weighted arithmetic
mean method, defined by the sequence {p,}, or briefly summable | M, p, |, if
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iMs

|0 _0'11—-1{<A<°°-

Let fe C,. (continuous and 27-periodic) and let
0,5, f) = sup| flw + b) + f@ — 1) — 2f(@)| (e [0, 27)

denote the modulus of smoothness of f.

THEOREM 2. Let p, =0, P, =>2p; >0, P,—  and fe€C,. If

)

2 5 lognw<1><oo ,

n=1

then S(f) is summable | M, p, |.
Proor. We have [1; p. 300, p. 533]
| S,.(t) — f@)| < Cwy((n + 1)7') max(l, log n)

where C is an absolute constant. Hence for n =1,

10.0) = 0| = | - 2l — F10) — 5= S pulSutt) — 1) |
= |(F- =) E 250 = 70) + (- ooty - 50|
Thus for 0 =t < 27,
S0 ~ 0] 5 € 5 (5= - 5) B o) max(t, log
+C3 ;: wz( L 1>max(1 log )
< zc{ ) 2 ‘”<ﬂ1__1> max(l, log k)} ,

and our hypothesis shows that the last series is convergent. The proof
is complete.

COROLLARY. If feC,. and 3 (log n/(n + 1))w,(1/n) < o, then S(f) is
summable |C, 1].
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