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THE FAILURE OF INTERIOR-EXTERIOR FACTORIZATION
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Let G be a connected open set in complex %-space C*. Let H°°(G)
denote the algebra of bounded analytic functions in G, with the supremum
norm. It is known that H°°(G) is a conjugate Banach space (see [7],
Theorem 4.5, or [3]) and so has a weak-star (w*) topology. In fact, the
pre-dual of H°° can be taken to be a quotient space of Lι{G) and hence
is separable. Thus by a theorem of Banach ([1], Chapitre VIII, Theoreme
5) a subspace of H°° is w* closed if and only if it is sequentially w* closed
(that is, contains all limits of sequences).

There is also the strict topology on H°°(G) defined by Buck [2]. It
is known that the w* and the strict topologies have the same convergent
sequences: a sequence {fn} converges to / if and only if

sup ||Λ | | < °o and lim fn(z) = f(z), all zeG

(bounded pointwise convergence). In fact, the strict topology is the
strongest topology with precisely these convergent sequences. (See [7],
§3, and [6] for these results. The discussion there is for n — 1, but the
proofs carry over to several variables. See also [5] for a recent survey.)

If fe H°°, then (/) = fH°° denotes the principal ideal generated by /,
and (/)" denotes its w* closure.

DEFINITION. A function fe H°° is exterior if (/) is w* dense in H°°,
and is interior if (/) is w* closed.

Also, / is a unit if 1// e H°\ Thus / is both interior and exterior
if and only if / is a unit. Note that an exterior function in a region
cannot have any zeros there.

It was shown in [7] that in the unit disc Δ, the exterior functions
are precisely the outer functions, while the interior functions are precisely
the inner functions multiplied by units. Hence, every bounded analytic
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function in A has a factorization, unique up to units, as the product of
an interior function and an exterior function.

In this note, we show that the analogous factorization fails, when
n > 1, in the unit polydisc

^w = {«i, •• , z . : | z 1 | < l , •••, \zn\<l}

and in the unit ball

We shall show first that no function in the principal ideal (zj in the unit
ball has an interior-exterior factorization. These results should be com-
pared with [8], Theorem 5.4.8, which is concerned with inner-outer fac-
torizations.

THEOREM 1. Let g(zl9 , zn) = zιf(zι, , zn), where fe H°°(Bn), n>l
/ ί 0. Then g has no interior-exterior factorization.

PROOF. Let

hβ(zl9 ...9zn) = (l-βzn)-«\ | 0 | = 1 .

We first show that \\ghβ\\ ^ V~2\\f\\. Indeed,

-, zn)\> ^

at
0 < rk < 1, and let
Next, we show that ghβ e (g)~. For let us choose a sequence rk j 1,

hβ,k(zu , zn) = (1 - rkβzn)-112,

so that hβtke H°°. Just as above, \\ghβ>k\\ ^ i/"2*||/||. Thus ghβ,k converges
pointwise boundedly to ghβ and so ghβ e (g)~.

Now suppose, by way of contradiction, that g = IE, where I is interior
and E is exterior. Then

gH~ = I(EH~)SIH~ ,

which is w* closed, and so (g)~^IH°° (actually, we have equality here).
Hence, for each β with \β\ = 1, there exists a function φβ e H°° such that

ghβ = Iφβ .

Since g Φ 0, we have 7 ^ 0 , and thus

E(zl9 •••,»») = (<Pβ/hβ)(zl9 , zn) = φβ(zl9 , zn)(l - β z n ) 1 1 2 .

Hence
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lim#(0, « . ,0, zn) = 0
*mr+β

and so i?(0, , 0, zn) = 0. This is a contradiction, since an exterior
function has no zeros. Q.E.D.

We shall next show that in the poly disc An, n > 1, no function in the
ideal {zx — z2) has an interior-exterior factorization.

THEOREM 2. Let g{zu , zn) = (z1 - z2)f(zl9 , zn), where fe H~(An),
n > 1, / Ξ£ 0. ΓΛeπ g ftαs no interior-exterior factorization.

PROOF, if FeH°°{Al), we let

ff*(Si, •••,«•) = (F(zJ - F(z2))f(zly , zn) .

We shall show that #F e (^)". First, assume that F is a polynomial. Then
0* = P9, where pfe, •••, ̂ ) = {F{z,) - Fiz^Kz, - z2) is a polynomial.

Next, for general FeH°°{Al), let tfj. denote the A -th Cesaro mean of
the Taylor series of F. It is well-known that \\σk\\ ^ \\F\\. Thus (σk(z^ -
σk(Zi))f(Zu "', zn) is uniformly bounded and converges pointwise to gF and
hence gF e (g)~.

Now suppose, by way of contradiction, that g = IE is an interior-
exterior factorization. Then, as in the proof of Theorem 1, (g)~ s I£Γ°°,
and consequently ί/̂  e IH°°, say ^^ = IφF. From this, we obtain

- F(z2) E{Z , m m g j
z ι — z2

Therefore,

(1) ΨF{\ λ, z3, , «•) = F'(\)E(\, λ, 2,, , ^)

for all λ G / . Fix «8, •••, 2n, and also choose a fixed ζ, | ζ | = 1, and then
choose F so that F'{rQ —> oo a s r ^ l - . From (1) we see that E(rζ, rζ,
»8,

 # ' , ^ )~*0 since the left side is bounded. Since this holds for all ζ
with |ζ | = 1, we have

E(x,\z3, •••,«») = 0, λez/1,

which is impossible since an exterior function can have no zeros. Q.E.D.
In defining the notion of interior function, we used the w* topology.

We now show that we could have used the norm topology instead; that
is, a principal ideal in H°° is norm closed if and only if it is w* closed.

THEOREM 3. Let G be a region in Cn and let fe H°°(G). Then (/)
is w* closed if and only if it is norm closed.

PROOF. If (/) is w* closed, then it is norm closed, since the norm
topology is stronger.
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Conversely, suppose that (/) is norm closed. Then the operator Mf

of multiplication by / on H°°(G) has a closed range. Since Mf is one:
one, it must be bounded below, by the closed graph theorem. To show
w* closure, it is enough to show sequential closure. Suppose that fgn —• h
pointwise boundedly. Since the sequence {Mf(gn)} is bounded, the sequence
{gn} must also be bounded. Furthermore, gn —• φ — h/f pointwise in G,
off the zeros of / . Thus φ e H°°(G), and h = fφ, which completes the
proof.

In conclusion, we list some open problems.
1) Which regions have interior functions other than units? In partic-

ular, what about the unit ball Bn, n > 1? (P. Malliavin is reported to have
shown that there are no non-constant inner functions in Bn for n > 1.)

2) Is it true in Bn and Δn that a function is interior if and only if its
radial boundary values are bounded away from zero almost everywhere
(that is, the boundary function is invertible in L°° of the distinguished
boundary)? This is true for n = 1.

3) Is every interior function in Bn or Δn an inner function multiplied
by a unit?

4) In which regions do there exist bounded analytic functions with
no interior-exterior factorization? In particular, does every bounded region
in Cn, for n > 1, have this property? Even for n = 1, there are such
regions. In fact, C. W. Neville, in his forthcoming thesis (University of
Illinois) has shown that there are regions G S C 1 in which the function
f(z) = z has no interior-exterior factorization. In [4], based partly on
Neville's work, there is a characterization, in terms of analytic capacity,
of those regions for which this happens.

5) Does there exist a region G g C 1 and an feH°°(G) such that no
function in the principal ideal (/) admits an interior-exterior factorization?
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