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1. Introduction. Let (M, g) be a Riemannian manifold with positive
definite metric tensor ¢ = (g;;). By R = (R';.), R, = (R;;) and S we denote
the Riemannian curvature tensor, the Ricci curvature tensor and the
scalar curvature, respectively. The dimension of M is denoted by m. We
denote (R, R)=R;;,R** and (R, R, = R;,R*. Some significance of (R, R),
(R, R) and S is explained in [6] by M. Berger or in [7] by M. Berger-P.
Gauduchon-E. Mazet in connection with the Gauss-Bonnet theorem or the
spectre of Riemannian manifolds.

We define A(g) and B(g9) by

2
m—1

(1.1) A(9) = (R, R) — (R, R) ,

(1.2) mwam&%%y.

Then we have A(g) =0, and the equality holds on M, m = 3, if and
only if (M, g) is of constant curvature. B(g) = 0 holds, and the equality
holds on M, if and only if (M, g) is an Einstein space.

For m = 2, A(g) = B(g) = 0. (cf. (2.10))
For m = 3, A(9) = 3B(g). (cf. (8.8))
For m = 8, the best inequality is
_ 2mpB
(1.3) AQ) = e B0 20,

where B is a real number; —« < B8 < 1 (cf. Theorem 5.7). The equality
holds (at ) if and only if (M, g) is of constant curvature (at x).

After some preliminaries in §2, we study relations among A(g), B(g),
Euler-Poincaré characteristic (M), curvature and curvature tensors, Betti
numbers, and real homology spheres.

THEOREM A. Let (M, g) be a compact orientable Riemannian manifold,
m = 3. Assume one of the followings:
(a) (M, g) has positive scalar curvature S and satisfies

*) The author is partially supported by the Matsunaga Foundation.
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28*> (m* — m — 2)(R, R) ,
() (M, g9) has Ricci curvature = v > 0 and satisfies
4v*> (m — )R, R) + 2 — 3m)(R, R) + S?,
() (M, 9) has Ricci curvature = v > 0 and satisfies
4 2(m — ¢€) [ 2m(m — 2) 4 2¢(2m — ¢€) ]"2
Y — S>|A(9)— B
m—2+e¢ m(m—1)(m —2+¢) >[40 (m—1)(m—2+¢) ©
where € is a real mumber such that € + 2 — m,
d) m =3, S is positive, and S*> 2(R,, R)),
(e) m =4, S is positive, and 25* > 9(R, R),
(f) (M, g) is of class 1 or 2 and satisfies
S — m(m - 1)[Kijlej"kKrwsKu“v]1/4 > 0 ,
where (K';,) denotes the concircular curvature tensor.

Then (M, g) is a real homology sphere (cf. Theorem 4.2, Corollary 5.3,
Theorem 5.5 and (5.12), Theorem 8.1, Theorem 9.4, Theorem 13.2).

By finding sufficient conditions (a) for Ricci curvature to be positive,
and (b) for F'(,) to be positive, we have

THEOREM B. Let (M, g) be a compact orientable Riemannian manifold,
m = 3.
(@) If S is positive and if
_1
-1
then the first Betti number b(M) = 0 (cf. Theorem 6.2).
(b) If S is positive and if

S*> (R, R) ,

_m=D g5 Lip— 1R, R) + (m— 4p + 2)(R,, R) + S
m'—m — 2 2

then the p-th Betti number b,(M) = 0, where 2 < p < [m/2] (cf. Theorem
7.2).

By (1.3) and the Gauss-Bonnet theorem, we have

THEOREM C. Let (M, g) be a compact orientable Riemannian manifold
of 4 dimension. Then the followings hold:

@) (20 — 8B)SB(g)dM + 1927(M) = Sssz,
(b) |15 = 6 - 26)(R, B1AM = 3201 + 20)77(0)

where B 1s a real number < 1. The equality holds (in (a) or in (b)), if
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and only if (M, g) is of constant curvature (cf. Theorem 9.1, Theorem 9.3).

Theorem C (a) is a general form of a result by R. L. Bishop-S. I.
Goldberg [8] and A. Avez [3] (which says that if (M, g) is a compact
orientable Einstein space of 4 dimension then S? Vol (M) < 1927%¢ (M) holds,
where the equality is equivalent to the fact that (M, g) is of constant
curvature).

In §10, we give some results on non-existence of Killing vectors and

Killing tensors.
The author is grateful to Professor S. Sasaki for the useful criticism.

2. Preliminaries. Riemannian manifolds are assumed to be connected
and of class C°. By / we denote the Riemannian connection defined by
g. When we need local coordinate neighbourhood, we use (U, 2,7 =1, ---,
m). The Riemannian curvature tensor R = (R';;,) is defined by R(X, Y)Z=
VixiZ — [Vx, VylZ for vector fields X, Y, and Z, and R*;,,0/0x* = R(d/dx",
0/0x")d/oxi. The Ricci curvature tensor and the scalar curvature are R, =
(Rir) = (R'y;) and S = Ry9°".

(i) A(g) = .R,,;jklRijkl - 2

1 RikRjk —>_.— 0 ’

where the equality holds on M (at », resp.) if and only if (M, g) is of
constant curvature (at x, resp.) for m = 3.

(i) B(g) = R, R* — %sz >0,

where the equality holds on M if and only if (M, ¢g) is an Einstein space.

Proofs of (i) and (ii) are given in [6] by M. Berger (or in M. Berger-
P. Gauduchon-E. Mazet [7], p. 7T4-p. 75). A simple proof of (i) is as follows:
P = (P;,) defined by

(2.1) Pijkl = Rijkl - m—}—.i(RJkaz _— R”(?;"‘)

is called the Weyl’s projective curvature tensor. The vanishing of P (at
x) is equivalent to the fact that (M, g) is of constant curvature (at z).
On the other hand, we have (P, P) = A(g). This proves (i).

The concircular curvature tensor K = (K';;,) is defined by
(2.2) Riy = —5 (3] — 5101) + K,

m(m — 1)

K”kl = gj'Ki,kl. K Satisﬁes Ki'jkl = Kk”j- K = 0 holds (at x) if and Only
if (M, g) is of constant curvature (at z).

Since P;;,; = 9;,P";.; does not necessarily satisfy P;;;,, = P,;;;, we consider
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2.3 *Pij = Ry — (R;:0i — R;,0% + Rig;. — Rigy) -

1
2(m — 1)
Then we have *P;;,;, = *P,;;.

Let w = (w") be a skew-symmetric tensor (field). We denote by W=
W, the vector space of all such tensors at a point x. W is of m(m — 1)/2-
dimension. We define linear operators [R], [K], and [*P] of W as follows:

2.49) [R]: w— [R]lw = (— R¥,w"*) ,
(2.5) [K]: w— [K]w = (K7, w") ,
(2.6) [*P): w — [*Plw = (*P¥,w*") .

These operators are symmetric in the sense that
([Rlw, v) = (= Ryjuw*v") = (w, [R]v) ,

ete. [R] is called the curvature operator (cf. M. Berger [4]). If w is
non-zero and decomposable w = X A Y, then ([R]w, w)/4|/X A Y|* is the
sectional curvature for the 2-plane (X, Y). If [R] is positive, i.e., if
([Rlw, w) > 0 for any w =+ 0, then every sectional curvature is positive.
The converse is not true in general [an example is as follows: Let CP"(k)
be a complex projective space with constant holomorphic sectional curva-
ture & and let (e,, e~ = Je,) be an adapted frame at x. Then we have
R;;; = Rij»», and hence [R](e, A e. — e A €») = 0. (Note: Denote by 2 the
fundamental 2-form of CP"(k); then [R]Q2 #~ 0, i.e., R;juJ*® = —(n + L)kJ;;>].

If (M, g) is complete and [R] is positive (= ¢ > 0), then M is compact
and the first Betti number 8,(M) = 0 (cf. S. B. Myers [17]), and b,(M) =
0 too (M. Berger [4]). Recently, a beautiful result was proved by D.
Meyer (for F'(,), see §7):

LEMMA iii (D. Meyer [16]). Let (M, g) be a Riemannian manifold.
If [R] is positive (negative, resp.), then F(,) is positive (negative, resp.).
Hence, if (M, g) ts compact orientable and if [R] is positive, then the p-th
Betti number b,(M) =0 for p =1, ««-,m — 1. That is (M, g) s a real
homology sphere.

A sufficient condition for positiveness of [R] was given by A. Weinsten
[28] as we refer in §13. We give other sufficient conditions for positive-
ness of [R] in terms of scalars defined by curvature tensors.

LEMMA iv (S. Tanno [22]). Let H be a symmetric linear operator of
a vector space W with inner product. Then, for every integer k =1 and
every we W, we have

2.7 (Hw, w)* < [trace H*]'"*(w, w)* .
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If & and h are integers with 1 < k < h, we have

(2.8) [trace H*]'* = [trace H*]'* .
If rank (H) = 2, the strict inequality holds in (2.8). Further
(2.9) lim, .[trace H*|/* = || H || '

where ||H || denotes the operator norm of H.
For m = 2, we have (R, R) = S* and (R,, R, = S*2. Hence
(2.10) A(9) = B(g) =0.

3. Scalar inequalities and positive curvature operators. Let w be
a skew-symmetric tensor field on (M, g), w = (w*). As an operator on
W = W,, we define [I] by [I] = (0.0 — 0i0{)/2. Then (2.2) is written as

(3.1) (B] = 25— (1] ~ K]
Applying Lemma iv, we have
(3.2 (1Bjw, w) = B 0, 0) = (KT, )
28
= m(’% w) — [ ([K]w, w)|
2S 2k\1/2k
> [37%(71%——1) — (trace [K]™)" ](w, w) .

From this we have a sufficient condition for [R] to be positive. Similarly
we have a sufficient condition for [R] to be negative. Thus,

THEOREM 3.1. In a Riemannian manifold (M, g), if

28|

3.3) mm — 1)

> (trace [K]*)"/*
holds at x for some imteger k =1, then the curvature operator [R] is
positive at x for S > 0 and megative at x for S < 0.

Consequently, we have by Lemma iii,

THEOREM 3.2. Let (M, g9) be a compact orientadble Riemannian mani-
fold with positive scalar curvature S. If (3.3) holds on M for some integer
k=1, then (M, g) is a real homology sphere.

For k =1, we have

COROLLARY 3.3. Let (M, g) be a compact orientadble Riemannian mani-
fold. If S is positive and if
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(R, R) _ 2 2o 1)2
(3.4) 4>[ = m(m_l)]m(m 1)

holds on M, then (M, g) is a real homology sphere.

If we use A(g) and B(g) and if we write the right hand side of (3.4)

by C.(9), we have
_ mim — 1) 2
(3.5) Cg) = ———{ Al + B(9) | -
S m—1

We have C,(9) = 0. The equality holds (at x) if and only if (M, g) is of
constant curvature (at z). C,(9) is invariant by every homothetic defor-
mation g — og (o: constant), i.e., C,(9) = C,(cg). If we define C,,(g9) for
S =0 by
(3.6) Cunlg) = = D (trace [K]*)
then (8.8) is written as 2* > C,(9). C,,(9) is also a homothetic invariant.

The case k = 2 is also of some interest.

COROLLARY 3.4. Let (M,g9) be a compact orientable Riemannian
manifold. If S is positive and if 16 > C,(g), where

3.7) C.(g) = mi(m — 1)4[51-4 R, R", R™, R"™,

8 R¥,R*, . R™; + . 24 (R, R)

 m(m — 1)S® (m — 1)°S*
_ 24 ]
mi(m — 1)1’
then (M, g) 1s a real homology sphere.
Proor. Put 2S/m(m — 1) = L. Then [K] = L[I] — [R], and hence
[K]* = LIl — C{L}R] + C:L}[R]? — CiLIR]® + [R]*.
Using trace [I] = m(m — 1)/2 and trace [R] = S, etc., trace [K]* is calcu-
lated easily.

REMARK. Although (8.7) in Corollary 3.4 is complicated more than
(3.4) in Corollary 3.3, Corollary 3.4 is better than Corollary 3.3 as is seen
from (2.8) and (3.2).

REMARK. If the maximum of absolute eigenvalues of [K] is given
by a positive eigenvalue, then [R] is positive for S > 0 at @, if and only
if there is an integer £ = 1 such that (3.3) holds at x, as is seen from
(2.9) and (3.2).



EULER-POINCARE CHARACTERISTICS 39

4. Scalar inequalities and curvature operators. Theorem 3.1 works
for every integer k = 1; and the criterion is getting better as k— .
In this section we use a method which can be applied only for &k = 1.
Let T be a positive number. For the case S > 0, we put

(4.1) [R] = T[I] — (T[I] - [R)) .
Using Lemma iv, we have
ws) (Rlw, w) = T(w, w) — (T1] — [R)w, w)

Z [T — [trace (T[I] — [RD)T"](w, w) .
Since trace (T[I] — [R])* = trace (T?[I] — 2T[R] + [R]Y), if
(4.3) 7> [ﬂ(ﬂz:i):r — 28T + (R, R)]

1/2

holds, then [R] is positive for S > 0. For this, it suffices that
m*—m — 2)T* — 4ST + 2(R, R) < 0
has a positive solution 7. Consequently, for m = 3,
D = 4[48* — 2(m* — m — 2)(R, R)] > 0
is sufficient. The case S < 0 is also studied by putting
[R] = — T[] + (T[] + [R] ,
and we have

THEOREM 4.1. In a Riemannian manifold (M, g), m = 8, if
(4.4) Z—E—Sz > (R, R)
m?—m — 2
holds at x, then [R] is positive at  for S > 0 and negative at x for S < 0.
THEOREM 4.2. If a compact orientable Riemannian manifold (M, g),

m = 3, has positive scalar curvature S and satisfies (4.4) on M, then
(M, g) is a real homology sphere.

REMARK. Theorem 4.2 is better than Corollary 3.3. Because (3.4)
is equivalent to 2(m*® — m + 2)S*/m*(m — 1)* > (R, R), and we have an
inequality 2/(m* — m — 2) > 2(m* — m + 2)/m*(m — 1)

5. Ricci curvatures and positive curvature operators. Assuming

that (M, g) is of positive Ricci curvature, as usual we define a scalar
field v on M by

(5.1) v(x) = the minimum of Ricei curvatures at « .
Then we have R,,w"w*; = v(w, w). (2.3) gives
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(5.2) (*Plw, w) = — ([Rlw, w) + v(w, w) .

m—1
Similarly as in §3, we have
2

m—1

z[ 2 17—(UMEPPFWM}WJM.

(5.3) ([Rlw, w) = v(w, w) — [([*Plw, w)|

Therefore, we get

THEOREM 5.1. Let (M, g) be a Riemannian manifold with Ricei curva-
ture 2v> 0. If

2

(5.4)

T v > (trace [*Plzk)llzk

holds at x for some integer k = 1, then [R] is positive at x.
By Theorem 5.1 and Lemma iii, we have

THEOREM 5.2. Let (M, g) be a compact orientable Riemannian mani-
fold with Ricei curvature = v > 0. If (5.4) holds on M for some integer
k=1, then (M, g9) is a real homology sphere.

For &k =1, we have

w2 —3m y 1
(5.5) trace [PT = Bl 4 G gy Bl + Gy ™
= A(g) — — ™ ___B(a) > 0.
(9 1 (9) =

COROLLARY 5.3. Let (M, g) be a compact orientable Riemannian mani-
fold with Ricci curvature = v > 0. If

4 2 2 —3m 1 2
(5.6) m'?’ > (R, R) + (_’m,_-—l—)_z(RU R) + ms

holds on M, then (M, g) is a real homology sphere.

COROLLARY 5.4. Let (M, g) be a compact orientable Riemannian mani-
fold with sectional curvature =6 > 0. If

(5.7 4(m — 1)%* > (m — 1)*(R, R) + (2 — 3m)(R, R,) + S*
holds on M, then (M, g) is a real homology sphere.

Proor. This follows from Corollary 5.3 and v = (m — 1)d.
Next we consider ‘C for ¢ = 2 — m defined by
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1
m— 2+ ¢
(m — ¢)S

m(m — L)(m — 2 + ¢)
If ¢ =0, (°C%;) = (C*;) is the Weyl’s conformal curvature tensor. We
have *C;;,;, = ‘Cyyu;. We define [‘Clw = (‘C,,w*). Then (5.8) gives

(5.8) *Cijw = Riju — (Rir9a — Rugaw + 9By — 9:1R:)

-+

(91495 — 919:) -

€ — 2 i jr i apyiT 2(m - G)S
5.9 Clw=—[Rlw— ——— (B!, w"— R, w'") —
(6:9)  [Clw [Elw m—2+s( @ w m(m—1)(m—2+-¢)
By an inequality immediately after (5.1), we have
4
. >_ %

(5.10) (Rlw, ) 2 ———(w, w)

2(m — €)S

 mm— Dm — a1 g W T €l w0,

from which we have

THEOREM 5.5. Let (M, g) be a Riemannian manifold with Ricci cur-
vature =v > 0. If
4 2(m — €)

(65.11) m—2+57— m(m — L)(m — 2 + ¢)

S > (trace [*C]*)"*

holds at x for some integer k=1 and for some € + 2 — m, then [R] is
positive at x.

THEOREM 5.6. Let (M, g) be a compact orientable Riemannian mani-
fold with Ricci curvature = > 0. If (5.11) holds on M for some k =1
and for some € # 2 — m, then (M, g) is a real homology sphere.

If *Cijis = 0 holds at « for ¢ # 0 and ¢ # 2 — m, then (M, g) is of
constant curvature at . The converse is also true.
By a calculation we have

M2 _ 2m(m — 2) + 2e(2m — ¢)
(5.12) trace ['C]* = A(g) m —Dm 2 1o B(g) = 0.

Since we have for m = 3
2m(m — 2) + 2¢(2m — e) 2m
(m — 1)(m — 2 + &) (m — )(m — 2)

and since the left hand side of (5.13) converges to the right hand side
as € — 0, we have

(5.13)

THEOREM 5.7. In a Riemannian manifold (M, g) the following in-
equality
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. 2mp :
(5.14) A(g) = Dm =2 B(g) =0, l.e.,
' _ 2m 4+ 2mpB — 4 2B 2
(5.14) (R, R) m —1)m —2) (R, R, + = m =2 S2=0

holds, where B is a real mumber; — < g8 < 1. The equality holds at ,
if and only if (M, g) is of comstant curvature at x.

ProoF. By B <1 and by (5.13), we have some & (#0) such that
is (5.14) written as

trace [*C]? + (positive number)B(g) = 0 .
The equality implies that B(g) = 0 and trace [*C]* = 0.

REMARK. In Theorem 5.7, the number 2m/(m — 1)(m — 2) and the
relation B8 <1 are the best possible. In fact, (M, g) is conformally flat
if and only if A(g) — 2mB(g)/(m — 1)(m — 2) = 0 for m = 4, and conformally
flat Riemannian manifolds are not necessarily of constant curvature (with
respect to (5.14), cf. S. Tanno [24]).

6. Ricci curvature tensors and Ricci curvatures. We give sufficient
conditions for Ricei curvature to be positive or negative in terms of
(R, R, and S.

THEOREM 6.1. Let (M, g) be a Riemannian manifold.

(a) (R, R) = (1/m)S? holds always.

(b) If the inequality

6.1) 1 s> ((R,R)=1s
m—1 m

holds at x, then Ricci curvature is positive at x for S > 0 and negative
at © for S < 0. Furthermore:

(¢) The positive minimum value v or the megative maximum value
v satisfies the following relation

(6.2) 7l = %[IS — [m(m — 1)(R,, B) — (m — 1)S*"] .

Proor. We write R(X, Y) = R;,X'Y* (a) is (ii). We prove (b).
First we assume S > 0. Let T be a positive number, and let X be an
arbitrary non-zero vector. By Lemma iv we have
(6.3) R(X, X) = T(X, X) — (T(X, X) — R(X, X))
= T(X, X) — [(Tg:;; — R:;)(Tg" — R)]"*(X, X)
=[T—- (mT*— 2ST + (R.R))"*|(X, X) .
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If T> [mT? - 2ST + (R, R)]"? i.e.,

(6.4) (m—1)T*—2ST+ (R, R) <0,

we have R(X, X) > 0. (6.4) has a solution 7, if and only if
D =48*— 4(m — 1)(R, R,) > 0.

This solution T is positive by (6.4) and S > 0. This proves (b) for S > 0.
The case S < 0 is similarly proved by considering

R(X, X) = —T(X, X) + (T(X, X) + R(X, X)) .
Next we show (c). Assume S > 0. We put

(6.5) T— [mT*—2ST + (R, R)]"*" = Q.

We solve T in the positive range of Q. (6.5) is written as

(6.6) (m-1)T*-28-QT+ (R, R)—Q@=0.
(6.6) has a solution T if and only if

6.7 D =4S—- Q> — 4m— D[R, R)—Q1=0.
We put 4f(Q) = D, i.e.,

(6.8) fQ) =mQ* —25Q + S* — (m — 1)(R, R)) .

Since (R, R) < S*/(m — 1), we have f(0) > 0 and df/dQ ., = —2S < 0.
Let Q, be the smaller solution of f(Q) = 0. Then

(6.9) mQo = S — [m(m — 1)(R,, R,) — (m — 1S

Since @, = Max{Q: satisfying (6.5), 7> 0}, we have (6.2) for the case
S > 0. The case S < 0 is similar.

THEOREM 6.2. Let (M, g) be a compact orientable Riemannian mani-
fold with mon-negative scalar curvature S. If

(6.10) L _s>@®,R)zLls

m—1 m
holds on M, then b (M) < m. If the strict imequality holds somewhere,
then b (M) = 0.

REMARK. Theorem 6.2 is better than a result by Y. Tomonaga [26]
(or Corollary 3.2 in S. Tanno [22]). In fact,

1/2
(6.11) 5@ r)-2]" 2o
m m
is equivalent to (m + 1)S*)/m* = (R,, R,). Hence, 1/(m — 1) > (m + 1)/m?
implies that Theorem 6.2 is better.
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7. Positivity and negativity of F(w, w). Let w = (w;;,..,) be a skew
symmetric tensor. The classical F(w, w) = *F(w, w) is defined to be

1

(1.1) Fw, w) = (L2 R + Ruga)w'w",..,

(cf. for example, K. Yano-S. Bochner [29]). We define F' = *F by
-1
2
Then F;;, = F,,; holds, and [F'](= [*F]) is defined by

[F]w — (Fijklwklr...a)
for w = (w**). Lemma iv is valid also for [F'] and w under the following
notations:
(7.3) ([Flw, w) = F¥,wb™*w;, .,  ete.
By (7.1), (7.2) and (7.3) we have ([Flw, w) = F(w, w). In [22] and [23]
we studied relations between scalar inequalities and sign of F(w, w).
Here we apply another method. For a positive number T, we put [F] =
T[I] — (T[I] — [F']). Then we have
(7.4) ([Flw, w) = T(w, w) — (TI] — [FDw, w)

= [T — (trace (T[I] — [F]))")(w, w) .
Since trace (T[I] — [F'])? = T*m(m — 1)/2 — 2T trace [F] + (F, F), and

(7.2) Fijkl = p

R + _i‘(R:'kgjl — Ri9u + Ruga — Rugi) -

trace [F] = Fii,; = 2 ; Pg,

(F, F) = “’%WR, R + M2 “44(” ~D (&, R)+ 55,

if inequality
4T* > 2m(m—1)T*—4A(m—p)ST+ (p— 1)*(R, R)+(m—4p+2)(R,, R))+S?

has a positive solution T, then F(w, w) > 0. Similarly as in §4, the
condition for the existence of such T is calculated and we have

THEOREM 7.1. In a Riemannian manifold (M, g), if
@5 "= g Lip 1R B+ m - 4p + (R, R) + S
m— m — 2 2
holds at x, then F(,) is positive definite at x for S > 0, and negative
definite at x for S <0, where 2= p < m — 1.

By a well known theorem on harmonic forms (cf. S. Bochner [10],
K. Yano and S. Bochner [29]), we have
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THEOREM 7.2. If a compact orientable Riemannian manifold (M, g)
has positive scalar curvature and if (71.5) holds on M, then the p-th Betti
number b,(M) = 0, where 2 < p < [m/2].

THEOREM 7.3. In a Riemannian manifold (M, g), if m — 4p + 2 <0
and if

2m—p)?® _m—4p+2_ (g 1y
1.6) [ A B L 1ls*> @ - & B

holds at x, then F(,) is positive definite at x for S > 0 and negative
definite at x for S < 0, where 2 < p < m — 1.

Proor. This follows from (7.5) and (ii).

8. 3-dimensional Riemannian manifold. Since the Riemannian cur-
vature tensor R of a 3-dimensional Riemannian manifold is given by

(8.1) Rijy = 8iRy, — 0iRy + Rigss — Rig — = (Ol — 0iga)
we have

(8.2) (B, R) — 4R, R) + §*=0.

Therefore A(g) and B(g) are dependent, and we have

(8.3) A(g) = 3B(g) .

By (8.2), (4.4) is written as
. 28 > 4(R, R) = 16(R,, R)) — 45*.

Hence, a compact orientable Riemannian manifold, m = 38, satisfying S > 0
and 3S*> 8(R, R) on M is a real homology sphere by Theorem 4.2.
However, applying Theorem 6.2, we have

THEOREM 8.1. Let (M, g) be a compact orientable Riemannian mani-
fold of 3-dimension. If the scalar curvature S is positive and S*> 2(R,, R))
holds on M, then (M, g) is a real homology sphere.

Proor. By b,(M) = 0 and by the duality, we have b,(M) = 0.

9. 4-dimensional Riemannian manifolds. Let (i, g) be a 4-dimen-
sional compact orientable Riemannian manifold. Denote by x(3) the
Euler-Poincaré characteristic of M. Then the Gauss-Bonnet formula is
given by

©.1) S[(R, R) — 4(R,, R,) + S*ldM = 32n*y(M) ,

where dM denotes the volume element of (M, g) (cf. for example, M.
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Berger [6]). By (i) and (ii), the followings are known:
(v) If (M, g) is an Einstein space, S(R, R)YAM = 32n*y (M) = 0.
(vi) S(R, R)AM = 327*¢(M) holds. The equality holds if and only if

(M, g) is an Einstein space (A. Avez [2]).
(vii) If (M, g) is an Einstein space, we have

S Vol (M) < 192 z%(M) .

The equality holds if and only if (M, g) is of constant curvature (R. L.
Bishop and S. I. Goldberg [8], A. Avez [3]).
The best result including (vii) is as follows:

THEOREM 9.1. In a compact orientable Riemannian manifold (M, g)
of 4-dimension, we have

9.2) (20 — 85)§B(g)dM + 1927 (M) = SSZdM

for every constant B; — o < 8 < 1. The equality holds if and only if
(M, g) is of constant curvature.

PrOOF. The integration (5.14)" gives

9.3) S[G(R, R) — (4 + 8B)(R, R) + 28S1dM = 0 .

Eliminating (R, R) from (9.1) and (9.3), we have

9.4) S[(a — 28)S* — (20 — 88)(R,, R)IAM < 1927°(M) .

By B(g) = (R, Ry — (1/4)S?, we have (9.2). q.e.d.

By (9.4) with g =1, if §*> 3(R,, R), we have (M) > 0. Generally
we have

THEOREM 9.2. In a 4-dimensional compact orientable Riemannian
manifold (M, g), if S > 0 and S* > 3(R,, R,) hold on M, then Y(M) = 2.

Proor. By Theorem 6.2 and S* > 3(R,, R,), we have b(M) = 0. By
the duality we have b,(M) = 0. Hence, X(M) = b(M) + b,(M) + b,(M) = 2.

THEOREM 9.3. In a compact orientable Riemannian manifold (M, g)
of 4-dimension, we have

9.5) [i5 - 6 - 20(®, B1aM = 320 + 20903 00)

for every constant B; —o < B < 1. The equality holds if and only if
(M, g) is of constant curvature.
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Proor. Eliminating (R,, R,) from (9.1) and (9.3), we have (9.5).
By Theorem 9.3 with g =1, if (R, R) < (1/3)S? then we have (M) >
0. Generally we have

THEOREM 9.4. In a 4-dimensional compact orientable Riemannian
manifold (M, g), if S is positive and if

9.6) 9(R, R) < 28*
holds on M, then (M, g) is a real homology sphere.

ProorF. By A(g9) = (R, R) — (2/3)(R,, R,) = 0, (2/9)S* > (R, R) implies
(1/3)S*>(R,, R). Then, Theorem 6.2 shows that b(M) = 0. By Theorem

7.3 for m = 4 and p = 2, (8/10)S* > (R, R) implies that b,(M) = 0. Next,
by the duality, we have Theorem 9.4.

REMARK. Theorem 9.4 is better than Theorem 4.2 for m = 4.

10. Killing vectors and Killing tensors. By Theorem 6.1 (and its
proof), we have

THEOREM 10.1. Let (M, g) be a compact orientable Riemannian mani-
fold. Assume that S is non-positive and
(10.1) S*=(m — 1)(R, R) .
Then, Killing vectors are parallel. If the strict inequality holds some-
where, there is mo non-zero Killing vector.

REMARK. This result is better than Corollary 2.2 in [23]. Cf. Remark
in §6.
By Theorem 7.1, we have

THEOREM 10.2. Let (M, g) be a compact orientable Riemannian mani-
Sfold with megative scalar curvature S. If, for p Q< p<m—1), (7.5)
holds on M, there is mo mon-zero Killing temsor of order p.

By Theorem 4.1 and Lemma iii, we have

THEOREM 10.3. If a compact orientable Riemannian manifold (M, g)
has megative scalar curvature S and if (4.4) holds on M, then there is no
non-zero Killing tensor of order p,1 < p=m — 1.

REMARK. We have also results corresponding to Theorems 3.1, 5.1.

11. Positive sectional curvature, I. Let (X, Y) be an arbitrary
orthonormal pair. By (2.2) and Lemma iv, we have

(11.1) RuXX'Y'YVi=—5 | K. XX'VY
m(m — 1)
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— 5 (XXX X )
m(m — 1)

since K;;,,X’X"* is symmetric in 7 and I. Next, if we put Nj,,, = K*;;'K;, .,
then we have N;,,, = N,,;. By Lemma iv, we have

11.2) N XXX X?) < (Njre N*) H( X X )X X,)

where the vector space W is of (2, 0)-tensors. Hence, (11.1) and (11.2)
show that if

(11.3) .___‘S__ — (K’ijklKir”Kujkauraﬂ)lﬂ > 0 ,
m(m — 1)

then the sectional curvature is positive. Thus,

TuEOREM 11.1. Let (M, g) be a Riemannian manifold. If (11.3)
holds at x, then sectional curvatures are positive at x.

REMARK. The explicit form of (11.3) is as follows:

(11.3)’ [R”“Ri”lRujkvRursv + 4S RijklRi"lRajk'r . 4S RﬁklRilRik
m(m — 1) m(m — 1)
6S*® i, 4(m — 3)8? e m—Tm + 12 o, "
R R#"™+ 2~ " R, R*—— _ _— =8
+ mim — 1) " + mi(m — 1)* " mi(m — 1)} ]
_ 5
m(m — 1)

The upper bound of R;;,,X’X*Y*Y" is similarly calculated:
(11.4) RuX X'V < — 85 (KK KWK, )
m(m — 1)

By the well known sphere theorem (cf. W. Klingenberg [14], D. Gromoll-
W. Klingenberg-W. Meyer [12]), we have

THEOREM 11.2. Let (M,g) be a complete and simply connected
Riemannian manifold. If

(11.5) __3;8____ - 5(-[{’._17:1I{jrsk-K'ruv’I{“'il‘v)l/4 > 0
m(m — 1)
holds on M, then (M, g) is homeomorphic to a sphere.

Proor. The condition 4 < R;;,,X'X*Y*Y" < 44 for some positive 4
is calculated by (11.1), (11.2) and (11.4), getting (11.5).

REMARK. We can also apply differentiable pinching theorems (for
example, see M. Sugimoto-K. Shiohama [21]).
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12. Positive sectional curvature, II. Let (¢;) be an orthonormal basis
at «. We put g(R(e,, €,)m, €.) = Ropms» Where a, b =1, -, m—1. By V
we denote the (m — 1)-dimensional subspace of the tangent space at «
defined by (e, +++, €,.). Let Y be a unit vector in V, Y = (Y*. Let T
be a positive number.

(12.1) R, Y°Y'=T(Y,Y) — (T0s — Romr) YY"
> T — [(Tos — Renw)(TO — R™™)J

Since aabaab — m_l, gubRammb — Binimmj — Rmm and RammbRummb — Rimijz’mmj’
we see that if

(12.2) T>[(m— 1T - 2R,..,T + R, ;R"™]*,
the sectional curvature for each 2-plane which contains e, is positive.
A sufficient condition for the existence of T satisfying (12.2) is

(Rum)* — (M — 2) Y, RipnsR™™ > 0 .

For (R,.) we use (6.2), and for R,,,;R'™™ we use
R;uR,) X' X" X" X* < [R*)R',,*R*",’R"’|'" X' X; X" X,
(cf. (11.2)). Then we have

THEOREM 12.1. In a Riemannian manifold (M, g), if S is positive
and if

(12.3) [S—[m(m—1)(R,, B,)—(m—1)ST"]* > m*(m—2)[R*;'R’,,*R",,"R";*]'"*
holds at x, then sectional curvatures are positive at x.

13. Riemannian manifolds of class one or two. Every C“-Rieman-
nian manifold (M, g) can be imbedded locally and isometrically in an
[(m(m + 1)/2]-dimensional Euclidean space (L. Schlaefli [19], M. Janet [13],
E. Cartan [11]). For C=-case, this problem is open (cf. S. Kobayashi-K.
Nomizu [15], Vol. 2, p. 354). If a Riemannian manifold (3, g) can be
C~-imbedded locally and isometrically in an (m + p)-dimensional Euclidean
space, and if for some point & any neighborhood of £ can not be C~-imbedded
isometrically in an (m + p — 1)-dimensional Euclidean space, we say that
(M, g) is of class p (cf. G. Ricci [18], T. Y. Thomas [25], C. B. Allendoerfer
[1], etc.).

LEMMA viii (A. Weinstein [28]). If a Riemannian manifold (M, g)
18 1sometrically tmmersed in E™ and if (M, g) s of positive curvature,
then the curvature operator [R] is positive.

Lemma iii and Lemma viii give
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ProOPOSITION 13.1. If a compact orientable Riemannian manifold
(M, 9) is of class 1 or 2 and if (M, g) is of positive curvature, then (M, g)
1s a real homology sphere.

REMARK. Proposition 13.1 is a generalization of a result of Y.
Tomonaga [29] (his assumption is “m = even and class 1” and the con-
clusion is “y(M) > 0”).

THEOREM 13.2. If a compact orientable Riemannian manifold (M, g)
18 of class 1 or 2 and satisfies (11.3), then (M, g) is a real homology
sphere.
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