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1. Introduction. Let (Af, g) be a Riemannian manifold with positive
definite metric tensor g = {gi5). By R = (R^u), Rι = (Rjk) and S we denote
the Riemannian curvature tensor, the Ricci curvature tensor and the
scalar curvature, respectively. The dimension of M is denoted by m. We
denote (R, R) = RijklR

ijkl and (Rl9 RJ = RjkR
jk. Some significance of (R, R),

(Rί9 ϋy and S is explained in [6] by M. Berger or in [7] by M. Berger-P.
Gauduchon-E. Mazet in connection with the Gauss-Bonnet theorem or the
spectre of Riemannian manifolds.

We define A{g) and B(g) by

(1.1) A(g) = (R, R) - — *— (Rl9 Rλ) ,
m — 1

(1.2) B(g) = (Rί,R1)--S2.
m

Then we have A(g) ̂  0, and the equality holds on M, m ^ 3, if and
only if (M, g) is of constant curvature. B{g) ̂  0 holds, and the equality
holds on M, if and only if (M, g) is an Einstein space.

For m = 2, A(g) = B(g) = 0. (cf. (2.10))
For m - 3, A(g) = W(g). (cf. (8.3))
For m ^ 3, the best inequality is

(1.3) A(g) - ^β -B{g) 2> 0 ,
(m — l)(m — 2)

where β is a real number; — oo < β < 1 (cf. Theorem 5.7). The equality
holds (at x) if and only if (M, g) is of constant curvature (at x).

After some preliminaries in §2, we study relations among A(g), B{g),
Euler-Poincare characteristic χ(M), curvature and curvature tensors, Betti
numbers, and real homology spheres.

THEOREM A. Let (M, g) be a compact orίentable Riemannian manifold,
m ^ 3. Assume one of the followings:

(a) (Λf, g) has positive scalar curvature S and satisfies

*> The author is partially supported by the Matsunaga Foundation.



34 S. TANNO

2S2 > (m2 - m- 2)(R, R) ,

(b) (M, g) has Rίccί curvature ^ 7 > 0 and satisfies

4τ2 > ( m - l)2(i2, R) + (2 - 3m)(i21, i?,) + S 2 ,

(c) {M, g) has Ricci curvature ^ 7 > 0 and satisfies

4 _ 2(m - ε) g [ A ( , _ 2m(m-2)+2ε(2m-ε)
m - 2 + ε ra(m-l)(m-2+ε) L w (m-l)(ra-2+ε) 2

where ε is a real number such that ε Φ 2 — m,
(d) m = 3, S is positive, and S2 > 2{RU R^),
(e) m — 4, S is positive, and 2S2 > 9(R, R),
(f) (M, g) is of class 1 or 2 and satisfies

S-m(m- ΐ)[Ki

3k

ι&r, >K\v*K"{lψ
t > 0 ,

where (K*^) denotes the concircular curvature tensor.
Then (ikf, g) is a real homology sphere (cf. Theorem 4 2, Corollary 5 3,

Theorem 5 5 and (5.12), Theorem 8.1, Theorem 9.4, Theorem 13.2).

By finding sufficient conditions (a) for Ricci curvature to be positive,
and (b) for F(,) to be positive, we have

THEOREM B. Let {M, g) be a compact orientable Riemannian manifold,
m ^ 3.

(a) // S is positive and if

m — 1

then the first Betti number b^M) = 0 (cf. Theorem 6.2).

(b) // S is positive and if

g > [{p 1 ) ( Λ β ) + ( m 4 p

m2 — m — 2 2
then the p-th Betti number bp(M) = 0, where 2 ^ p ^ [m/2] (cf. Theorem

By (1.3) and the Gauss-Bonnet theorem, we have

THEOREM C. Let (M, g) be a compact orientable Riemannian manifold
of 4 dimension. Then the followings hold:

(a) (2.0 - Sβ)\B(g)dM + 192π2χ(M) ^ \s2dM,

(b) J[S2 - (5 - 20){R, R)]dM ̂  32(1.+ 2β)π2χ(M) ,

where β is a real number < 1. The equality holds (in (a) or in (b)), if
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and only if (M, g) is of constant curvature (cf. Theorem 9.1, Theorem 9.3).

Theorem C (a) is a general form of a result by R. L Bishop-S. I.
Goldberg [8] and A. Avez [3] (which says that if (ikf, g) is a compact
orientable Einstein space of 4 dimension then S2 Vol (M) ^ 192π2χ(M) holds,
where the equality is equivalent to the fact that (M, g) is of constant
curvature).

In § 10, we give some results on non-existence of Killing vectors and
Killing tensors.

The author is grateful to Professor S. Sasaki for the useful criticism.

2. Preliminaries. Riemannian manifolds are assumed to be connected
and of class C°°. By V we denote the Riemannian connection defined by
g. When we need local coordinate neighbourhood, we use {U, x\ i = 1, ,
m). The Riemannian curvature tensor R = (!?*,•«) is defined by R{X, Y)Z=
Pίx,YΊZ - [Vx, Vγ\Z for vector fields X, Y, and Z, and R?jkld/dx* = R(d/dx\
d/dxι)d/dxj. The Ricci curvature tensor and the scalar curvature are Rι =
(Rjk) = (R*iki) and S - Rjkg

jk.

(i) A(g) = RwR
ijkl - —^—RjkR

jk ^ 0 ,
m — 1

where the equality holds on M (at x, resp.) if and only if (M, g) is of
constant curvature (at x, resp.) for m ^ 3.

(ϋ) Big) - RjkR
jk - ^ S 2 ^ 0 ,

m
where the equality holds on M if and only if (ikf, g) is an Einstein space.

Proofs of (i) and (ii) are given in [6] by M. Berger (or in M. Berger-
P. Gauduchon-E. Mazet [7], p. 74-p. 75). A simple proof of (i) is as follows:
p = (p*.kl) defined by

(2.1) P ' i w = &J i
m — 1

is called the WeyΓs protective curvature tensor. The vanishing of P (at
x) is equivalent to the fact that (M, g) is of constant curvature (at x).
On the other hand, we have (P, P) = A(g). This proves (i).

The concircular curvature tensor K = {Kι

m) is defined by

(2.2) S

m(ra — 1)

satisfies Kim = JΓtMi. £Γ = 0 holds (at α?) if and only
if (M, g) is of constant curvature (at x).

Since Pijkl = girP
r

m does not necessarily satisfy Pijkl = P fc ί ί i, we consider
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(2.3) *P*Skl - R*Jkl - 1 (BJkδi - Rsιbk + Rtgjk - Rlgn) .
2(m — 1)

Then we have *PiSkl = *PkHJ.
Let w — (wij) be a skew-symmetric tensor (field). We denote by W~

Wx the vector space of all such tensors at a point x. W is of m(m — l)/2-
dimension. We define linear operators [R], [K], and [*P] of W as follows:

(2.4) [R]: w — [R]w = (-Rij

klw
kl) ,

(2.5) [K]:w~* [K]w = (K'tuw*1) ,

(2.6) [*P]: w->[*P]w = (*P"«ww) .

These operators are symmetric in the sense that

([R]w, v) = (-Rimwklv^) - (w, [R]v) ,

etc. [R] is called the curvature operator (cf. M. Berger [4]). If w is
non-zero and decomposable w = X Λ Y, then ([i2]w, w)JA\X A Y\2 is the
sectional curvature for the 2-plane (X, Y). If [R] is positive, i.e., if
([i?|w, w) > 0 for any w Φ 0, then every sectional curvature is positive.
The converse is not true in general [an example is as follows: Let CPn(k)
be a complex protective space with constant holomorphic sectional curva-
ture k and let (ea, ea* = Jea) be an adapted frame at x. Then we have
Riji2 = Riji*2*y and hence [R]{eι Ae2 — e^ A e2*) = 0. <Note: Denote by Ω the
fundamental 2-form of CPn(k); then [R]Ω Φ 0, i.e., RimJkl = - (n + l)kJiάy\.

If {M, g) is complete and [R] is positive ( ^ δ > 0), then M is compact
and the first Betti number b^M) = 0 (cf. S. B. Myers [17]), and b2(M) =
0 too (M. Berger [4]). Recently, a beautiful result was proved by D.
Meyer (for F(,), see §7):

LEMMA iii (D. Meyer [16]). Let (M, g) be a Rίemannίan manifold.
If [R] is positive (negative, resp.), then F(,) is positive (negative, resp.).
Hence, if (M, g) is compact orientable and if [R] is positive, then the p-th
Betti number bp(M) = 0 for p = 1, , m — 1. That is (M, g) is a real
homology sphere.

A sufficient condition for positiveness of [R] was given by A. Weinsten
[28] as we refer in §13. We give other sufficient conditions for positive-
ness of [R] in terms of scalars defined by curvature tensors.

LEMMA iv (S. Tanno [22]). Let H be a symmetric linear operator of
a vector space W with inner product. Then, for every integer k^l and
every we W, we have

(2.7) (Hw, w)2 ^ [trace H2k]1/k(w, w)2.
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// k and h are integers with 1 ^ k < h, we have

(2.8) [trace H2ψk ^ [trace H2ψh .

If rank (H) ^ 2, the strict inequality holds in (2.8). Further

(2.9) l i i rWtrace H2ψ2k = \\H\\

where \\H\\ denotes the operator norm of H.

For m = 2, we have (R, R) = S2 and (JBlf R,) = S2/2. Hence

(2.10) A(g) = £(</) - 0 .

3. Scalar inequalities and positive curvature operators. Let w be
a skew-symmetric tensor field on (M, g), w = (wij). As an operator on
W = Wx, we define [I] by [I] = (δiδ{ - 3{δί)/2. Then (2.2) is written as

(3.1) [R]= *S \I]-[K].
m(m — 1)

Applying Lemma iv, we have

(3.2) ([R]w, w) = 2 S (w, w) - ([K]w, w)
m\m — 1)

- 2 S {w,w)-\{[K\w,w)\
m(m — 1)

From this we have a sufficient condition for [R] to be positive. Similarly
we have a sufficient condition for [R] to be negative. Thus,

THEOREM 3.1. In a Riemannian manifold (M, g), if

(3.3) /

2 | g | ^ > (trace [K]*ψtk

m(m — 1)
holds at x for some integer k ^ 1, then the curvature operator [R] is
positive at x for S > 0 and negative at x for S < 0.

Consequently, we have by Lemma iii,

THEOREM 3.2. Let {M, g) be a compact orientable Riemannian mani-
fold with positive scalar curvature S. // (3.3) holds on M for some integer
k ^ 1, then (M, g) is a real homology sphere.

For k = 1, we have

COROLLARY 3.3. Let (M, g) be a compact orientable Riemannian mani-
fold. If S is positive and if
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(3.4) 4 > Γί*y2. - 2 Λm\m - I)2

L S m(m — 1) J
feoWs 071 Λf, ί/̂ eπ (M, g) is a real homology sphere.

If we use A{g) and B(g) and if we write the right hand side of (3.4)
by C2(g), we have

(3.5) CM =

We have C2(g) ^ 0. The equality holds (at x) if and only if (M, g) is of
constant curvature (at x). C2(g) is invariant by every homothetic defor-
mation g—»σg (σ: constant), i.e., C2(g) = C2(σg). If we define C2k(g) for
S^ 0 by

(3.6) C2k(g) = m2k(m

s ~ 1)2fe (trace [KD ,

then (3.3) is written as 22k > C2k(g). C2k(g) is also a homothetic invariant.
The case k = 2 is also of some interest.

COROLLARY 3.4. Let (M, g) be a compact orίentable Riemannian
manifold. If S is positive and if 16 > C4(#), where

(3.7) C4(g) = m\m - l)\jβiS

hιR
kι

r

+ m\m- iyS*iR> R)

24 1
- 1)3J 'm 3(m - 1)3

then (My g) is a real homology sphere.

PROOF. Put 2S/m(m - 1) = L. Then [K] = L[I] - [R], and hence

[KY = L4[I] - CtU[R] + C2

4L2[i2]2 - C3

4L[ie]3 + [R]*.

Using trace [I] — m{m — l)/2 and trace [R] = S, etc., trace [1£]4 is calcu-
lated easily.

REMARK. Although (3.7) in Corollary 3.4 is complicated more than
(3.4) in Corollary 3.3, Corollary 3.4 is better than Corollary 3.3 as is seen
from (2.8) and (3.2).

REMARK. If the maximum of absolute eigenvalues of [K] is given
by a positive eigenvalue, then [R] is positive for S > 0 at x9 if and only
if there is an integer k ^ 1 such that (3.3) holds at x, as is seen from
(2.9) and (3.2).



EULER-POINCARέ CHARACTERISTICS 39

4. Scalar inequalities and curvature operators. Theorem 3.1 works
for every integer k ^ 1; and the criterion is getting better as k —» oo.
In this section we use a method which can be applied only for k = 1.
Let T be a positive number. For the case S > 0, we put

(4.1) [Si = T[I] - (T[I] - [R]) .

Using Lemma iv, we have

, w) = T(w, w) - ((T[I] - [R])w, w)

^[T- [trace (T[I] - [R])V2](w, w) .

Since trace (T[I] - [R])2 = trace (T2[I] - 2T[R] + [R]2), if

(4.3) T > Γ m ( m ~ 1 ) T2 - 2ST + (R, R)Ί12

holds, then [R] is positive for S > 0. For this, it suffices that

(mz-m- 2)Γ2 - AST + 2(i2, R)< 0

has a positive solution T. Consequently, for m ^ 3,

D = 4[4S2 - 2(m2 - m - 2)(Λ, JB)] > 0

is sufficient. The case S < 0 is also studied by putting

and we have

THEOREM 4.1. In a Riemannίan manifold (M, g), m ^ 3, if

(4.4) _;—? -S 2 > (Λ, J2)
m — m — 2

holds at x, then [R] is positive at x for S > 0 and negative at x for S < 0.

THEOREM 4.2. If a compact orientable Riemannian manifold (M, g),
m Ξ> 3, has positive scalar curvature S and satisfies (4.4) on M, then
(M, g) is a real homology sphere.

REMARK. Theorem 4.2 is better than Corollary 3.3. Because (3.4)
is equivalent to 2(m2 — m + 2)S2/m2(m — I)2 > {R, R), and we have an
inequality 2/(ra2 - m - 2) > 2(m2 - m + 2)jm\m - I)2.

5. Ricci curvatures and positive curvature operators. Assuming
that (ikf, g) is of positive Ricci curvature, as usual we define a scalar
field 7 on M by

(5.1) Ί{X) = the minimum of Ricci curvatures at x .

Then we have Rr8w
riw\ ^ y(w, w). (2.3) gives
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(5.2) {[*P]w, w) ^ - ([R]w, w) + 2

 H Ί{w, w) .
m — 1

Similarly as in §3, we have

(5.3) ([R]w, w) ^ — *—>γ(w, w) - I {[*P]w, w) \
m — 1

^ Γ — — 7 - (trace [*P]2k)ll2k\w, w) .
\-m — 1 J

Therefore, we get

THEOREM 5.1. Let (Λf, gr) be a Riemannian manifold with Ricci curva-
ture ^ 7 > 0. //

(5.4) — ? — 7 > (trace [*pyψ™
m — 1

α£ a? /or some integer k ^ 1, ίΛ,eπ [i2] is positive at x.

By Theorem 5.1 and Lemma iii, we have

THEOREM 5.2. Le£ (ikf, #) δβ α compact orientable Riemannian mani-
fold with Ricci curvature ^ 7 > 0. // (5.4) ftoMs oπ M for some integer
k^ly then (M, g) is a real homology sphere.

For k = 1, we have

(5.5) trace [*P]2 = RimR^1 + AzJ^RjkR^ + ^ .

COROLLARY 5.3. Let (ikf, g) be a compact orientable Riemannian mani-
fold with Ricci curvature ^ 7 > 0. If

(5 δ) CT7" > <β m + W^%'iB" Λ J + (ΪΓ^Ί) S"
^ Λf, ifeeti (Mf g) is a real homology sphere.

COROLLARY 5.4. Let (ikf, g) be a compact orientable Riemannian mani-
fold with sectional curvature ^ d > 0. / /

(5.7) 4(m - l)2δ2 > (m - 1)2(JK, i?) + (2 - 3m)(i?1, R,) + S2

^ ikf, then (ikf, #) ΐs a real homology sphere.

PROOF. This follows from Corollary 5.3 and 7 ^ (m - l)δ.
Next we consider εC for e Φ 2 — m defined by
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(5.8) εCijkl = Rim l——(BJkg{ι - Rόιgik + gjkRu - gnRik)
m — 2 + ε

m(m — l)(m — 2 + ε)

If e = 0, C C ^ H) = (£*,«) is the WeyΓs conformal curvature tensor. We
have εCijkl = εCkHj. We define [εC]w = (εCij

klw
kl). Then (5.8) gives

(5.9) [εC]w=-[R]w- %— (&ΨvF-R'ruί")- , 2 ( m

 o

m—2 + ε m(m—l)(m — 2+ε)
By an inequality immediately after (5.1), we have

(5.10) ([R]w, w) ^ τ(w, w)
m — 2 + ε

m(m — l)(m — 2 + ε)

from which we have

( w ) _ | ( [.C ]

THEOREM 5.5. Let (Λf, gr) be a Rίemannian manifold with Ricci cur-
vature ^ 7 > 0. If

(5.11) * _ 2(m - ε) g ( t [-C]1*)1'1*
m - 2 + ε m(m - l)(m - 2 + ε) J

at x for some integer k ^ 1 α^d /or some ε Φ 2 — m, ίfeew [i2] is
positive at x.

THEOREM 5.6. Lei (M, ίy) 6β α compact orientable Riemannίan mani-
fold with Ricci curvature 2> 7 > 0. J / (5.11) λofcfe o^ M for some Jc^l
and for some ε Φ 2 — m, ίfee^ (ikf, g) is a real homology sphere.

If εCim = 0 holds at α? for ε ^ 0 and ε Φ 2 — m, then (ikf, c/) is of
constant curvature at x. The converse is also true.

By a calculation we have

(5.12) trace [>Cf = A(g) - 2m(m - 2) + 2ε(2m - ε) Q #

(m — l)(m — 2 + ε)2

Since we have for m ^ 3

ί g 13x 2m(m -̂ 2) + 2ε(2m - ε) 2m
{ ' (m- l)(m - 2 + ε)2 (m - l)(m - 2)
and since the left hand side of (5.13) converges to the right hand side
as ε —> 0, we have

THEOREM 5.7. In a Riemannian manifold (M, g) the following in-
equality
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(5.14) A(g) - ^ —B{g) ^ 0 , i.e.,
(m — l)(m — 2)

(5.14)' (R, R) - **± μ B i t Ri) + 0
m — l )(m — 2) (m — l )(m — 2)

wftere β is a real number; — oo < /3 < 1. Ϊ7*,e equality holds at x,

if and only if (M, g) is of constant curvature at x.

PROOF. By β < 1 and by (5.13), we have some e (^0) such that
is (5.14) written as

trace [εC]2 + (positive number) !?(#) ^ 0 .

The equality implies that B(g) = 0 and trace [εC]2 = 0.

REMARK. In Theorem 5.7, the number 2m/(m — l)(m — 2) and the
relation β < 1 are the best possible. In fact, (M, g) is conformally flat
if and only if A(g) — 2mB(g)/(m — l)(m — 2) = 0 for m >̂ 4, and conformally
flat Riemannian manifolds are not necessarily of constant curvature (with
respect to (5.14), cf. S. Tanno [24]).

6. Ricci curvature tensors and Ricci curvatures. We give sufficient
conditions for Ricci curvature to be positive or negative in terms of
(Rl9 Rd and S.

THEOREM 6.1. Let (M, g) be a Riemannian manifold.
(a) (Rίf JRJL) ^ (l/m)S2 holds always.
(b) If the inequality

(6.1) — i — S2 > (Rl9 Rd ^ -ί S2

m — 1 m

α£ a?, ίfee^ iϊiccΐ curvature is positive at x for S > 0 α^d negative
at x for S < 0. Furthermore:

(c) 27&e positive minimum value 7 or ίfce negative maximum value
7 satisfies the following relation

(6.2) | 7 | ^ - [ | S - [m(m - l)(Rlf RJ - (m - 1)S 2 H .
m

PROOF. We write R,(X, Y) = RjkX>YK (a) is (ii). We prove (b).
First we assume S > 0. Let T be a positive number, and let X be an
arbitrary non-zero vector. By Lemma iv we have

(6.3) Rt{X, X) = T(X, X) - (T(X, X) - R,{X, X))

^ T(X, X) - l(Tgi} - Λy)(Γflr« - R<ψ\X, X)

= [T-(mΓ-2ST+ (Rtfjy'mX, X) .
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If T> [mT2 - 2ST + (Rly R,)]112, i.e.,

(6.4) (m - 1)Γ2 - 2ST + (Rl9 Rλ) < 0 ,

we have i ^ X , X) > 0. (6.4) has a solution Γ, if and only if

D = AS2 - 4(m - l)(Rlf R,) > 0 .

This solution Γ is positive by (6.4) and S > 0. This proves (b) for S > 0.
The case S < 0 is similarly proved by considering

R,(Xf X) = - Γ(X, X) + (T(X, X) + R^X, X)) .

Next we show (c). Assume S > 0. We put

(6.5) T - [mT2 - 2ST + (Ru R,)]112 ^ Q .

We solve T in the positive range of Q. (6.5) is written as

(6.6) (m - 1)Γ2 - 2(S - Q)T + Cft, JBO - Q2 ^ 0 .

(6.6) has a solution T if and only if

(6.7) D = 4(S - Q)2 - 4(m - l)[(Rlf R,) - Q2] ^ 0 .

We put 4/(Q) - 2 ) , i.e.,

(6.8) f(Q) = mQ2 - 2SQ + S2 - (m - 1 ) ^ , i?,) .

Since (Rl9 R,) < S2/(m - 1), we have /(0) > 0 and df/dQlQ=:Q = -2S < 0.
Let Qo be the smaller solution of f(Q) = 0. Then

(6.9) mQo = S - ' [m(m - 1 ) ^ , R,) - (m - 1)S2]1/2 .

Since Qo = Max{Q: satisfying (6.5), T > 0}, we have (6.2) for the case
S > 0. The case S < 0 is similar.

THEOREM 6.2. Lei (M, ̂ ) be a compact orientable Riemannίan mani-
fold with non-negative scalar curvature S. If

(6.10) — 1 — S2 ^ (Λx, ΛO ̂  i s 2

m — 1 m

/ioϊcίs o^ M, then b^M) ^ m. If the strict inequality holds somewhere,
then b^M) = 0.

REMARK. Theorem 6.2 is better than a result by Y. Tomonaga [26]
(or Corollary 3.2 in S. Tanno [22]). In fact,

Cf Γ Q2-I1/2

(6.11) A _ (Rlf RJ-5-\ ^ 0
m L mΛ

is equivalent to (m + l)S2/m2 ^ {Ru R,). Hence, l/(m - 1) > (m + l)/m2

implies that Theorem 6.2 is better.
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7. Positivity and negativity of F(w, w). Let w = (% f i i l,) be a skew
symmetric tensor. The classical F(w, w) = pF(w, w) is defined to be

(7.1) F(w, w) =

(cf. for example, K. Yano-S. Bochner [29]). We define F = PF by

(7.2) Ftf*, = -2-Z-ί jβ w + ±-(Rihgsι - Rjkgu + i ^ ί f c - Rixgih) .

2 4

Then Fijkl = 2 ^ - holds, and [ί τ](= pi*7]) is defined by

[F]w = ( ^ H W " ' - 1 )

for w = (wίir 8). Lemma iv is valid also for [F] and w under the following
notations:
(7.3) ([F]w, w) = Fij

klw
klr-8wijr...s , etc.

By (7.1), (7.2) and (7.3) we have {[F\w, w) = F{w, w). In [22] and [23]
we studied relations between scalar inequalities and sign of F(w, w).
Here we apply another method. For a positive number T, we put [F] =
T[I] - (T[I] - [F]). Then we have

(7.4) ([F]wf w) = T(w, w) - ((T[I] - [F])w, w)

^ [T - (trace (T[I] - [F])2)ίl2](w, w) .

Since trace (T[I] - [F])2 - T2m(m - l)/2 - 2Γtrace [F] + (F, F), and

4

trace [ ]

m - 2 -(Λ, E) +
4 4

if inequality

4T2 > 2m(m-l)T2-4(m-p)ST+(p-l)2(R,

has a positive solution Γ, then jPίte;, w) > 0. Similarly as in §4, the
condition for the existence of such T is calculated and we have

THEOREM 7.1. In a Riemannian manifold (M, g), if

(7.5) [m~P)\s2 > U(p - 1)\R, R) + (m-4p + 2)(Bl9 i?0 + S2]
m2 - m — 2 2

holds at x, then F(,) is positive definite at x for S > 0, and negative
definite at x for S < 0, where 2 <̂  p <; m — 1.

By a well known theorem on harmonic forms (cf. S. Bochner [10],
K. Yano and S. Bochner [29]), we have
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THEOREM 7.2. If a compact orientable Riemannίan manifold (M, g)
has positive scalar curvature and if (7.5) holds on M, then the p-th Betti
number bp(M) = 0, where 2 ^ p <; [m/2].

THEOREM 7.3. In a Riemannian manifold (M, g), if m — 4p + 2 < 0
and if

(7.6) Γ 2 < m " *>>' -
Lm2 — m — 2 m

α£ x, then F(,) is positive definite at x for S > 0 and negative
definite at x for S < 0, where 2 ^ p <^ m — 1.

PROOF. This follows from (7.5) and (ii).

8. 3-dimensional Riemannian manifold. Since the Riemannian cur-
vature tensor J? of a 3-dimensional Riemannian manifold is given by

(8.1) R*jkι = δiRjk - δ\Rάι + Rigik - Rign - - f f e - δlgόι) ,
Δ

we have

(8.2) (R, R) - 4(JBlf i?0 + S2 = 0 .

Therefore A(g) and B{g) are dependent, and we have

(8.3) A(g) = W(g) .

By (8.2), (4.4) is written as

2S2 > 4(#, R) = 16(Rl9 Rγ) - 4S2 .

Hence, a compact orientable Riemannian manifold, m = 3, satisfying S > 0
and 3S2 > 8(i?!, i?i) on M is a real homology sphere by Theorem 4.2.
However, applying Theorem 6.2, we have

THEOREM 8.1. Let (M, g) be a compact orientable Riemannian mani-
fold of ^-dimension. If the scalar curvature S is positive and S2 > 2(Rί9 Rλ)
holds on M, then (M, g) is a real homology sphere.

PROOF. By bγ{M) = 0 and by the duality, we have b2(M) = 0.

9. 4-dimensional Riemannian manifolds. Let (Λf, g) be a 4-dimen-
sional compact orientable Riemannian manifold. Denote by χ(M) the
Euler-Poincare characteristic of M. Then the Gauss-Bonnet formula is
given by

(9.1) J[(β, R) - 4(Λlf R,) + S2]dM = 32π2χ(ikf) ,

where dM denotes the volume element of (M, g) (cf. for example, M.
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Berger [6]). By (i) and (ii), the followings are known:

(v) If (M, g) is an Einstein space, [(R, R)dM = 32π2χ(M) ^ 0.

(vi) J(JB, R)dM ^ 32π2χ(M) holds. The equality holds if and only if

(M, g) is an Einstein space (A. Avez [2]).
(vii) If (M, g) is an Einstein space, we have

S2 Vol (M) ^ 192 π2χ(M) .

The equality holds if and only if (M, g) is of constant curvature (R L
Bishop and S. I. Goldberg [8], A. Avez [3]).

The best result including (vii) is as follows:

THEOREM 9.1. In a compact orientable Riemannian manifold (M, g)
of ^-dimension, we have

(9.2) (20 - Sβ)\B(g)dM + 192π2χ(M) ^ \s2dM

for every constant β\ — oo < β < 1. The equality holds if and only if
(M, g) is of constant curvature.

PROOF. The integration (5.14)' gives

(9.3) f [6(i2, R) - (4 + Sβ)(Bl9 R,) + 2βS2]dM ^ 0 .

Eliminating (R, R) from (9.1) and (9.3), we have

(9.4) j[(6 - 2β)S2 - (20 - Sβ)(Ru R,)]dM rg 192π2χ(ikf) .

By B(g) = (Rl9 R,) - (1/4)S2, we have (9.2). q.e.d.

By (9.4) with β = 1, if S2 > S(Rlf R,), we have χ(M) > 0. Generally
we have

THEOREM 9.2. In a ^-dimensional compact orientable Riemannian
manifold (M, g), if S > 0 and S2 > 3(Rlf Rγ) hold on M, then χ(M) ^ 2.

PROOF. By Theorem 6.2 and S2 > S(Rί9 Rx), we have b^M) = 0. By
the duality we have b3(M) = 0. Hence, X{M) = bo(M) + b2(M) + b4(M) ^ 2.

THEOREM 9.3. In a compact orientable Riemannian manifold (M, g)
of ^-dimension, we have

(9.5) J[S2 - (5 - 2β){R, R)]dM ^ 32(1 + 2β)π2χ(M)

for every constant β; —^<β<l. The equality holds if and only if
(M, g) is of constant curvature.
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PROOF. Eliminating (Ru R,) from (9-1) and (9.3), we have (9.5).
By Theorem 9.3 with β = 1, if (JB, R) < (1/3)S2, then we have χ(M) >

0. Generally we have

THEOREM 9.4. In a ^-dimensional compact orientable Riemannian
manifold (M, g), if S is positive and if

(9.6) 9(R, R) < 2S2

holds on M, then (M, g) is a real homology sphere.

PROOF. By A(g) = (R, R) - (2/3)(Λlf Rd ^ 0, (2/9)S2 > (R, R) implies
(l/S)S2>(Rlf R,). Then, Theorem 6.2 shows that b^M) = 0. By Theorem
7.3 for m = 4 and p = 2, (3/10)S2 > (β, iί) implies that b2(M) = 0. Next,
by the duality, we have Theorem 9.4.

REMARK. Theorem 9.4 is better than Theorem 4.2 for m = 4.

10. Killing vectors and Killing tensors. By Theorem 6.1 (and its
proof), we have

THEOREM lO.l Let (M, g) be a compact orientable Riemannian mani-
fold. Assume that S is non-positive and

(10.1) S2 ^ (m - 1)(RU R,) .

Then, Killing vectors are parallel. If the strict inequality holds some-
where, there is no non-zero Killing vector.

REMARK. This result is better than Corollary 2.2 in [23]. Cf. Remark
in §6.

By Theorem 7.1, we have

THEOREM 10.2. Let (M, g) be a compact orientable Riemannian mani-
fold with negative scalar curvature S. If, for p (2 <̂  p <̂  m — 1), (7.5)
holds on M, there is no non-zero Killing tensor of order p.

By Theorem 4.1 and Lemma iii, we have

THEOREM 10.3. / / a compact orientable Riemannian manifold (M, g)
has negative scalar curvature S and if (4.4) holds on M, then there is no
non-zero Killing tensor of order p, 1 ^ p ^ m — 1.

REMARK. We have also results corresponding to Theorems 3.1, 5.1.

11. Positive sectional curvature, I. Let (X, Y) be an arbitrary
orthonormal pair. By (2.2) and Lemma iv, we have

Y{Yι = , s ,x + κimx*xkrr
m(m — 1)
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== m(m — 1)

since KijkιX
jXk is symmetric in i and I. Next, if we put Njkr8 = -K"*ifc

IJKΓ<rβi,
then we have Njkrs = Nr8jk. By Lemma iv, we have

(11.2) Njkr8(X>'Xk)(χrχ°) <£ (NjkrsN^syι\χrχr)(X°X8) ,

where the vector space W is of (2, 0)-tensors. Hence, (11.1) and (11.2)
show that if

V-L-L-o; —- — {Λ. j k Άir8ιJ\. J\u v) > U ,

m(m — 1)

then the sectional curvature is positive. Thus,

THEOREM 11.1. Let (ikf, g) be a Riemannian manifold. If (11.3)
holds at x, then sectional curvatures are positive at x.

REMARK. The explicit form of (11.3) is as follows:

(11.3)' / RimR\8R
m(m — 1) m(m — 1)

m 2(m — I ) 2 m 2(m — I ) 2 m\m — I) 3

m(m — 1)

The upper bound of RijkιX
ίXkYiYι is similarly calculated:

m(m — 1)

By the well known sphere theorem (cf. W. Klingenberg [14], D. Gromoll-
W. Klingenberg-W. Meyer [12]), we have

THEOREM 11.2. Let (M, g) be a complete and simply connected
Riemannian manifold. If

(11.5) .ZS .. - 5(JΓyiΓVJ5Γ'.ΛffV)ι/4 > 0
m(m — 1)

on M, then (M, g) is homeomorphic to a sphere.

PROOF. The condition Δ ^ RijklX
jXkYiYι ^ 4J for some positive A

is calculated by (11.1), (11.2) and (11.4), getting (11.5).

REMARK. We can also apply differentiate pinching theorems (for
example, see M. Sugimoto-K. Shiohama [21]).
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12. Positive sectional curvature, II. Let (e<) be an orthonormal basis
at x. We put g(R(em, eb)em, ea) = Rammb, where α, ft = 1, , m - 1. By V
we denote the (m — l)-dimensional subspace of the tangent space at x
defined by (eu , βm_0. Let Y be a unit vector in V, Y = (Ya). Let T
be a positive number.

(12.1) RammhY
aYh = T(Y, Y) - (Tδab - Rammb)YaYb

^T- [(Tδab - Rammb)(Tδ«b - R«"")γι* .

Since δabδ
ab = m - 1 , δ α 6 i 2 ^ w δ = ^ Λ ' " ' - Rmm and RammbR

ammb = RimmjR
immj,

we see that if

(12.2) T>[(m- 1)Γ2 - 2#mmT + RimmjR^ψ2 ,

the sectional curvature for each 2-plane which contains em is positive.
A sufficient condition for the existence of T satisfying (12.2) is

{Rmmf - (m - 2) Σ RimmjR^ > 0 .

For (i?w m)2 we use (6.2), and for RimmjR
ίmmj we use

(cf. (11.2)). Then we have

THEOREM 12.1. In a Rίemannian manifold (M, g), if S is positive
and if

(12.3) [S- [m(m-l)(Ru Rx)-(m-l)Sψ2]2> m\m-2)[Ri

jk

ιR\υ

kR\;Rr

ilψ
2

holds at xy then sectional curvatures are positive at x.

13. Riemannian manifolds of class one or two. Every Cω-Rieman-
nian manifold (M, g) can be imbedded locally and isometrically in an
[(m(ra + l)/2]-dimensional Euclidean space (L. Schlaefli [19], M. Janet [13],
E. Cartan [11]). For C°°-case, this problem is open (cf. S. Kobayashi-K.
Nomizu [15], Vol. 2, p. 354). If a Riemannian manifold (M, g) can be
C°°-imbedded locally and isometrically in an (m + p)-dimensional Euclidean
space, and if for some point x any neighborhood of x can not be C°°-imbedded
isometrically in an (m + p — l)-dimensional Euclidean space, we say that
(M, g) is of class p (cf. G. Ricci [18], T Y. Thomas [25], C. B. Allendoerfer
[1], etc.).

LEMMA viii (A. Weinstein [28]). // a Riemannian manifold (M, g)
is isometrically immersed in Em+2 and if (M, g) is of positive curvature,
then the curvature operator [R] is positive.

Lemma iii and Lemma viii give
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PROPOSITION 13.1. // a compact orientable Riemannian manifold
(M, g) is of class 1 or 2 and if (M, g) is of positive curvature, then (M, g)
is a real homology sphere.

REMARK. Proposition 13.1 is a generalization of a result of Y.
Tomonaga [29] (his assumption is "m = even and class 1" and the con-
clusion is "χ{M) > 0").

THEOREM 13.2. // a compact orientable Riemannian manifold (M, g)
is of class 1 or 2 and satisfies (11.3), then (M, g) is a real homology
sphere.
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