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ON THE UNIQUENESS OF SOLUTIONS IN THE HULL

ToSHIKI NAITO

(Received December 5, 1972)

We shall consider an almost periodic system, or more generally, a
system with the compact hull, and assume that in either case the system
has a bounded solution. The purpose of this note is to prove a uniqueness
theorem for every solution in the hull of the bounded solution. Kato and
Yoshizawa have assumed in [1] the condition

(¢) solutions of every system in the hull are unique for initial con-
ditions

in order to prove that a bounded solution of a system with the compact
hull is totally stable if it is uniformly asymptotically stable. Kato has
weakened the condition (c) in [2]. Moreover, he has constructed a system
with a uniformly asymptotically stable but not totally stable solution,
which lacks the uniqueness property of a solution of a system in the
hull.

Concerning the uniqueness of a given solution, Okamura has given a
necessary and sufficient condition in [3]. His condition is to require the
existence of a kind of Liapunov function. Yoshizawa has improved the
method to construct the Liapunov function (see p. 5-8 in [5]). Using his
method, we shall show a necessary and sufficient condition for the
uniqueness of every solution in the hull.

We shall use the following notations throughout this note. We set
I=1]0, ), R=(—, +x), R* = a real Euclidean n-space, S;. = {x ¢ R";
|#| < B*}, where |-| is a norm, and C(I X S;., R") = the family of R"-
valued continuous functions defined on I X S;.. For any fe C(I x S;., R")
and te I, we set f.(¢, ) = f(t + 7, 2) for (¢, ¢)e I X Sz. The hull of f,
denoted by H(f), is the closure of the set {f.; 7€ I} in the sense of the
uniform convergence on any compact subset of I X Sj.

1. We shall consider a system of differential equations
dx
1 — = f(t ,
(1) 7 S, %)

and assume that fe C(I X Sz, R") and H(f) is compact. Let u(f) be a
solution of the system (1) such that for a constant B, 0 < B < B*,



384 T. NAITO

lu@®)| < B for all tel.

Then, u. is obviously a bounded solution remaining in S, on I of the
system

de _
(11 T) E’ - fr(t’ .’E)

for any e I. Since |f.(t, )| < L for some L = L(B) and all (¢, x)e I x S,
. satisfies the Lipschitz condition

|u.(t) — u.(s)| < L|t —s| for all ¢ sel.

Therefore, H(u) and H(u, f) are compact. Here, for (v, g) € H(u, f) there
exists a sequence {z,}, 7, e I, such that

(*) U, —V and f,, — g as k— oo uniformly on any compact
subset of I x S;.

v is a bounded solution remaining in S, on I of the system
(2) 5 = g(t9 x) .

We shall denote the tubular neighborhoods of %(t), <t 7+ T,
and u.(t), 0 <t < T, by the following;

N, T,e) ={{t,x);c<t<t+ T and |z — u(t)| <¢},
Mz, T,e) ={t,2;0=t<T and |xv— u.(})]| <ée}.

Clearly, (¢, x)e N(z, T, ¢) if and only if (¢t — 7, x) € M(z, T, ¢).
We have obtained the following theorem concerning the uniqueness
of the solution v of the system (2).

THEOREM. Let T and € be given, where 0 < T and 0 < ¢ < B* — B.
Then, for any (v, g)e H(u,f) v is a unique solution to the right of the
system (2) if and only if there exist continuous functions V(t, x, ) defined
on N(z, T, €) for all ze I, which satisfy the following conditions:

(i) V(t, u(),7) =0 for all te[r, 7 + T].

(i) a(lz — u@®)|) S V@, 2, 7) < | — u(t)| for all (¢, x)e N(z, T, ¢),
where a(r) is a positive definite continuous function of re|0,¢€), which
may depend on T and & but not on 7.

(iii) |V@E, x,7) —V(t,y,7)| < |x— y| for all (¢ %), (¢, y) € N(z, T, ¢).

(iv) Vi@, 2z, 7) <0 for all (¢, x)e N(z, T, ¢).

Proor. Sufficiency. If (v, g) € H(u, f), there exists a sequence {z,},
7,€ I, such that the condition (*) holds. Let y(f) be a solution of (2)
defined on [¢,t), for some ¢, and ¢t eI, t, <t, such that y(t) = v(t).
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We shall show that y(t) = v(¢) for all tel[t, t) sufficiently close to t,.
Considering {7, + ¢} instead of {z,}, we can assume that ¢, = 0. Since {u.}
converges v uniformly on [0, T'], there exists a small ¢, > 0 such that
(¢, v(t)) and (t, y(t)) € M(z,, T, ¢) for all te[0, t,] and sufficiently large k.
Set

(3) W(t9 (L‘, Tk) = V(t + Tln .’X), Tk) ’

which is defined on M(z,, T, ¢). Since W(t, x, 7,) satisfies the Lipschitz
condition with respect to x, we obtain

Wit x, 7)) = W(’l,rk)(tr @, Ty) + |g(t, x) — frk(t, )|
S Vo + 7, 2, 7)) + 9@, 2) — ¢ 2) | .
From this and the condition (iv), it follows that
W, @, T) < 0,
where
0, = sup {| 2, (¢, ) — 9@, ¥)|; ¢, x) € M(z,, T, &)},
and hence
W(t, y), t.) — W(0, y(0), 7,) = o, for tel0,t.)].
The condition (ii) implies that
a(lz — u, (b)) = Wi, 2, 70) < |o— u,(f)| for (t,x)e M(z,, T, ¢) .
Therefore, it holds that
a(ly®) — u, @) = [y(0) — u,(0)] + 6.t for ¢e]0,2)].
Since y(0) = v(0) = lim,_,, %.,(0) and lim,_. 0, = 0, we have
a(|y®) — o)) =0 for tel0,t)],
and hence
y(@) = v(t) for tel0,t,)].

Necessity. We remark that |z| < B* if | — u(t)| < e. For (¢, x)e
N(z, T, ¢) and t > 7, denote by Z(t, x, 7) the family of all functions z(s),
which are continuous on [z, ], with the properties that their derivatives
are continuous except for finite number of values of s and that z(7) = u(7),
2(t) = x and |2(s) — u(s)| < ¢ for se[r,t]. For any re I and any (¢, x)e
N(z, T, €), set

. 'l dz .
(4) Vit, o, 7) = {zezl(ltlfz,r)Sr %—(s) f(s, 2(8))|ds, if t>7,

| —u(z)], if t=1.
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V is continuous on N(z, T, ¢) and satisfies the conditions (i), (iii) and (iv).
Moreover, it holds that

() Vi, x, 7)< |z —u(t)| for all (¢, x)e N(z, T, ¢) and V(t,z,7) >0
if |o — u@)| > 0.
See p. 5-8 in [5] for the proof of these. Therefore, it remains only to
prove the first inequality in (ii).

Set

a(z, r) = inf {V(¢, =, 7); (¢, ®) € Q(z, 1)},
where 0 < r <e¢, el and
Q(r,r) ={¢ »);telr,c + T, |x — u@®)| =7} .

Since Q(z, r) is a compact set, there exists a (¢, 2,) € Q(z, r) where V attains
a(z, r), so that a(z,r) > 0. We shall prove

infa(z,r) =a(r) >0 for 0<r<e.
el
To prove this, suppose that there exists an 7,0 < r, <e¢, such that
a(r,) = 0. By the definition, it holds that
lim V(tk, xk, Tk) = 0

k—oo

for some sequence {7}, 7,€I, and some (t, x,) € Q(t,, ). If we set
s, = t, — Ty We have s,€[0, T] and

(5) lkim W(sky xk; Tk) = 0 ’

where W(t, «, 7,) is defined by (3). For (¢, x)e M(z, T, ¢) and ¢ > 0, set
Yt %, 7)={2;2€Z(t + t, = 7)}.

From (4) and the definition of W, we have

. ¢ dy .

inf S ’—(s) — fi(s, y(s)|ds, if t>0,
yeY(t,z,t)JO ds
Im~ur(0)|’ lf t=0.

We shall show that liminf, .s, =0 > 0. Since |f.,(¢ )| <L for
some L = L(B + ¢), all (t,x)e M(z,, T,¢) and all £k =1,2, ---, it follows
from (6) that

(6) W(t,ow:{

W(si, %, Th) = | @ — %.,(0)| — Ls,
(see p. 6 Lemma 1. 2 in [5]). With the aid of inequalities

o — e, (0) | = [, — %, (8) | — |ue,(80) — %, (0) ]
=1, — Ls, ,



UNIQUENESS OF SOLUTIONS IN THE HULL 387

we have
W(s, @, ) = 7 — 2Ls, .

In view of (5), we have o > 0.
Therefore, from (5) and (6), there exist y, € Y(s,, x;, 7;) such that

() lim{"*| 2L (5) - .5, mu(o) |ds = 0.

k—rco

Hence, there exists a subsequence of {y,} converging uniformly on any
compact subset of [0, 0). In the following, by renumbering, we shall
denote subsequences and their original sequences by the same notations.
Since H(f) is compact, {f.,} has a subsequence converging uniformly on
any compact subset of I X S;. Let y(f) and g(¢, x) be limit functions
of {y,(t)} and {f.,(t, x)} respectively. By standard arguments, we have

y(t) — 40 — |96, ¥@)ds = 0 for te[0,0),

so that y(t) is a solution of (2).

On the other hand, choosing a subsequence, we can assume that {u.,}
converges to some v € H(u) uniformly on any compact interval of I. wv is
clearly a solution of (2).

We shall examine the relation of the solutions % and v of the system
(2). Choosing a subsequence of {s.}, if necessary, we can assume that
lim,_.s, = 0. Then, if s,e[0, 0) is sufficiently close to o, we have for
k sufficiently large

[Yk(8e) — Ye(s0) | < % and | u.,(s) — %, ()] < 1:12 .

Obviously it holds that
[y(se) — v(so) | = |2 — u,k(s,,)i — {ly(s0) — Yi(s0) |
+ | Y(80) — Yi(si) | + |uc,(81) — e, (s0)]
+ |u’rk(80) - 'U(So) |} .
From these inequalities, we have

|y(s) — v(s)| = 12‘2 .

On the other hand, y(0) = v(0) because ¥,(0) = u.,(0).
Therefore, v is not a unique solution to the right of the system (2).
This is a contradiction. Hence it is proved that

a(r) >0 for O<r<e. q.e.d.
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2. We shall show some examples of the functions V and an applica-

tion of the theorem.
When f satisfies the Lipschitz condition such that

|/, %) — f(¢, 9)| = K|z — ¥
for some K > 0 and all (¢, x), (¢, y) eI X Sz, we set
Vit, x,7) = e X | — u(t)| for (¢, x)eN(r,T,¢).
More generally, let f be inner product in the sense of Strauss and Yorke
in [4], that is to say, f satisfies the condition
x—y, [, ) — f¢9) < K|z —y[
for some K > 0 and all (¢, ), (¢, y) €I X Sz, where {z, y) = >, xy; and
|z| = <z, x)'* for x, ye R*. We set in this case
V(t, z, 7) = (28) e X g — u(t)|* for (¢, %) eN(z,T,e).

It is easy to check that these V fulfill the conditions (i), -, (iv) in
Theorem.

Applying Theorem, we can present a short proof of the following

proposition, which corresponds to Lemma 6 in [6], though Yoshizawa
has proved the lemma for functional differential systems.

PROPOSITION. Let T > 0 be given. Then, for any (v, g) € H(u, f) v is
a unique solution to the right of (2) if and only if for any small € > 0
there exists a 6(€) > 0 such that if t€l, |x — u(7)| < 0(¢) and |h(t)]| < 4(e),
we have
|z(t) —u@®)|<e on 7t=t+ T,
where x(t) is a solution through (c,x) of the system

dr _
(8) %——f(t,-’v)+h(t)

and h(t) is continuous on I.

Proor. Sufficiency can be proved by standard arguments. We shall
only show the proof of necessity. According to Theorem, there exist
continuous functions V satisfying the conditions (i), --, (iv). We remark
that a(r) in (ii) can be replaced by an increasing positive definite con-
tinuous function. Define d(¢) by the relation

(9) a?(@E1+T) <e.
Obviously it holds that
Va(t, 2@), 7) < Viy(¢, 2(), 7) + [k(E)] < 0(e) .
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Therefore, we have
a(lz@) — u@)|) = (@) — u(@)| + 0 — 7).
From this and (9), it holds that
|x@t) —u@)| <e¢ for telr,z+ T]. q.e.d.
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