SURGERY ON 1-CONNECTED HOMOLOGY MANIFOLDS

AKINORI MATSUI

(Received July 13, 1973)

1. Introduction and statement of a result. In this paper, we show that the analogue of the surgery technique of Browder and Novikov holds for 1-connected homology manifolds.

Our theorem is as follows.

THEOREM. Let X be an 1-connected Poincaré complex with dim $X = n \ge 5$ and let ξ be a homology cobordism bundle (cf. Martin-Maunder [6]) over X with dim $\xi = k$. Let $\alpha \in \lim_{j\to\infty} \pi_{n+k+j}(T(\xi^k \bigoplus \theta^j))$ be such that $h(\alpha) = \Phi(g)$, where $h: \pi_{n+k+j}(T(\xi^k \bigoplus \theta^j)) \to H_{n+k+j}(T(\xi^k \bigoplus \theta^j))$ is the Hurewicz homomorphism, $\Phi: H_n(X) \to H_{n+k+j}(T(\xi^k \bigoplus \theta^j))$ is the Thom isomorphism, and $g \in H_n(X)$ is a generator.

Then there exists an obstruction

$$c(lpha) \in egin{cases} Z & for & n = 4m \ Z_2 & for & n = 4m + 2 \ 0 & for & n = odd \end{cases}$$

If $c(\alpha) = 0$, there exists a homology manifold M^{*} such that $f: M \to X$ is homotopy equivalent and the normal bundle $\mathscr{N}(M)$ for M embedded in S^{N} is equivalent to $f^{*}(\xi \bigoplus \theta^{N-k})$.

2. Proof of the theorem. The essential parts of the proof are the stability of $\pi_i(BHML(n))$ and the embeddability of spheres.

Sato [10] showed the next theorem.

THEOREM. Let M be a homology manifold with the dimension $n \ge 5$. Assume that ∂M is a PL-manifold or $\partial M = \emptyset$. If the obstruction class

$$\{\lambda(M)\} \in H_{n-4}(M, \mathscr{H}^3)$$

is zero, then there exists a PL-manifold N with a pseudo homology cell decomposition which is cellularly equivalent to M. Furthermore $N \rightarrow M$ is a resolution.

Matumoto [5] and Martin [7] showed the next theorem by this theorem. THEOREM. The next sequences are exact. A. MATSUI

$$0 \rightarrow \pi_i(BPL(n)) \rightarrow \pi_i(BHML(n)) \rightarrow 0$$
 for $i \neq 3, 4; i + n \ge 7$
 $0 \rightarrow \pi_i(BPL(n)) \rightarrow \pi_i(BHML(n)) \rightarrow \mathscr{H}^3 \rightarrow 0$ for $n \ge 3$
 $\pi_3(BPL(n)) \rightarrow \pi_3(BHML(n)) \rightarrow 0$ for $n \ge 3$
 $0 \rightarrow \pi_i(BHML(n)) \rightarrow \pi_i(BHML(n + 1)) \rightarrow 0$ for $i \le n - 1, i + n \ge 7$.
We need the next lemma

We need the next lemma.

LEMMA. Let M be a compact 1-connected homology manifold with dim $M = m \geq 5$. For $\alpha \in \pi_i(M^m)$, $1 \leq m/2$, there exists an embedding $\overline{\alpha}: S^i \to M'^m$ such that there exists an h-cobordism (W; M, M') such that

$$i_*(\alpha) = j_*(\bar{\alpha}) \in \pi_i(W)$$

where $i: M \subset W, j: M' \subset W$ are inclusions.

PROOF. Let $\alpha: S^i \to M$ be a continuous map, and let * be a base point of S^i . Let Δ^m be an *m*-simplex in M^m . We choose an embedding $\beta: S^i \to \operatorname{Int} \Delta^m$ and an embedded path $\gamma: I \to M^m$ such that $\gamma(0) = \alpha(*), \gamma(1) =$ $\beta(*)$ and $\gamma(I) \cap \beta(S^i) = \gamma(1)$. We divide S^i as $S^i = P \cup Q \cup R$, where

$$egin{aligned} P &= \left\{ (x_0,\,\cdots,\,x_i) \Big| x_0^2 + \,\cdots \,+\, x_i^2 = 1,\, x_0 \geqq rac{1}{2}
ight\} \ Q &= \left\{ (x_0,\,\cdots,\,x_i) \Big| x_0^2 + \,\cdots \,+\, x_i^2 = 1,\,\,-rac{1}{2} \leqq x_0 \leqq rac{1}{2}
ight\} \ R &= \left\{ (x_0,\,\cdots,\,x_i) \Big| x_0^2 + \,\cdots \,+\, x_i^2 = 1,\, x_0 \leqq -rac{1}{2}
ight\} \ R \supset ar{R} &= \left\{ (x_0,\,\cdots,\,x_i) \Big| x_0^2 + \,\cdots \,+\, x_i^2 = 1,\, x_0 \leqq -rac{1}{2}
ight\} \,. \end{aligned}$$

There exist continuous maps $\alpha': P \to S^i$ such that $\alpha'(P \cap \{x_0 = 1/2\}) = *$ and $\alpha' | (P - \{x_0 = 1/2\})$ is a homeomorphism, $\gamma': Q \to I$ defined by $\gamma'(x_0, \dots, x_i) = x_0 + 1/2$, and $\beta': R \to S^i$ such that $\beta'(R \cap \{x_0 = -1/2\}) = *$ and $\beta' | (R - \{x_0 = -1/2\})$ is a homeomorphism. We define $\alpha'': S^i \to M$ by $\alpha'' | P = \alpha \circ \alpha', \alpha'' | Q = \gamma \circ \gamma'$ and $\alpha'' | R = \beta \circ \beta'$. Then α'' is homotopic to α .

We say that a map f from a polyhedron X to a polyhedron Y is a resolution if $f^{-1}(y)$, for any $y \in Y$, is acyclic. By the theorem of Maunder ([8], Corollary 3.6), we have a resolution $f: \Sigma^i \to S^i$ and a map $\tilde{\alpha}: \Sigma^i \to M$ such that $\tilde{\alpha} | \bar{R} = \alpha'' \circ f | R', R' = f^{-1}(\bar{R}), \alpha'' \circ f$ is homotopic to $\tilde{\alpha}$ and $\tilde{\alpha}$ satisfies the general position property for homology manifolds. Σ^i is a polyhedron but is not necessarily a homology manifold.

(i) The case where i < m/2.

 $\tilde{\alpha}$ is an embedding such that $H_*(\tilde{\alpha}(\Sigma^i - \operatorname{Int} R')) = 0$. Let \mathscr{R} be the derived neighbourhood of $\tilde{\alpha}(\Sigma^i - \operatorname{Int} R')$. Then we have an embedding

 $\bar{\alpha}: S^i \to M' = (M - \operatorname{Int} \mathscr{R}) \cup \operatorname{cone} \operatorname{of} \partial \mathscr{R}.$

(ii) The case where i = m/2.

Let Λ be $\{x \mid \tilde{\alpha}^{-1}(x) \text{ is two points } \{x_1, x_2\}\}$. For $x \in \Lambda$, there exists an embedding $s_x \colon I \to (\Sigma^i - \operatorname{Int} R')$ such that $s_x(0) = x_1$ and $s_x(1) = x_2$. The map $\alpha' \circ s_x \colon S^1 \to M$ is null homotopic. There exists a continuous map $g \colon I^2 \to M$ such that $g \mid S^1 = \alpha' \circ s_x$. We have a resolution $p \colon D \to I^2$ and a map $h \colon D \to M$ such that $p \mid p^{-1}(S^1)$ is homeomorphic, $h \mid (D - p^{-1}(S^1))$ is injective, $g \circ p$ is homotopic to h, and $h(D - p^{-1}(S^1)) \cap \tilde{\alpha}(\Sigma^i) = \emptyset$. Then we have an embedding $\tilde{\alpha} \colon \tilde{\alpha}(\Sigma^i) \bigcup_{x \in A} (\bigcup_{\alpha \circ s_x} h(D)) \equiv \Sigma' \to M$ such that $H_* \tilde{\alpha}((\Sigma' - \tilde{\alpha}(R'))) = 0$. Let \mathscr{R} be the derived neighbourhood of $\tilde{\alpha}(\Sigma' - \operatorname{Int} \tilde{\alpha}(R'))$. Then we define an embedding by $\overline{\alpha} \colon S^i \to M' = (M - \operatorname{Int} \mathscr{R}) \cup \text{ cone of } \partial \mathscr{R}$. Thus we proved the lemma.

REMARK. Let Σ^n be a homology sphere such that $\pi_i(\Sigma^n) \neq 0$. Then there is not a map from S^n to Σ^n which is homology equivalence. But S^n is equivalent to Σ^n as a homology cobordism bundle over a point.

LEMMA. Let (W; M, N) be an h-cobordism and ξ be a homotopy cobordism bundle (cf. definition of [4]) over W. Then there exists a bundle map $f: \xi | M \to \xi | N$.

PROOF. Let γ be a deformation map from W to N. Then $(\gamma^*(\xi|N))|M$ is equivalent to $\xi|M$ and there exists a bundle map from $(\gamma^*(\xi|N))|M$ to $\xi|N$. Then there exists a bundle map $f:\xi|M \to \xi|N$.

PROOF OF THE THEOREM. We can assume that $\xi^k \oplus \theta^1$ is a homotopy cobordism bundle over X. Let $\alpha: S^{n+k+1} \to T(\xi^k \oplus \theta^1)$ be a map such that $h(\alpha) = \Phi(g)$. We can embed X in R^j , for large j. Let $\mathscr{R}(X)$ be a regular neighbourhood of X in R^j . Let ξ' be a homotopy cobordism bundle over $\mathscr{R}(X)$ induced from $\xi^k \oplus \theta^1$. Then the inclusion map $i: T(\xi \oplus \theta^1) \subset T(\xi')$ is a homotopy equivalence. By the transversality theorem of homology manifolds (Martin [4]), for large p, we have a map $\beta: S^{n+k+1} \to T(\xi') \times I^p$ which is transversal to $\mathscr{R}(X) \times I^p$ and is homotopic to $(i \circ \alpha) \times 0$. Then we have a normal map $\alpha': M \to X$ with degree 1.

The other part of the surgery is the same to the PL cases by Matumoto's theorem and by the lemmas.

References

- W. BROWDER AND M. W. HIRSH, Surgery on piecewise linear manifolds and applications, Bull. Amer. Math. Soc., 72 (1966), 959-964.
- [2] M. KATO, Combinatorial prebundles I, Osaka J. Math., 4 (1967), 289-303.
- [3] M. KERVAIRE AND J. MILNOR, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537.

A. MATSUI

- [4] N. MARTIN, Cobordism of homology manifolds, Proc. Camb. Phil. Soc., 71 (1972), 247-270.
- [5] N. MARTIN, On the difference between homology and piecewise-linear bundles, J. of the London Math. Soc., (1973), 197-204.
- [6] N. MARTIN AND G. R. F. MAUNDER, Homology cobordism bundles, Topology 10 (1971), 93-110.
- [7] T. MATUMOTO, On the difference between *PL* block bundles and homology cobordism bundles (preprint).
- [8] C. R. F. MAUNDER, General position theorems for homology manifolds, J. London Math. Soc., (2), 4 (1972), 760-768.
- [9] C. R. F. MAUNDER, An H-cobordism theorem for homology manifolds, Proc. London Math. Soc., (3), 25 (1972), 137-155.
- [10] H. SATO, Constructing manifolds by homotopy equivalences I. An obstruction to constructing *PL*-manifolds from homology manifolds, Ann. Int. Fourier, Grenoble 22, 1 (1972), 271-286.

Mathematical Institute Tôhoku University Sendai, Japan