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1. Introduction. Let F'(z) be an entire function. Then F is said to
be pseudo-prime (E-pseudo prime) if and only if every factorization of the
form f(g)(z) = F'(2) with f meromorphic (entire), g entire implies that either
f is rational (polynomial) or ¢ is a polynomial. The following three
theorems were proved recently.

THEOREM A. (Ozawa [8]) If F is an entire function of finite order
with a finite Picard exceptional value, then F is E-pseudo prime.

The above result has been generalized as follows:

THEOREM B. (Goldstein [3]) Let F'(z) be an entire fumction of finite
order such that o(a, F) =1 for some a # o, where 6(a, F) denotes the
Nevanlinna deficiency. Then F' is E-pseudo prime.

It was pointed out [3] that F' must be of finite order, as is shown
by the example F' = ¢**, f(z) = g(z) = ¢*, where 6(0, F) =1 and F = f(g).
However, for functions of infinite order, the following result is known.

THEOREM C. (Ozawa [8]) Let L(2) be a transcendental entire function
of order less than one and p(z) a polynomial. Then the functional equation
f(g(z)) = L(z) exp (p(z)e?) has no pair of transcendental entire solutions f
and g of finite order.

In this paper we have improved these results and in particular we
have extended Theorems B and C and some other results of Ozawa’s (see
e.g. [9]) to larger classes of entire functions. We shall prove the following
results:

THEOREM 1. Let F(z) be an entire fumction of finite order 0 with
o(a, F) = 1 for some a + . (We note that 0 > 0 [11]). Let H(z) be an
entire function of order less than o and let p(z) be a non-constant poly-
nomial. Then H(2)p(F'(z)) is E-pseudo prime.

THEOREM 2. Let L(z) be a transcendental entire fumction of order
less than k (k an integer > 0) having at least one zero and let H(z) be
an entire fumction (# 0) of order less than k. If S(z) is any entire
function of order less than k which is not a polynomial of degree k, then



66 F. GROSS AND C.-C. YANG

F(z) = L(z) exp (H(z)e** + S(z)) is pseudo-prime.

THEOREM 3. Let L, H and S(z) be three transcendental entire functions
of order less than one. Then L(z)exp (H(z)e* + S(z)) is prime if L can
not be expressed in the form L(z) = [K()]™ for some entire function
K(z) and some integer m = 2.

2. Preliminaries. It is assumed throughout the paper that the reader
is familiar with the fundamental concept of Nevanlinna’s theory of mero-
morphic functions and its standard symbols such as T(r, f), N(r, f) etec.

LEMMA 1. (Picard-Borel Theorem [7, p. 262]) For a mon-constant
meromorphic function f there are at most two values of a for which the
counting function N(r, a) [or n(r, a)] is of lower order (class, type) than
the characteristic T(r, f).

LEMMA 2. Let f be a transcedental meromorphic function and a,(z)
(t=12..., m) be meromorphic functions satisfying

I(r, ai(2)) = o{T(r, f)}
as r— oo for 1 =1,2, «++, nm.
Assume that
FM@) + a2) f"7H(2) + ax(R)f"7H2) + -0+ al(2) = 9(2)
and that

Ner, £) + N(r, L) = o{T0r, 1)
g
as r— oo outside a set of  values of finite measure. Then
- a(z) \"
o) = (F + &)
REMARK. This is a special case of the Tumura-Clunie theorem (see

[6, pp. 68-73]).

LEMMA 3 [6, p. 47]. If f is a transcendental meromorphic function
and a,(2), a,(z), a;(2) are distinct meromorphic functions satisfying for
1=12 and 3

T(r, ai(2)) = o{T(r, f)}, as r—>
then

1

L+ o2, 1) = 3 N s

)+ o(T(r, £},
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as r— o outside a set of r values of finite measure.

LEMMA 4[4]. Let p be a non-constant polynomial of degree m and
h, k be two entire functions of order less than m with h % 0, k % constant.
If he®* + k has a factorization he® + k = f(g9) with f and g nonlinear and
entire, then f is transcendental and g is a polynomial of degree no greater
than m.

3.1. Proof of Theorem 1. (This argument is a sight modification
of Goldstein’s proof of Theorem 3. We include this modification for the
readers convenience.) For an entire function F of finite order with
d(a, F) =1 Edrei and Fuchs [2, pp. 281-283] proved that there is a con-
nected path consisting of circular arcs and line segments which may
be written as "=l U UL UY U --- where {v;} are arcs on |z| =7,
(r; — ) each of angular measure not less than 27/3p (o, a fixed integer
" depending on the order of the function F), and {l;} are segments which
join the points ;6% of v; and r;,,e”i+ of v,,;7 =1,2-.. and such that
for ze I” the following estimate holds:

(1) log|F<z>1§—;é’5T<r,F> (2] =7>r).

In the proof of Theorem B, Goldstein proved that if (1) holds for such a
path I" for an entire function of finite order F' then F' is pseudo-prime.
Now we show that the inequality (1) holds for p(¥') with — /16 replaced
by a different constant. In fact, if we suppose (without loss of generality)
2(0) = 0, p(&) = 2™ + ¢2™ ' + +++ + --., with ¢, # 0, then (1) becomes

(2) log | p(F (@) | < {-=2™ + o)} T0r, F)

—7m
< [T + 0} T, p(F)) ,
for ze " with |z]| > 7.

Now by the assumption that the order of H(z) is less than the order
of F', we have, in fact, that the order of H is less than the lower order of
F, since d(a, F) =1, implies that the order and lower order of F are
the same, see e.g. [6, p. 105]. It follows that the logarithm of the maximal
modulus of H grows much slower than T(r, F). More precisely,

log M(r, H) _
T(r, F)

Thus, it is clear that (1) is satisfied when F' is replaced by H(2)p(F)
provided that at the same time the quantity — 7/16 is replaced by — 7/16 + ¢

as 7r-— oo,
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for some small number ¢ > 0. The remainder of the proof will be exactly
the same as in the proof of Theorem B. Theorem 1 is thus proved.

3.2. Proof of Theorem 2. First we prove that F is E-pseudo prime.
Suppose that there exist two transcendental entire functions f and g such
that

(3) f(9(?) = F(z) = L(2) exp (H@@)e™" + S(z)) -

We shall deal with the two cases (i) o(g9) =k and (ii) o(g9) < k separately.

In case (i), from the hypotheses that o(L) < k and that L has at least
one zero we conclude by virtue of Lemma 1 that f has one and only one
zero, say a, of multiplicity n (» = 1). Thus we can express f as

(4) @) = (z — a)"e
where a is an entire function.
From (3) and (4) we have

L(z) = (g — a)neaw)—H(z)eZ"—su) .

Hence,

(5) L(z) = (¢ — a)"¢’”
where B(z) is an entire function, and

(6) a(g) — B(z) = H@)e" + S(2) .

In view of (5) one can conclude readily that 8 must be an entire function
of zero order. For otherwise g would be of infinite order and composed
with f would grow much faster than F, a contradiction. Hence, applying
Lemma 4 we see that identity (6) cannot hold unless « is a polynomial
and the order of g is equal to k. It follows from (5) that £ is a polynomial
of degree k, therefore B(z) + S(2) # 0, and hence a must be linear by
Lemma 2. We rewrite equation (6) as

(7) a(g) = H@z)e'" + S() + B() -

We note that S(z) + B(2) is an entire function of order less than k
and is never equal to a constant. Now since « is linear, set a(z) = bz + c.
Then by applying Lemma 8 with f(2) = bg(z) + ¢, a,(z) = ab + ¢, a,(2) =

S(z) + B(z) + ¢, and a, = ~, we would have for r» — « outside a set of
finite measure,

1 1
(8) T(r, bg(z) + ¢) < N(r, ——a(g) ~ al(z)) + N(?‘, —a(g) = az(z))
+ NG, alg)) + o{T(r, (o))
= o{ T(r, a(9))} .
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This of course is impossible.

In case (ii), by using a result of Edrei and Fuchs [1] we conclude
first that the exponent of convergence of the zeros of f is zero. Thus f
can be expressed as

(9) f(z) = n(z)e
where «,(z), 7(z) are entire functions and the order of 7(2) is zero.
From this we have

(10) f(g(Z)) = ﬂ(g(z))eal(g(ﬂ)
= L(2) exp (H(z)e™* + S(2)) -

Hence,

(11) L(z) = n(g(2))e+*

and

(12) a(9(2)) = Bi(z) + H(z)e" + S(2) ,

where (,(z) is an entire function.

Since p(g) < k and p(7) = 0, one can conclude from (11) by an ap-
plication of a result of Polya [12, Theorem 2, pp. 12-13] that the order
of B, is less than k. For otherwise the order of L(z) would be infinite,
which contradicts the hypothesis that L is of finite order. Furthermore
since 0(g) < k it follows from (12) that «, cannot be a polynomial. But then
H(z)e** + B.(z) + S(z) has a factorization a,(9) with both a, and g being
transcendental entire. This is impossible again according to Lemma 4
unless B,(2) + S(2) is a constant. But then one can apply Theorem B to
conclude that (12) is impossible to hold. Thus anyway we have proved that
F is E-pseudo prime. Now we show F' is pseudo-prime. Suppose there
exist f meromorphic and g entire such that F = f(g). We shall show
that if ¢ is transcendental then f has to be a rational function.

We shall only consider the case when f has exactly one pole with
multiplicity n, say (» = 1). Hence we can express f as

_ _ hw)
(18) flw) = w - a
and hence
(14) 9() = e + a

where % and « are entire functions.
Thus
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hu(e"?)

e’na(z)

(15) f9)@) =

where h(w) = Mw + a), h(w) = h,(e”)e™™".

We have already proved that F must be E-pseudo-prime and we
conclude that either (a) a(z) = Q(2) a polynomial or (b) the left factor
hy(w) is non-constant polynomial.

If case (a) holds, then we have

(16) hy(e*®) = f(g)(z)-e™
= L(z)e"™ + S + nQ .

It follows that either e%* reduces to a polynomial or % is a polynomial.
The former case is impossible, hence we conclude that A, is a polynomial.
But then the left side of (16) is of finite order and right side of infinite
order, a contradiction. Thus case (a) is ruled out. In case (b) we have

) ) = )

= hy(a(2))

Clearly, the above expression can be a polynomial if and only if
h(e*) = c.e™, i.e., h(w) = c,w"™ a monomial, where ¢, is a non-zero constant.
Then h,(w) reduces to a constant, a contradiction. Thus, we conclude
that f cannot have a pole. Thus F does not possess any non-entire left
factor and we have proved that F' is pseudo-prime.

3.3. Proof of Theorem 3. Set F(z) = L(z) exp (H(2)e* + S(z)). Then
according to Theorem 2, the only possible non-trivial factorization of F(z)
is either of the form (i) FI(2) = p(f(2)) or of the form (ii) F(z) = f(p(z))
for some non-linear polynomial p(z) and transcendental entire function
f(z) (which must be of infinite order). Again according to the Picard
-Borel Theorem in case (i) » must assume the form p(z) = ¢(z — a)* for
some constants ¢ = 0, a, and integer » = 2. But then L(z) would have
the form L(z) = [K(z)]™ for some integer m = 2 and some entire function
K(z), contradicting the hypothesis. In case (ii), set f(z) = [I(2)e*® with
II(z) being the canonical product formed with the zero of f. Clearly,
the exponent of convergence of 77(z) is less than 1/d (d is the degree of
2(#)) and hence the order of 77(z) is less than one. Therefore, from f(p(2)) =

L(z) exp (H(z)e* + S(z)) we have
(18) a(p(z)) = H(z)e* + S(z) + ¢ ,

where ¢, is a constant. But according to a result of Goldstein [4, Corollary
of Theorem 6, p. 503] H(z)e* + S(2) + ¢, is a prime function, thus case (ii)
is also ruled out. This completes the proof of the theorem.
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4. Final Remark. In Theorem 2, the condition that L must have

at least one zero cannot be removed from the statement. A counter ex-
ample is given by k = 2, H = sinz, L = ¢*. Then F = L(z) exp (H(z)e*") =
¢’ exp (sin z ¢*) has a factorization f(g) where g(z) = z + (sin z)e”, f(z) = ¢".
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