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1. Introduction. Let G denote a Fuchsian group of linear fractional
transformations

g: z' = (az + /3)/(7z + <5), ad - /3τ = 1
Q

mapping the interior & of the disk :̂ z ^ R in the complex z-plane
onto itself. It is well-known, and readily verified, that this invariance
assures that all isometric circles 1 7z 4- δ \ = 1 of the group G intersect
the fixed (principal) circle C:\z =R orthogonally. We propose to ex-
amine some geometrical extremal properties of a set of generators for
G, defined in terms of these isometric circles. For this, the fundamental
region1 25 c ^ as defined by Ford (cf . [4], Ch. Ill) for the action of G
on ^ serves our purpose since (loc. cit., Theorems 6, 10)

(i) its frontier 325 consists of arcs of isometric circles C<(1 ̂  i ^ N)
congruent in pairs under G; each such pair being of equal length, with
corresponding points equidistant from 0,

(ii) the subset B of G whose elements provide the complete pairing
of arcs of 325 under (i), is a generator set for G.

Since the interior 25 of 2) is given by

2) - & - U &„ where :̂ jz + δ\ ̂  1 ,

we can view 25 itself as a Riemann surface ^" when congruent points
on 325 are identified. It is customary to call 25 open or closed according
as 2) has frontier points on ^ or not. Then we can introduce the
standard non-euclidean (N.E.) differentials

for N.E. elements of length and area. In particular, the formula

( i)
1 For the sake of symmetry in φ, we shall suppose that the point z=+oo is not a fixed

point for any element Φ of G; otherwise, we should proceed as in [4], Theorem 22. For our
applications later, it is convenient not to fix on a value for R here.
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gives the N.E. area μ(3)) of ®. If Δ is any triangle bounded by three
circles orthogonal to ̂  and with vertex angles Θl9 Θ2, Θ5 say, then

μ(Λ) - π - (θ, + Θ2 + 03)

A natural extension of this, by triangulation, is

(2) μ(®) = Nπ - (θ, + θz + - + ΘN) - 2π ,

when &S> consists of N arcs meeting at angles Θί9 Θ2, •••, ΘN. From the
theorem of Siegel-Tsuji (cf. [8], Theorem 1), we know that μ(Φ) = oo,
unless 3) is either closed, or open with at most a finite number n of
parabolic vertices on C, (i.e. the Riemann surface ^" corresponding to
S) is then either closed or obtained from a closed surface by the deletion
of finitely many points) in which case μ(®) < oo. Indeed, if μ(®) < oo,
it also provides an upper bound2 to the number N in (2) of arcs bounding
®; on writing

(3 ) μ(3)) = 2<τ(®) - 2σ say

we have

( 4 ) N ̂  —σ + 6 - 2n .
π

In this article, we shall only consider the cases when

O < oo ,

so that the Siegel-Tsuji estimate can be re-cast in the shape

(5) π + σ >?- or sin( π + σ

V ' N+2n ~ 6 \N+2n

Combining (2) and (4), we see that

( 6) (0t + θ, + + θκ) ^ 2j-(N - n)
ό

and we shall be concerned primarily with this form of the inequality for
our refinement. An alternative source for (6) is given in Theorem 25 of
Macbeath's Dundee Notes [7] where, on summing over the q ordinary
cycles of ©, one has

(7) Σff , = 27rέi = 2π:Σy y /Λ y ,
»=1 3 = 1 Kj 5 = 1

2 In fact, it is a bound to the cardinality of the generator set B of G. However, a factor
2 can be gained if no mid-point of an arc of 33)0 is a fixed point of some elliptic element of
G with period 2.
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together with the relations
(i) hi = kjvj ^3 I^j^q,
(ii) Σt^Vi^N-n,

for the number v3 of vertices of 5) in a cycle and k3 is the order of the
stabilizer of a vertex in that cycle, (applying the inequality in (i) to the
right side of (7), gives (6) immediately). As it stands the constant 2π/3 in
(6) cannot be sharpened, as the example of the modular group, where the
three vertices of 3) have angles (l/3)ττ, (l/3)ττ, 0, shows. However, for
large N and for special cases3 it is of interest to seek more precise in-
formation about X ΘI, or equivalently the relative magnitudes of N and
σ in (4). Instances where such bounds can be usefully applied occur in
the group ^ of units of a maximal order in a quaternion algebra. We
first develop our refinement for the general Fuchsian group in the above
setting and then apply it to the special types arising from an indefinite
rational quaternion algebra £έf. The refinement is given in Theorem 1
and is a natural generalization of a variational argument [10] I obtained
for the estimation of "small" solutions of certain Pellian equations, but
presented here with a new and more direct proof.

2. A Refinement of the Siegel-Tsuji Theorem.

NOTATION. Let Cj = {z\\ ΎJ Z + δj \ = 1}, 1 ̂  j <: N denote the set of
bounding isometric circles contributing to 33) and C, the corresponding
set of disks \7jZ + δ3 \^l. Then \Jι^j^NCj forms a covering of the
principal circle | z \ = R, and if n = 0, their interiors alone form an open
covering. For 1 ̂  j ^ N, let Oj denote the centre — δ, /7, of C3 ,

rj — |7j|-1, the radius of the C3 ,

Pj= 00, = -

We may assume that 0 ̂  arg(— djjj < arg(-δ2/72) < <
<2π (mod2π). Then, clearly

p* = R* + rj ,

since each circle C3 intersects the principal circle C orthogonally. We
define

( 8 ) r — max r3 ,

and put
3 Where, for example, the number of faces meeting at a vertex of the Dirichlet tessellation

of G may be larger than 3.
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( 9 ) p2 = R2 + r2

(10) d = 2ρ sin 2- .

We consider first the case n = 0 (when there are no parabolic cycles) and
then extend the argument to n > 0.

THEOREM 1 (n = 0). sin((<j + π)/N) ^ (l/2)(d/r), or equίvalently,

2 r

REMARK. In some cases, for example certain Fuchsian groups arising
from quaternion algebras, this inequality is stronger than the Siegel-Tsuji
estimate (4), since d ̂  r. This may well be true generally.

PROOF. There are two stages in the proof:
(I) Replace each isometric disk C3 by a new circular disk 8$ orthogo-

nal to the principal circle | z \ = R with radius r — max τs and centre
so that

C; => Cj (l^j^N).

Then the set SX, where

3)' = ̂  _ u c c s> - ̂  - \j c,
l^j^N l^j^N

is certainly contained in the Ford fundamental region S). Hence

(11)

with strict inequality unless rl = = r^ = r. We observe too that the
collection \J^j^N 83- still forms a covering of | z \ = R and

(12) c] n c;+1 ̂ 0 ( i ^ j ^ N ) ,
(13) C;.ςz!Cί for all jΦk.

Let ^j (1 ̂  j ^ ̂ ) denote the corresponding angles for 3)'. Then

(14) 0< 0; < 7Γ (1 ̂  5 ̂  ΛΓ) ,

by (12) and (13) and the distance dj between the centres of C's and CJ+1

may be expressed either, in the form

(15) d; - 2rcos— ίj
Δ

or, in the form
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(16) % = 2ρ sin — a'} ,
Δ

where a] = arg( — δy/τ/) — arg(— δί+1/7ί+1) is the angle subtended by the
centres at the origin 0, (1 ̂  j ^ JV). From (15) and (16), we deduce that

(17) .̂

where

(18) Σ \of, = π .
ί^j^N 2

(II) Application of Jensen's inequality to the function

f(x) — cos"1! -ί- sin πx } ,
\r /

where x takes the values

-α} (1 £ j £ N) .

Observe that
( i ) 0 < / < (l/2)ττ, by (14) and (17),

(ϋ) Σι*y«a* = 1, by (18),
(iii) f(x) is a strictly concave function of x over (0, (l/TrJsin"1

It remains to verify (iii) and for this it is sufficient to show that f"(x)
is defined over (0, (1/ττ) sin"1 (r/^o)) and /" < 0. By repeated differentiation
of cos/, we obtain successively

(19) /' sin/ = —±-π cos ττo?
r

f" sin / + /'2 cos / = τr2 cos / ,

so that

(20) /" = (π2- /'2)cot/.

Also, from (19), we have

whence

- ( / ' 2 - π2)sin2/ = - 1 - > 0 .
τr2 r2 r2

Thus, /" < 0 and is certainly defined over (0, (l/π) sin"1 (rip)) by (i), (19)
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and (20). Thus, Jensen's inequality applies to — / and we conclude that

-/ Σ *y ^ - / ( » ι ) ----- fM >
N N

or, more precisely,

N

with strict inequality unless
f\f Γ\t f\f

#1 = #2 = ' ' = UN .

By (11), (2), we have

-ί Σ θ, < 1 Σ θϊ£2 cos-f ̂ Ί ,
NI&ZX NI&ZN L 2 rJ

with strict inequality, unless 0, = Θ'ί9 rά — r, ρό = p for all j and

θj = 2 cos^Γ £- sin — 1 .
L r ΛM

We give the extension to the case when parabolic vertices exist as a
corollary to Theorem 1.

COROLLARY. If G possesses n parabolic vertices, then

(21) Σ θj ^ Σ2(ΛP> -

where N(k\ d(k\ r(k} have the previous meaning, but applied to the arc <^k

of the principal circle ^ between the ktlί pair of consecutive parabolic
vertices in place of ̂  itself.

A proof of this proceeds as for the Theorem itself, except for a
modification in Stage I applied to each of the n arcs ^ of ^. If Δk

denotes the infinite sector with angle ψk say, subtended by ^ from
z = 0, N(k) the number of isometric circles intersecting ^ and r(k] the
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radius of the largest such circle, we now arrange that each of these iso-
metric circles is enclosed by a circle of radius =r(k} situated within Ak

and orthogonal to .̂ This is clearly possibly if we do not insist, as
before, that the new centres maintain the same direction from z = 0.
Then stage II consists of applying Jensen's inequality to the sum of the
angles of intersection of the N(k} equal circles (k = 1, 2, •••, ri); the kth

term on the right of (21) corresponding to the optimal case when the
circles are situated symmetrically on the arc ̂  with just two of them
tangent to Δk at the end-points of ^k and with their centres at an equal
distance d(k} apart. Thus,

dk = 2[R2 + r ( / b ) 2]1 / 2sin— a(k} ,
Δ

where

Γ *.(*)"!
ak = [N(k) - iH ψ ( fc) - 2 tan"1— .

L R J

EXAMPLES. It is easy to provide examples where the theorem (or
its Corollary) gives a sharper estimate than that of Siegel-Tsuji. Let
GD denote the group of elements of the form

(22) z9 = az + DJ; aa - Dec = 1 ,
cz + a

where DεZ+, (a,c)eZ2[i], Since i0: z' = — z is the only element of GD,
with oo as a fixed point (see footnote 1), we shall, by our convention,
factor the subgroup <i, i0> and consider G'D — GD/(i, ί0> instead. The case
D = 1 gives rise to a fundamental region ® having only parabolic vertices
and does not test the inequalities (details, see Ford [4], Ch. 3, § 36, pp. 78-9).
For D = 2, when N = 8, n = 4,

(23) Σ** = 2π,

and for D = 3, when N = 12, n = 0,

(24) Σ 0< = 6ττ , (^8ττ, 24 cos'1 0.517 •) ,

where the estimates on the right are, respectively, from the Siegel-Tsuji
Theorem and from Theorem 1 (or Corollary) and exhibit the improvements
possible. In one further example we see that both inequalities are best
possible. Take the modular group Γ and transform the real axis into
the unit circle, by
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z — i

Then Γ is mapped onto a group G of elements of the form (22) with
D = 1, but α and c now belong to (l/2)Z[ί] and are subject to the con-
ditions

&(a + c) e Z , w^(α + c) e Z .

Then for G' = G/<ΐ, i0>, we have ΛΓ = 4, ^ = 2 and

(25) Σ*< = 4r'
o

the constant 4ττ/3 being that given by (6) and (21).

3. Indefinite rational quaternion algebras. Let Sίf be an indefinite
quaternion algebra over the rationale Q and let O be an order of Sίf. Let

U = {u e O I u£) = £), tt(w) = +1} ,

where W(M) denotes the norm of u in ^g^ By the isomorphism between
the matrix algebra M2(R) and £έf®QR9 the unit group U corresponds
to a certain discrete subgroup G of SL(2, 72). It is therefore a Fuchsian
group and is, in fact, of the first kind i.e., G is a properly discontinuous
group and its quotient space HJG, where H is the upper half of the
complex plane, has finite N.E. measure.

For our application, we shall utilize a canonical generation of ^f in
the form

^7 — \Λ η ή qn\ O 2 — _ P 'ϊ2 — Ώ&^ — L-L, i, j, ϊj\ , % — — r j j — jj ,

where D = q,q2 q2n is a product of 2r distinct rational primes and P
is a prime = 3 (mod 4) satisfying

(—)=-! (8 = 1,2, . . . , 2 r ) .
V , /

Albert [1] has shown that then the only maximal orders O are generated
by

(26) O = [1, w, J, Jw]; w = JL(1 + i) , J = p-\2μ + j)ί ,
Δ

where μ is either one of two solutions to the congruence

(27) 4μ2 = D (mod P) ,

and is essentially unique since the other solution —μ gives the order
i^Di. Thus, we suppose that the general element v e O is of the form
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(28) V = ξ + J7f. f f = * + *w

where (xθ9 xl9 y0, yt) e Z* and £, Ύ) are elements of the complex quadratic
field Q(i). If we also put

(29) ζ = £ + 2P'lμiη ,

then the norm N(v) takes a "diagonal" shape:

(30) N(v) = N(ξ + Jη) = ζζ' - £>P-W ,

and if we multiply v by a unit u = a + Jβ say, with A^u) = +1 then,
on introducing new variables ξl9 % taking values in Q(ί)9 defined by

r w* T Nd e f .uv = (a + //5)(f + «Λ7) = f i + / !̂

we obtain

(31)

where d and 7 correspond to ζ in (29), i.e.,

(32)

The quaternion group G associated with (31) is then the group of elements
of the form

where 77' - DP~lββf = 1. This is known (cf . [5]) to be a Puchsian group
of the first kind with principal circle \z\2 = DP'1 and the fundamental
region4 ® for G, (whose closure is the set of interior points of the principal
circle which do not belong to any of the isometric disks | βz + j'\ < 1,
(α, β) e Z*[w], 77' - DP~lββ' - 1), has N.E. measure μ(3>), given by (cf . [3])

(34) M®) = ^Φ(D)
o

A crude upper bound for the magnitude of the smallest unit u — a + Jβ
with β Φ 0 is obtained by noting that the sum of the diameters of the
bounding isometric circles exceeds the circumference of the principal circle
(since their disks form an open covering of it!) and applying the Siegel-
Tsuji estimate for the number N of such circles. Thus

4 It is easy to verify that G has no fixed points at oo for P>3, since P=3 (mod 4), and
that there are no parabolic points for quaternion groups.
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(35)

which gives

(36)

or

(37)
7Γ

if I βi I denotes the least value among the | β3 \ . Then, from (37), (4) and (34),

(38) β

A slightly better estimate can be obtained by observing that our funda-
mental region 3) contains the disk

K: I z ] < p - r

where, from our notation in section 2,

p - r = (R2 + r2)1/2 - r = [DP'1 + |& ~2]1/2 -

This disk has N.E. measure

μ(K) = 4J
- r2)2

- 4τr
r(jθ — r)

= 2π[(R2r~2 + 1)1/2 + 1] - 4π

-2π[(Z)p-1|/31

2 + l) I / 2-l].

Then, from the inequality μ(K) ^ j«(®) and (34), we have

2π[DP~1 1 A |2 + I]1'2 ̂  -

(39)

and

(40)

[DP-1]1'2 1 A < [DP-1 1 A i2 + I]1" ̂  rΦ(D) + 1 ,
b

which is an improvement on (38), by a factor τr/6 = 0.577 <1, for large D.
Our main purpose in this section is to show that, while it is not

known whether Theorem 1 includes that of Siegel-Tsuji, nevertheless, a
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suitable application of both, produces an estimate ((42) below) better than
either (38) or (40).

THEOREM 2. There is. a unit u of the maximal order D of ££* of the
form a + J/9, where J = P~l(2μ + j ) ί , azZ[w], βeZ(w\ w = (1/2)(1 + i),
where μ is a solution of 4μ2 = D (mod P), with

(41) I β I < [PD]^ + ; β Φ 0

and, for all sufficiently large D,

(42) |*|
 S

PROOF. From Theorem 1 we have

where r = \ /Si Γ1 = max1SίSΛΓ /Sy Γ1, for all N bounding isometric circles
I βjz + Ύ/ 1 = 1, with βj ^ 0 and

d =

where R* = DP'1. Thus

I— —I

i— -4 —I

(43) [DP-1]1'2 βι < [DP'Ίβi 2 + 1]1/2 ^ — 6

Then, from (4) and (34), we know that

(44) N ̂  φ(D) + 6 .

Since the expression on the right of (43) is difficult to estimate without
further conditions on N, we proceed by contradiction, assuming henceforth
that

I A I > ' - o + ™"2 for D ~

Then by (36) we can now suppose that

(45) N > π[Z>p-']1/21AI > (Φ(D) + 6) .
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For convenience in notation we put

(46) x = * a = ± (φ(D) + 6) > 1
JM Ό

and consider the function

f(χ} = smax
sin a;

Note that, by (44) and (45), we shall only need to consider values of x
in the interval

(47) J 5 _ £ β < *
6α 3α

Firstly, we observe that

(48) f(x) = α < a = (m + 6) ,
L ax I x -I 6

since or1 sin # is strictly decreasing over (0, π] ID [ττ/6α, ττ/3]; which gives
(41), or (40), with strict inequality. Secondly, we note that

) < 0 ,
n rf"U/JU

for

and

—(log /) = α cot(αα ) — cot x
dx

d2

—(log/) = — α2 cosec2(αα;) + cosec2^
dx2

— cosec2 ax{f2 — α2) < 0 ,

by (48). Since (d2/dxz)(log /) is defined over [ττ/6α, ττ/3α), it follows that
(d/ώ)(log/) is strictly decreasing there. We now prove that there is a
D0 > 0 such that for all D ̂  D0,

(49)
Ldx ~ ' J*=*/6α

from which we conclude that (d/dx)(log /) < 0 over [ττ/6α, ττ/3α) and hence
that

l o g f ( x ) £ logf(^] for χe\£-,-Z-

or
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. . . - 6

~ -^-(Φ(D) + 6), as D — oo .
ΔTϋ

This is an improvement, for large D, on (41) by a factor asymptotic to
3/τr < 1. For (49), we have

ΓAlog/1 -
L ax Jx^π/βa 6α

and

=<l as α - (φ(D) + 6)
b

as required.

4. In this section, we review briefly some open problems and some
recent progress on generating sets for the general Fuchsian group Γ.
Following Macbeath [7, p. 16, Def. 7], we normalize the group so that
the principal circle is the real axis in the complex 2-plane and view Γ
as a discrete subgroup of SL(2, K). If ξ> denotes the upper half z-plane,
then Γ acts on φ by the operation

az + b „ , fa b
for 7 = jc^ + a \c d

If we further suppose that Γ is a Fuchsian group of the first kind, when
the quotient space $/Γ has finite N.E. measure, Takeuchi [9], has given
a characterization of those Γ which arises from indefinite quaternion
algebras <^T Thus, if U is the unit group of some order of <%ΐ where
<^ is defined over Q, we know (cf . section 3) that U = ΓQ, a Fuchsian
group of the first kind. Takeuchi calls a subgroup Γ c Γ0 "derivable"
from ̂  when either Γ — Γ0 or Γ is of finite index in ΓQ and proves
that the condition

(50) Tr(τ) e Z, for all 7 e Γ

is both necessary and sufficient for Γ to be derivable from β^.
Later, Kelly and I [6] showed that, subject only to a condition (51) on

the spacings between values of the norms 1 1 7 1 1 of the elements 7 e Γ,
where
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| |7|| - [α2 + b2 + c2 + d2] for 7 - ^

one can give effectively computable bounds, successively, to each member
of a suitably chosen set of generators for Γ.

THEOREM. Let ΓaSL(2, R) be a Fuchsian group of first kind with
compact quotient space. Suppose that there is some positive real constant
\ = \(Γ) such that

(51) λ[||7|| -2] = O(modl), for all 7 e Γ .

Then there is a set of generators Alf A2, , AN of Γ satisfying
( i ) \\Aj_\\ ^ \\A2\\ ^ ^ \\AN\\
(ii) H Λ I I <N,
(iii) HΛ + i l l <N \\AS\\* (j = 1,2, - ,N- 1).

For simplicity, we have omitted the actual constants in (ii) and (iii) and
used the Vinogradow-notation "<", on the understanding that the
implied constants depend only on λ. It follows that log log 11A j \ \ <2N,
(j = 1, 2, , N, N ^ N0(\)) and from the proof itself it can be inferred
that N < 2>π~lμ + 6 (cf. (4)), where μ is the N.E. measure of φ/Γ. Al-
though the restriction in (51) is somewhat artificial, it is certainly satisfied
by the quaternion groups i.e., those Γ satisfying the Takeuchi condition
(50)) and, indeed, by the arithmetic subgroups of SL(2, R).

If S denotes any subset of Euclidean π-space Rn (n ̂  1), we shall say
that S is δ-separated in Rn, if there is a constant δ > 0 such that

when x Φ y. Also, if we map SL(2, R) into R*, by

ίa b\
(a, 6, c, d) ,

c d]

(where || ||1/2 is the usual Euclidean distance function in R*), the image
of a subset L of SL(2, R) will be denoted by I/'. Then, from the
above results5, it would be natural to ask if every Fuchsian group Γ of
the first kind is such that Γ' is δ-separated in R*. In the arithmetic
cases, Γ'dΛ, a lattice, and is certainly S-separated in R*. Also, if \\Γ\\
denotes the set

5 For the general Fuchsian group ΓdG = SL(2, R) of the first kind, it is known that ||Γ||
is a discrete subset of R1 and I have recently verified that, if G/Γ has compact closure, then
Γ7 is ^-separated for some δ=3(Γ)>0.
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one may ask whether the condition that \\Γ\\ be δ-separated in R1 for
some constant δ > 0 assures that Γ is derivable from a quaternion
algebra £ίf over Q.
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Addendum: On a recent visit to Toronto, Professor A. M. Macbeath
constructed an example of a Fuchsian group G with arbitrarily large
genus, for which the inequality of Siegel-Tsuji (cf. (6) with n = 0) and
that of Theorem 1 are both exact. As this provides additional significance
to the non-invariant quality of the theorem, it is perhaps worthwhile
to indicate briefly his construction and proof.

Let F be a regular N.E. polygon in ^ with N — 6(2m + 1) sides
(m ^ 1) and θi = 2π/3 (ί = 1, 2, , N). The sides of F are labelled
»2, , aWi, l/o, , 2/2», fli, «2, , α2m+2 together with their inverses, the
order around the polygon F being determined according to the surface
symbol

This pairing of the sides of F assures that the cycles consist of
exactly 3 vertices whose angles sum to 2π. Hence, by Poincare's theorem,
there exists a Fuchsian group G with F as a fundamental region and

o
preserving the pairing. From the symmetry of the tessellation of <&
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by F and its images under G, it also follows that F is a Dirichlet region
for G with centre z = 0; the sides being arcs of isometric circles of G.
Thus the equality sign is essential in both (6), when n = 0, and in
Theorem 1.
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