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1. We begin with recalling some notations and definitions. Let SL'
be the group of all conformal self-maps of C, which is the Aleksandrov
compactification of the complex plane C. Each / e SL' has the form

cz + d

where a,b,c,deC and ad - be = 1. If t r 2 / = (a + df = 4, then / e SL'
is parabolic; / is elliptic if t r 2 / e [0 4); in all other cases / is loxodromic.
If / is loxodromic and if tr2 / is real with tr2 / > 4, then / is hyperbolic.

Let G be a subgroup of SL'. If there is a neighborhood V of zeC
such that f(V)ΠV= 0 for all / e G, / Φ id, then the point z is a regular
point of G and we write as z e Ω(G)'. A point z e C is a limit point of G
if there are a sequence {/J of distinct elements of G and a point weC
such that fn{w)—>z as n—* oo. The set of all limit points is denoted by
Λ(G). The complement of Λ(G) is represented by Ω(G). A group G is
called Kleinian if Ω{G) Φ <Z>. If Λ(G) is a finite set, then the Kleinian
group is called elementary. In the following the group G means Kleinian.
Note that Ω(G) — Ω(G)' consists of isolated fixed points of elliptic elements
of G. The connected components of Ω(G) are called components of G.
A component Δ of G is called invariant if f(Δ) = A for all f eG.

Now we call G a function group if G is a Kleinian group with an
invariant component Δ. In particular, if G is a finitely generated non-
elementary function group and if Δ is simply connected, then G is called
a 2?-group (see [6]).

Let G be a Kleinian group and let Δu Δ2 be two distinct components
of G. Then Δίf Δ2 are called equivalent if there is an f eG such that

= Δ2.

2. We are interested in the relation between the number N of genera-
tors of a finitely generated function group G and the number p of non-equi-
valent components of G. We always assume that G is non-elementary.

In general, for any finitely generated Kleinian group G with N gen-
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erators, Bers' area theorem implies the inequality p ^ 84(ΛΓ — 1) (see [2])
and L. V. Ahlfors sharpened this inequality and proved p ^ 18(N — 1)
(see [1]). B. Maskit conjectured that the inequality p ^ 2{N — 1) holds
(cf. L. Bers [3], I. Kra [5]).

In this note, concerning with the above Maskit's conjecture, we shall
prove the following

THEOREM. Let G be a finitely generated non-elementary function
group with an invariant component AQ and let N be the number of gen-
erators of G. Then the following inequalities hold:

P ^ [-|(iV - 1) - (gQ - 2)] for a B-group G

and

p :g 3(N — 1) — (<70 — 2) for G not being a B-group ,

where g0 is the genus of Ao/G and [x] is the integral part of x.

3. In this section we shall give the proof of Theorem.
Since G is non-elementary we see that N^2.
Now from Ahlfors' finiteness theorem we have p < oo. Let {AQ, Alf

•••, z/p_i} be the complete list of non-equivalent components of Ω(G). We
set Gt = {fe G; f(A%) = A%){0^i^p- 1), where GQ = G. Note that every
Gi is non-elementary.

We denote by Π2q_2 the vector space of complex polynomials in one
variable of degree at most 2q — 2, where g(^2) is an integer. Let Hι(G,
Π2q-z) be the first cohomology group of G with coefficients in Π2q_2. Let
Bq (Au Gi) denote the space of bounded holomorphic automorphic forms of
weight —2q for the Kleinian group Gi operating on At.

Let (gif nt; viU , vin.) be the signature of Gif that is, gt is the genus
of AJGi and vi5{2 <LviS<Zoo9j = l9 f n^) is the ramification number of
Xij 6 AJGi — A'i\Gi induced by the natural projection Δi —> AJGif where JjG\
is a compact Riemann surface obtained by attaching punctures to AJGi
and 4 = Λ Π Ω{G)'.

Then it is well known that

( 1 ) dim Bq(Aif Gi) = (2q - 1)(^ - 1) + Σ \q - -SL] ,

where [q — q/vti] = q — 1 for vtj = oo.

Further, L. Bers [2] proved the inequality

( 2) (2g - 1)(N - 1) ^ dim iΓ(G, Π2q_2) ^ g d i m Bq(Aif Gi) .

Therefore we have
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(3) (2tf - 1)(N- 1) ^ Σ {(2g - l)(gt - 1) + Σ [? - - M l •
i=0 v j=ι L V _!/

In particular, for a J5-group G, I. Kra [4] proved the following
inequality

dim ίΓ(G, Π2q_2) ^ 2 dim £,(Λ, G) .

So, in this case, we have
n0

(4) (2q - 1)(N-1) ^2\(2q - l)(g0 - 1) Σ

If p ^ 2, our theorem is obvious. For, in general, (3) implies N^
gQ — 1, which shows that

3(iV — 1) — (flr0 — 2) ^ 2 (JSΓ — 1) ^ 2 .

Further, for a J5-group G, (4) implies N — 1 ^ 2(g0 — 1) which gives

Hence we may assume p ^ 3.
Now we consider the case where G is a I?-group. If G has no acci-

dental parabolic transformation, then, from Maskit's theorem in [6], the
group G is degenerate or quasifuchsian. Hence p ^ 2. Thus in this case
we have nothing to prove.

Next we assume that G has accidental parabolic transformations.
We see that the permissible signature of G which minimizes the right

hand side of (4) is (gQ, nQ;2, •••, 2). We set q = 2 in (4). Since G has
accidental parabolic transformations, Maskit's result [6] gives the inequality
p — 1 ^ 2g0 — 2 + n0. Hence we have

Therefore we conclude for any β-group that the following inequality
holds:

Next we consider the case where G is not a 5-group.
Since every Gi is non-elementary we see that, for 1 ^ i <; p — 1, the

permissible signatures of Gt that minimize the right hand side of (3) are
(0, 3; 2, 3, 7).

For the group G we see that the permissible signature is (gQ, nQ; 2,
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• , 2). Setting q = 2 and using the inequality p — 1 ^ 2g0 — 2 + n0 (see
[7]), we have the inequality

P ^ 3(2^ - 1) - (flΓo - 2 ) .

Thus, for any finitely generated function group which is not a ΰ-group,
we conclude that the following inequality holds:

The proof of Theorem is completed.

REMARK. There are some cases where the inequalities in Theorem
can be sharpened. For instance, assume that G is a U-group and that
g0 = 0, n0 ^ 5 and the signature of G is (0, no; 2, , 2). In this case we
can easily see that
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