Tôhoku Math. Journ. 27 (1975), 99-102.

REMARK ON THE NUMBER OF COMPONENTS OF FINITELY GENERATED FUNCTION GROUPS

MASAMI NAKADA

(Received February 18, 1974)

1. We begin with recalling some notations and definitions. Let SL' be the group of all conformal self-maps of \hat{C} , which is the Aleksandrov compactification of the complex plane C. Each $f \in SL'$ has the form

$$f: z \longmapsto rac{az+b}{cz+d}$$
 ,

where a, b, c, $d \in C$ and ad - bc = 1. If $tr^2 f = (a + d)^2 = 4$, then $f \in SL'$ is parabolic; f is elliptic if $tr^2 f \in [0 \ 4)$; in all other cases f is loxodromic. If f is loxodromic and if $tr^2 f$ is real with $tr^2 f > 4$, then f is hyperbolic.

Let G be a subgroup of SL'. If there is a neighborhood V of $z \in C$ such that $f(V) \cap V = \emptyset$ for all $f \in G$, $f \neq id$, then the point z is a regular point of G and we write as $z \in \Omega(G)'$. A point $z \in \widehat{C}$ is a limit point of G if there are a sequence $\{f_n\}$ of distinct elements of G and a point $w \in \widehat{C}$ such that $f_n(w) \to z$ as $n \to \infty$. The set of all limit points is denoted by $\Lambda(G)$. The complement of $\Lambda(G)$ is represented by $\Omega(G)$. A group G is called Kleinian if $\Omega(G) \neq \emptyset$. If $\Lambda(G)$ is a finite set, then the Kleinian group is called elementary. In the following the group G means Kleinian. Note that $\Omega(G) - \Omega(G)'$ consists of isolated fixed points of elliptic elements of G. The connected components of $\Omega(G)$ are called components of G. A component Λ of G is called invariant if $f(\Lambda) = \Lambda$ for all $f \in G$.

Now we call G a function group if G is a Kleinian group with an invariant component Δ . In particular, if G is a finitely generated nonelementary function group and if Δ is simply connected, then G is called a B-group (see [6]).

Let G be a Kleinian group and let Δ_1 , Δ_2 be two distinct components of G. Then Δ_1 , Δ_2 are called equivalent if there is an $f \in G$ such that $f(\Delta_1) = \Delta_2$.

2. We are interested in the relation between the number N of generators of a finitely generated function group G and the number p of non-equivalent components of G. We always assume that G is non-elementary.

In general, for any finitely generated Kleinian group G with N gen-

erators, Bers' area theorem implies the inequality $p \leq 84(N-1)$ (see [2]) and L. V. Ahlfors sharpened this inequality and proved $p \leq 18(N-1)$ (see [1]). B. Maskit conjectured that the inequality $p \leq 2(N-1)$ holds (cf. L. Bers [3], I. Kra [5]).

In this note, concerning with the above Maskit's conjecture, we shall prove the following

THEOREM. Let G be a finitely generated non-elementary function group with an invariant component Δ_0 and let N be the number of generators of G. Then the following inequalities hold:

$$p \leq \left[rac{3}{2}(N-1) - (g_{\scriptscriptstyle 0}-2)
ight]$$
 for a B-group G

and

 $p \leq 3(N-1) - (g_0 - 2)$ for G not being a B-group, where g_0 is the genus of Δ_0/G and [x] is the integral part of x.

3. In this section we shall give the proof of Theorem.

Since G is non-elementary we see that $N \ge 2$.

Now from Ahlfors' finiteness theorem we have $p < \infty$. Let $\{\Delta_0, \Delta_1, \dots, \Delta_{p-1}\}$ be the complete list of non-equivalent components of $\Omega(G)$. We set $G_i = \{f \in G; f(\Delta_i) = \Delta_i\}$ $(0 \leq i \leq p-1)$, where $G_0 = G$. Note that every G_i is non-elementary.

We denote by Π_{2q-2} the vector space of complex polynomials in one variable of degree at most 2q - 2, where $q(\geq 2)$ is an integer. Let $H^1(G, \Pi_{2q-2})$ be the first cohomology group of G with coefficients in Π_{2q-2} . Let $B_q(\varDelta_i, G_i)$ denote the space of bounded holomorphic automorphic forms of weight -2q for the Kleinian group G_i operating on \varDelta_i .

Let $(g_i, n_i; \nu_{i1}, \dots, \nu_{in_i})$ be the signature of G_i , that is, g_i is the genus of Δ_i/G_i and $\nu_{ij}(2 \leq \nu_{ij} \leq \infty, j = 1, \dots, n_i)$ is the ramification number of $x_{ij} \in \overline{\Delta_i/G_i} - \Delta'_i/G_i$ induced by the natural projection $\Delta_i \to \Delta_i/G_i$, where $\overline{\Delta_i/G_i}$ is a compact Riemann surface obtained by attaching punctures to Δ_i/G_i and $\Delta'_i = \Delta_i \cap \Omega(G)'$.

Then it is well known that

(1)
$$\dim B_q(\mathcal{A}_i, G_i) = (2q-1)(g_i-1) + \sum_{j=1}^{n_i} \left[q - \frac{q}{\nu_{ij}} \right],$$

where $[q - q/\nu_{ij}] = q - 1$ for $\nu_{ij} = \infty$.

Further, L. Bers [2] proved the inequality

(2)
$$(2q-1)(N-1) \ge \dim H^1(G, \Pi_{2q-2}) \ge \sum_{i=0}^{p-1} \dim B_q(\Delta_i, G_i)$$
.

Therefore we have

$$(3) \qquad (2q-1)(N-1) \ge \sum_{i=0}^{p-1} \left\{ (2q-1)(g_i-1) + \sum_{j=1}^{n_i} \left[q - \frac{q}{\nu_{ij}} \right] \right\}$$

In particular, for a B-group G, I. Kra [4] proved the following inequality

$$\dim H^{\scriptscriptstyle 1}(G,\, \varPi_{{\scriptscriptstyle 2q-2}}) \geqq 2 \dim B_q(arLambda_{\scriptscriptstyle 0},\,G)$$
 .

So, in this case, we have

$$(4) \qquad (2q-1)(N-1) \ge 2\left\{(2q-1)(g_{_0}-1) + \sum_{j=1}^{n_0} \left[q - \frac{q}{\nu_{_0j}}\right]\right\}.$$

If $p \leq 2$, our theorem is obvious. For, in general, (3) implies $N \geq g_0 - 1$, which shows that

$$3(N-1)-(g_{_0}-2)\geq 2~(N-1)\geq 2$$
 .

Further, for a B-group G, (4) implies $N-1 \ge 2(g_0-1)$ which gives

$$rac{3}{2}(N-1)-(g_{\scriptscriptstyle 0}-2) \geqq N \geqq 2$$
 .

Hence we may assume $p \geq 3$.

Now we consider the case where G is a B-group. If G has no accidental parabolic transformation, then, from Maskit's theorem in [6], the group G is degenerate or quasifuchsian. Hence $p \leq 2$. Thus in this case we have nothing to prove.

Next we assume that G has accidental parabolic transformations.

We see that the permissible signature of G which minimizes the right hand side of (4) is $(g_0, n_0; 2, \dots, 2)$. We set q = 2 in (4). Since G has accidental parabolic transformations, Maskit's result [6] gives the inequality $p-1 \leq 2g_0 - 2 + n_0$. Hence we have

$$p \leq rac{3}{2}(N-1) - (g_{\circ}-2)$$
 .

Therefore we conclude for any B-group that the following inequality holds:

$$p \leq \left[rac{3}{2}(N-1) - (g_{\scriptscriptstyle 0}-2)
ight].$$

Next we consider the case where G is not a B-group.

Since every G_i is non-elementary we see that, for $1 \leq i \leq p-1$, the permissible signatures of G_i that minimize the right hand side of (3) are (0, 3; 2, 3, 7).

For the group G we see that the permissible signature is $(g_0, n_0; 2,$

..., 2). Setting q = 2 and using the inequality $p - 1 \leq 2g_0 - 2 + n_0$ (see [7]), we have the inequality

$$p \leq 3(N-1) - (g_0 - 2)$$
.

Thus, for any finitely generated function group which is not a *B*-group, we conclude that the following inequality holds:

$$p \leq 3(N-1) - (g_0 - 2)$$
.

The proof of Theorem is completed.

REMARK. There are some cases where the inequalities in Theorem can be sharpened. For instance, assume that G is a B-group and that $g_0 = 0, n_0 \ge 5$ and the signature of G is $(0, n_0; 2, \dots, 2)$. In this case we can easily see that

$$p \leq \left[\frac{3}{2}(N-1)\right].$$

References

- L. V. AHLFORS, Eichler integrals and Bers' area theorem, Mich. Math. J., 15 (1968), 257-263.
- [2] L. BERS, Inequalities for finitely generated Kleinian groups, J. d'Anal. Math., 18 (1967), 23-41.
- [3] L. BERS, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc., 4 (1972), 257-300.
- [4] I. KRA, On cohomology of Kleinian groups: II, Ann. of Math., 90 (1969), 575-589.
- [5] I. KRA, Automorphic forms and Kleinian groups, Benjamin, New York, 1972.
- [6] B. MASKIT, On boundaries of Teichmüller spaces and on Kleinian groups: II, Ann. of Math., 91 (1970), 607-639.
- [7] B. MASKIT, Decomposition of certain Kleinian groups, Acta Math., 130 (1973), 243-263.

DEPARTMENT OF MATHEMATICS YAMAGATA UNIVERSITY YAMAGATA, JAPAN

102