REMARK ON THE NUMBER OF COMPONENTS OF FINITELY GENERATED FUNCTION GROUPS

Masami Nakada

(Received February 18, 1974)

1. We begin with recalling some notations and definitions. Let $S L^{\prime}$ be the group of all conformal self-maps of $\hat{\boldsymbol{C}}$, which is the Aleksandrov compactification of the complex plane C. Each $f \in S L^{\prime}$ has the form

$$
f: z \longmapsto \frac{a z+b}{c z+d},
$$

where $a, b, c, d \in C$ and $a d-b c=1$. If $\operatorname{tr}^{2} f=(a+d)^{2}=4$, then $f \in S L^{\prime}$ is parabolic; f is elliptic if $\operatorname{tr}^{2} f \in[04$); in all other cases f is loxodromic. If f is loxodromic and if $\operatorname{tr}^{2} f$ is real with $\operatorname{tr}^{2} f>4$, then f is hyperbolic.

Let G be a subgroup of $S L^{\prime}$. If there is a neighborhood V of $z \in \hat{\boldsymbol{C}}$ such that $f(V) \cap V=\varnothing$ for all $f \in G, f \neq i d$, then the point z is a regular point of G and we write as $z \in \Omega(G)^{\prime}$. A point $z \in \widehat{\boldsymbol{C}}$ is a limit point of G if there are a sequence $\left\{f_{n}\right\}$ of distinct elements of G and a point $w \in \hat{\boldsymbol{C}}$ such that $f_{n}(w) \rightarrow z$ as $n \rightarrow \infty$. The set of all limit points is denoted by $\Lambda(G)$. The complement of $\Lambda(G)$ is represented by $\Omega(G)$. A group G is called Kleinian if $\Omega(G) \neq \varnothing$. If $\Lambda(G)$ is a finite set, then the Kleinian group is called elementary. In the following the group G means Kleinian. Note that $\Omega(G)-\Omega(G)^{\prime}$ consists of isolated fixed points of elliptic elements of G. The connected components of $\Omega(G)$ are called components of G. A component Δ of G is called invariant if $f(\Delta)=\Delta$ for all $f \in G$.

Now we call G a function group if G is a Kleinian group with an invariant component Δ. In particular, if G is a finitely generated nonelementary function group and if Δ is simply connected, then G is called a B-group (see [6]).

Let G be a Kleinian group and let Δ_{1}, Δ_{2} be two distinct components of G. Then Δ_{1}, Δ_{2} are called equivalent if there is an $f \in G$ such that $f\left(\Delta_{1}\right)=\Delta_{2}$.
2. We are interested in the relation between the number N of generators of a finitely generated function group G and the number p of non-equivalent components of G. We always assume that G is non-elementary.

In general, for any finitely generated Kleinian group G with N gen-
erators, Bers' area theorem implies the inequality $p \leqq 84(N-1)$ (see [2]) and L. V. Ahlfors sharpened this inequality and proved $p \leqq 18(N-1)$ (see [1]). B. Maskit conjectured that the inequality $p \leqq 2(N-1)$ holds (cf. L. Bers [3], I. Kra [5]).

In this note, concerning with the above Maskit's conjecture, we shall prove the following

Theorem. Let G be a finitely generated non-elementary function group with an invariant component Δ_{0} and let N be the number of generators of G. Then the following inequalities hold:

$$
p \leqq\left[\frac{3}{2}(N-1)-\left(g_{0}-2\right)\right] \text { for a B-group } G
$$

and

$$
p \leqq 3(N-1)-\left(g_{0}-2\right) \quad \text { for } G \text { not being a B-group }
$$

where g_{0} is the genus of Δ_{0} / G and $[x]$ is the integral part of x.
3. In this section we shall give the proof of Theorem.

Since G is non-elementary we see that $N \geqq 2$.
Now from Ahlfors' finiteness theorem we have $p<\infty$. Let $\left\{\Delta_{0}, \Delta_{1}\right.$, $\left.\cdots, \Delta_{p-1}\right\}$ be the complete list of non-equivalent components of $\Omega(G)$. We set $G_{i}=\left\{f \in G ; f\left(\Delta_{i}\right)=\Delta_{i}\right\}(0 \leqq i \leqq p-1)$, where $G_{0}=G$. Note that every G_{i} is non-elementary.

We denote by $\Pi_{2 q-2}$ the vector space of complex polynomials in one variable of degree at most $2 q-2$, where $q(\geqq 2)$ is an integer. Let $H^{1}(G$, $\Pi_{2 q-2}$) be the first cohomology group of G with coefficients in $\Pi_{2 q-2}$. Let $B_{q}\left(\Delta_{i}, G_{i}\right)$ denote the space of bounded holomorphic automorphic forms of weight $-2 q$ for the Kleinian group G_{i} operating on Δ_{i}.

Let ($g_{i}, n_{i} ; \nu_{i 1}, \cdots, \nu_{i n_{i}}$) be the signature of G_{i}, that is, g_{i} is the genus of Δ_{i} / G_{i} and $\nu_{i j}\left(2 \leqq \nu_{i j} \leqq \infty, j=1, \cdots, n_{i}\right)$ is the ramification number of $x_{i j} \in \overline{\Delta_{i} / G_{i}}-\Delta_{i}^{\prime} / G_{i}$ induced by the natural projection $\Delta_{i} \rightarrow \Delta_{i} / G_{i}$, where $\overline{\Delta_{i} / G_{i}}$ is a compact Riemann surface obtained by attaching punctures to Δ_{i} / G_{i} and $\Delta_{i}^{\prime}=\Delta_{i} \cap \Omega(G)^{\prime}$.

Then it is well known that

$$
\begin{equation*}
\operatorname{dim} B_{q}\left(\Delta_{i}, G_{i}\right)=(2 q-1)\left(g_{i}-1\right)+\sum_{j=1}^{n_{i}}\left[q-\frac{q}{\nu_{i j}}\right] \tag{1}
\end{equation*}
$$

where $\left[q-q / \nu_{i j}\right]=q-1$ for $\nu_{i j}=\infty$.
Further, L. Bers [2] proved the inequality

$$
\begin{equation*}
(2 q-1)(N-1) \geqq \operatorname{dim} H^{1}\left(G, \Pi_{2 q-2}\right) \geqq \sum_{i=0}^{p-1} \operatorname{dim} B_{q}\left(\Delta_{i}, G_{i}\right) \tag{2}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
(2 q-1)(N-1) \geqq \sum_{i=0}^{p-1}\left\{(2 q-1)\left(g_{i}-1\right)+\sum_{j=1}^{n_{i}}\left[q-\frac{q}{\nu_{i j}}\right]\right\} \tag{3}
\end{equation*}
$$

In particular, for a B-group G, I. Kra [4] proved the following inequality

$$
\operatorname{dim} H^{1}\left(G, \Pi_{2 q-2}\right) \geqq 2 \operatorname{dim} B_{q}\left(\Delta_{0}, G\right)
$$

So, in this case, we have

$$
\begin{equation*}
(2 q-1)(N-1) \geqq 2\left\{(2 q-1)\left(g_{0}-1\right)+\sum_{j=1}^{n_{0}}\left[q-\frac{q}{\nu_{0 j}}\right]\right\} \tag{4}
\end{equation*}
$$

If $p \leqq 2$, our theorem is obvious. For, in general, (3) implies $N \geqq$ $g_{0}-1$, which shows that

$$
3(N-1)-\left(g_{0}-2\right) \geqq 2(N-1) \geqq 2
$$

Further, for a B-group G, (4) implies $N-1 \geqq 2\left(g_{0}-1\right)$ which gives

$$
\frac{3}{2}(N-1)-\left(g_{0}-2\right) \geqq N \geqq 2
$$

Hence we may assume $p \geqq 3$.
Now we consider the case where G is a B-group. If G has no accidental parabolic transformation, then, from Maskit's theorem in [6], the group G is degenerate or quasifuchsian. Hence $p \leqq 2$. Thus in this case we have nothing to prove.

Next we assume that G has accidental parabolic transformations.
We see that the permissible signature of G which minimizes the right hand side of (4) is ($g_{0}, n_{0} ; 2, \cdots, 2$). We set $q=2$ in (4). Since G has accidental parabolic transformations, Maskit's result [6] gives the inequality $p-1 \leqq 2 g_{0}-2+n_{0}$. Hence we have

$$
p \leqq \frac{3}{2}(N-1)-\left(g_{0}-2\right)
$$

Therefore we conclude for any B-group that the following inequality holds:

$$
p \leqq\left[\frac{3}{2}(N-1)-\left(g_{0}-2\right)\right]
$$

Next we consider the case where G is not a B-group.
Since every G_{i} is non-elementary we see that, for $1 \leqq i \leqq p-1$, the permissible signatures of G_{i} that minimize the right hand side of (3) are (0,$3 ; 2,3,7$).

For the group G we see that the permissible signature is $\left(g_{0}, n_{0} ; 2\right.$,
$\cdots, 2$). Setting $q=2$ and using the inequality $p-1 \leqq 2 g_{0}-2+n_{0}$ (see [7]), we have the inequality

$$
p \leqq 3(N-1)-\left(g_{0}-2\right)
$$

Thus, for any finitely generated function group which is not a B-group, we conclude that the following inequality holds:

$$
p \leqq 3(N-1)-\left(g_{0}-2\right)
$$

The proof of Theorem is completed.
Remark. There are some cases where the inequalities in Theorem can be sharpened. For instance, assume that G is a B-group and that $g_{0}=0, n_{0} \geqq 5$ and the signature of G is $\left(0, n_{0} ; 2, \cdots, 2\right)$. In this case we can easily see that

$$
p \leqq\left[\frac{3}{2}(N-1)\right]
$$

References

[1] L. V. Ahlfors, Eichler integrals and Bers' area theorem, Mich. Math. J., 15 (1968), 257-263.
[2] L. Bers, Inequalities for finitely generated Kleinian groups, J. d'Anal. Math., 18 (1967), 23-41.
[3] L. Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc., 4 (1972), 257-300.
[4] I. Kra, On cohomology of Kleinian groups: II, Ann. of Math., 90 (1969), 575-589.
[5] I. Kra, Automorphic forms and Kleinian groups, Benjamin, New York, 1972.
[6] B. MASKIT, On boundaries of Teichmüller spaces and on Kleinian groups: II, Ann. of Math., 91 (1970), 607-639.
[7] B. Maskit, Decomposition of certain Kleinian groups, Acta Math., 130 (1973), 243-263.
Department of Mathematics
Yamagata University
Yamagata, Japan

