ON A PARAMETRIZATION OF MINIMAL IMMERSIONS OF R^{2} INTO S^{5}

Katsuei Kenmotsu

(Received January 31, 1974)

1. Introduction. In [3], the author has studied minimal immersions of a surface into a space form and found some fundamental formulas for the Laplacian of scalar invariants of such immersions.

In [2], T. Itoh has constructed a 1-parameter family of minimal immersions of a Euclidean plane into S^{5}.

The purpose of this paper is to give a complete description for minimal immersions of the Euclidean plane and a flat torus in S^{5}. Let R^{2} be the oriented Euclidean plane with the standard metric and S^{5} the unit sphere in R^{6}. By [Ψ] we denote an equivalence class of a minimal immersion $\Psi: R^{2} \rightarrow S^{5}$ by isometries of S^{5}. We will prove the following theorems.

THEOREM 1. There exists a 1-1 correspondence between the set of [$\Psi]$'s and a 2 -dimensional sphere.

The correspondence is given by (9) of §3. Let O be the origin of R^{6} and $\overrightarrow{O x}$ the ray from O passing through a point $x \in R^{6}$. Then it is known that the cone

$$
O \Psi\left(R^{2}\right)=\text { the union of } \overrightarrow{O x} \text { with } x \in \Psi\left(R^{2}\right)
$$

is also minimal in the Euclidean space R^{6}. By Hsiang [1], we shall call Ψ real algebraic if $O \Psi\left(R^{2}\right)$ is a real algebraic cone.

Theorem 2. Ψ induces the minimal immersion of the flat torus into S^{5} if and only if Ψ is real algebraic. Moreover, there are infinite numbers of such immersions.
2. Preliminaries. Terminologies and notations used in this paper are the same as in [3]. Let $x: M \rightarrow S^{5}$ be an isometric minimal immersion of some Riemann surface with a Riemannian metric into S^{5}. Let e_{A}, $1 \leqq A, B, \cdots \leqq 5$, be orthonormal frame fields in a neighborhood of M such that $e_{k}, 1 \leqq k, l, \cdots \leqq 2$, are tangent to M. Let $w_{A}, w_{A B}$ be the basic forms and the connection forms of S^{5}. Let $h_{\alpha k l}, 3 \leqq \alpha, \beta, \cdots \leqq 5$, be the 2 nd fundamental tensors for e_{α}. By $K_{(2)}, N_{(2)}$ and $f_{(2)}$, we denote the following non-negative scalar invariants on M :

$$
\begin{align*}
K_{(2)} & =\sum_{\alpha}\left(h_{\alpha 11}^{2}+h_{\alpha 12}^{2}\right), \\
N_{(2)} & =\left(\sum_{\alpha} h_{\alpha 11}^{2}\right)\left(\sum_{\alpha} h_{\alpha 12}^{2}\right)-\left(\sum_{a} h_{\alpha 11} h_{\alpha 12}\right)^{2}, \tag{1}\\
f_{(2)} & =K_{(2)}^{2}-4 N_{(2)} .
\end{align*}
$$

We can define the 3 rd fundamental tensor $h_{\text {sijk }}$. We set

$$
\begin{equation*}
K_{(3)}=h_{5111}^{2}+h_{5112}^{2} \tag{2}
\end{equation*}
$$

Then $K_{(3)}$ is also a scalar invariant. In [3], we have proved the following formulas (3), (4) and (5):

$$
\begin{equation*}
\Delta f_{(2)}=2\left\{f_{(2)} K+\left|A_{(2)}\right|^{2}\right\} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{4} \Delta K_{(2)}=-2 N_{(2)}+K K_{(2)}+K_{(3)}+\sum_{\alpha=3}^{4}\left(h_{\alpha 11,1}^{2}+h_{\alpha 11,2}^{2}\right), \tag{4}
\end{equation*}
$$

where K is the Gaussian curvature and $A_{(2)}=2 \sum_{\alpha}\left(h_{\alpha 11}+i h_{\alpha 12}\right)\left(h_{\alpha 11,1}+\right.$ $i h_{\alpha 11,2}$). In a neighborhood of a point with $N_{(2)} \neq 0$, we get

$$
\begin{equation*}
\frac{1}{2} \Delta K_{(3)}=3 K K_{(3)}+2\left(h_{5111,1}^{2}+h_{5111,2}^{2}\right) \tag{5}
\end{equation*}
$$

Now we shall construct another scalar invariant of the isometric minimal immersion x. Since M has the fixed orientation, the vector $e_{1}+i e_{2}$ is defined up to the transformation $e_{1}+i e_{2} \rightarrow e_{1}^{*}+i e_{2}^{*}=e^{i \theta}\left(e_{1}+i e_{2}\right)$, where θ is real. Under such a change, we have $h_{\alpha 11}+i h_{\alpha 12} \rightarrow h_{\alpha 11}^{*}+i h_{\alpha 12}^{*}=$ $e^{2 i \theta}\left(h_{\alpha 11}+i h_{\alpha 12}\right)$ and $h_{5111}+i h_{5112} \rightarrow h_{5111}^{*}+i h_{5112}^{*}=e^{3 i \theta}\left(h_{5111}+i h_{5112}\right)$. Thus for the fixed vector field e_{3}, we can define the following scalar invariant:

$$
\begin{equation*}
L=\left(h_{5111}+i h_{5112}\right)^{2}\left(h_{311}-i h_{312}\right)^{3} . \tag{6}
\end{equation*}
$$

We remark that the normal vector e_{5} is defined up to the sign, the 3rd osculating space being the 1 -dimensional space. Therefore the function L is independent upon e_{5} and depends on the e_{3} and the orientation of M.
3. Construction of minimal immersions. Let Σ be a portion of an ellipsoid such that

$$
\begin{equation*}
\Sigma=\left\{(t, u, v) \in R^{3}: 0 \leqq t \leqq \frac{1}{2}, 0 \leqq u, 0 \leqq v, u^{2}+v^{2}=2 t(1-t)\right\} \tag{7}
\end{equation*}
$$

In this section we shall give various minimal immersions of R^{2} into S^{5}. Let P and Q be the skew-symmetric matrices such that, for $(t, u, v) \in \Sigma$,

$$
\begin{aligned}
& P=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & \sqrt{t} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{1-t} & 0 \\
0 & -\sqrt{t} & 0 & 0 & 0 & \frac{u}{\sqrt{t}} \\
0 & 0 & -\sqrt{1-t} & 0 & 0 & \frac{v}{\sqrt{1-t}} \\
0 & 0 & 0 & -\frac{u}{\sqrt{t}} & \frac{-v}{\sqrt{1-t}} & 0
\end{array}\right), \\
& Q=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{1-t} & 0 \\
-1 & 0 & 0 & -\sqrt{t} & 0 & 0 \\
0 & 0 & \sqrt{t} & 0 & 0 & \frac{v}{\sqrt{t}} \\
0 & -\sqrt{1-t} & 0 & 0 & 0 & \frac{-u}{\sqrt{1-t}} \\
0 & 0 & 0 & -\frac{v}{\sqrt{t}} & \frac{u}{\sqrt{1-t}} & 0
\end{array}\right),
\end{aligned}
$$

where we must read $u / \sqrt{t}=0$ and $v / \sqrt{t}=0$ if $t=0$. Then we have $P Q=Q P$ by virtue of $u^{2}+v^{2}=2 t(1-t)$. We denote the eigenvalues of P and Q by $\pm \sqrt{-1} \lambda_{i}$ and $\pm \sqrt{-1} \mu_{i}, i=1,2,3$, respectively. We remark that λ_{i} or μ_{i} may be zero. We can take an orthogonal matrix $T={ }^{t}\left(v_{0}, v_{1}, \cdots, v_{5}\right)$ such that

$$
T^{-1} P T=\left(\begin{array}{ccc}
P_{1} & 0 & 0 \tag{8}\\
0 & P_{2} & 0 \\
0 & 0 & P_{3}
\end{array}\right), \quad T^{-1} Q T=\left(\begin{array}{ccc}
Q_{1} & 0 & 0 \\
0 & Q_{2} & 0 \\
0 & 0 & Q_{3}
\end{array}\right)
$$

where

$$
P_{i}=\left(\begin{array}{rr}
0 & \lambda_{i} \\
-\lambda_{i} & 0
\end{array}\right), \quad Q_{i}=\left(\begin{array}{rr}
0 & \mu_{i} \\
-\mu_{i} & 0
\end{array}\right)
$$

and we can assume $\lambda_{i} \geqq 0$. Then (S) $=\left\{T^{-1}(x P+y Q) T:(x, y) \in R^{2}\right\}$ is an abelian Lie subalgebra of $\mathfrak{s o}(6, R)$. We consider $G=\exp (\mathbb{5}) . G$ is the Lie subgroup of $S O(6)$ and isomorphic to $T^{d} \times R^{2-d}, 0 \leqq d \leqq 2$, where T^{d} is the d-dimensional torus. By an orbit of an action of G, we define a smooth map $\Psi_{(t, u, v)}$ of R^{2} in R^{6} as follows:

$$
\begin{equation*}
\Psi_{(t, u, v)}(x, y)=\left(\sum_{s=0}^{5} T_{08} t_{s j}(x, y)\right), \tag{9}
\end{equation*}
$$

where $v_{0}=\left(T_{00}, \cdots, T_{05}\right)$ and $\left(t_{s j}(x, y)\right) \in G$. It is clear that

$$
\left(t_{s j}(x, y)\right)=\left(\begin{array}{lll}
X_{1} & 0 & 0 \\
0 & X_{2} & 0 \\
0 & 0 & X_{3}
\end{array}\right), \quad X_{i}=\left(\begin{array}{rr}
\cos \left(\lambda_{i} x+\mu_{i} y\right) & \sin \left(\lambda_{i} x+\mu_{i} y\right) \\
-\sin \left(\lambda_{i} x+\mu_{i} y\right) & \cos \left(\lambda_{i} x+\mu_{i} y\right)
\end{array}\right)
$$

Proposition 1. $\Psi_{(t, u, v)}$ is an isometric minimal immersion of R^{2} in S^{5} such that $N_{(2)}=t(1-t), K_{(3)}=u^{2}+v^{2}$ and $L=t^{3 / 2}(u+i v)^{2}$ for some normal vector e_{3}. Moreover if $t>0$, the image is not contained in any lower dimensional linear subspace of R^{6}.

Proof. We set $\Psi_{0}=\Psi_{(t, u, v)}$ and $\Psi_{A}=\left(\sum_{s=0}^{5} T_{A s} t_{s j}(x, y)\right)$, where $v_{A}=$ ($T_{A 0}, \cdots, T_{A 5}$), $0 \leqq A \leqq 5 \cdot \Psi_{0}\left(R^{2}\right) \subset S^{5}$ is clear. It is easily verified that

$$
\begin{equation*}
{ }^{t}\left(d \Psi_{0}, \cdots, d \Psi_{5}\right)=(P d x+Q d y)^{t}\left(\Psi_{0}, \cdots, \Psi_{5}\right) \tag{10}
\end{equation*}
$$

Therefore we can get $\partial \Psi_{0} / \partial x=\Psi_{1}$ and $\partial \Psi_{0} / \partial y=\Psi_{2}$. Hence Ψ_{0} is an isometric immersion of R^{2} into S^{5}. Since we can see $\left\{\Psi_{\alpha}, 3 \leqq \alpha \leqq 5\right\}$ are unit normal vectors on $\Psi_{0}\left(R^{2}\right),(10)$ is the Frenet-Borůvka formula for Ψ_{0}. It follows that we have

$$
\left(h_{3 i j}\right)=\left(\begin{array}{cc}
\sqrt{t} & 0 \tag{11}\\
0-\sqrt{t}
\end{array}\right), \quad\left(h_{4 i j}\right)=\left(\begin{array}{cc}
0 & \sqrt{1-t} \\
\sqrt{1-t} & 0
\end{array}\right), \quad\left(h_{5 i j}\right)=0 .
$$

The formula (11) shows that Ψ_{0} is a minimal immersion. If $t>0$, since we have $N_{(2)}=t(1-t)>0$ on $R^{2}, \Psi_{0}\left(R^{2}\right)$ is not contained in any lower dimensional linear subspace of R^{6}. From (10), we get

$$
\begin{align*}
\sqrt{t} w_{35} & =u w_{1}+v w_{2}, \\
\sqrt{1-t} w_{45} & =v w_{1}-u w_{2} \tag{12}\\
w_{12} & =w_{34}=0
\end{align*}
$$

By (12) we get $K_{(3)}=u^{2}+v^{2}$ and $L=t^{3 / 2}(u+i v)^{2}$ for e_{3}. This completes a proof of Proposition 1.

Proposition 2. (i) If $0<t<1 / 2$ and $u v \neq 0$, then we have $\left[\Psi_{(t, u, v)}\right]=\left[\Psi_{(\tilde{t}, \tilde{u}, \tilde{v})}\right]$ if and only if $(t, u, v)=(\tilde{t}, \tilde{u}, \widetilde{v})$;
(ii) If $0<t<1 / 2$, then we have $\left[\Psi_{\left(t, 0, u_{0}\right)}\right]=\left[\Psi_{\left(t, u_{0}, 0\right)}\right]$, where $u_{0}=$ $\sqrt{2 t(1-t)}$.
(iii) If $t=0$, then we have the Clifford torus and if $t=1 / 2$ then we have $\left[\Psi_{(1 / 2, u, v)}\right]=\left[\Psi_{(1 / 2, \sqrt{1 / 2}, 0)}\right]$.

Proof. Case (i): We suppose $\left[\Psi_{(t, u, v)}\right]=\left[\Psi_{(\tilde{t}, \tilde{u}, \tilde{v})}\right]$. Since we have
$f_{(2)}=\tilde{f}_{(2)}$, where $\tilde{f}_{(2)}$ denotes the quantity of $\Psi_{(\tilde{t}, \tilde{u}, \tilde{v})}$ corresponding to the $f_{(2)}$ of $\Psi_{(t, u, v)}$, we have $t(1-t)=\tilde{t}(1-\tilde{t})$ and $0 \leqq t, \tilde{t} \leqq 1 / 2$, hence we get $t=\tilde{t}$. If $0<t<1 / 2, e_{3}$ and e_{4} in the 2nd osculating space satisfying (11) are determined up to the sign. In fact let e_{A} and \widetilde{e}_{A} be the frame fields such that (11) and (12) are satisfied. Let $\widetilde{e}_{1}+i \widetilde{e}_{2}=e^{-i \theta}\left(e_{1}+i e_{2}\right)$. Then we have $\widetilde{e}_{3}+i \widetilde{e}_{4}=e^{-2 i \theta}\left(e_{3}+i e_{4}\right)$ and $\widetilde{h}_{311}^{2}-\widetilde{h}_{412}^{2}=\cos 4 \theta\left(h_{311}^{2}-h_{412}^{2}\right)$, where $\widetilde{h}_{3 i j}$ and $\widetilde{h}_{4 i j}$ are the components of the 2nd fundamental tensors for \widetilde{e}_{A}. Since we have $\widetilde{h}_{311}^{2}-\widetilde{h}_{412}^{2}=h_{311}^{2}-h_{412}^{2}=2 t-1<0$ in this case, we get $\theta=(k / 2) \pi$ and k is an integer. It follows that we have $L= \pm \widetilde{L}$ and so $(u+i v)^{4}=(\widetilde{u}+i \widetilde{v})^{4}$. Making use of $u^{2}+v^{2}=\widetilde{u}^{2}+\widetilde{v}^{2}=2 t(1-t)$, $u v \neq 0$ and $u, \tilde{u}, v, \tilde{v} \geqq 0$, we have $u=\tilde{u}$ and $v=\tilde{v}$.

Case (ii): Let e_{A} be the frame field of $\Psi_{\left(t, 0, u_{0}\right)}$ satisfying (11) and (12). We set $f_{1}=e_{2}, f_{2}=-e_{1}, f_{3}=-e_{3}, f_{4}=-e_{4}$ and $f_{5}=e_{5}$. With respect to these new frame fields, we have $\Psi_{\left(t, u_{0}, 0\right)}$.

Case (iii): If $t=0$, then $\Psi_{(0,0,0)}$ is the Clifford torus. When $t=1 / 2$, we have shown $\left[\Psi_{(1 / 2, u, v)}\right]=\left[\Psi_{(1 / 2, \sqrt{1 / 2}, 0)}\right]$ by the Theorem 3 of [3]. Thus we have proved the Propositoin 2.
4. Parametrization of minimal immersions. We shall prove the following proposition.

Proposition 3. Let $x: R^{2} \rightarrow S^{5}$ be an isometric minimal immersion. Then there exists $a(t, u, v) \in \Sigma$ such that $x \in\left[\Psi_{(t, u, v)}\right]$.

Proof. Since $K=0$, by the Gauss equation, we have $K_{(2)}=1$. It follows that, by (1) and (3), we get $\Delta\left(-N_{(2)}\right) \geqq 0$, hence $-N_{(2)}$ is subharmonic on R^{2} and non-positive. We claim $-N_{(2)}=$ constant on R^{2}. This is proved as follows: There exists a point $p_{0} \in R^{2}$ such that $-N_{(2)}\left(p_{0}\right) \geqq$ $-N_{(2)}(p)$ for all $p \in R^{2}$ by virtue of the maximum principle of the subharmonic functions and the boundedness of $-N_{(2)}$. Since Δ is an elliptic operator, by the well-known theorem, $-N_{(2)}$ must be a constant function on R^{2}. If $N_{(2)}=0, x\left(R^{2}\right)$ is contained in a 3 -dimensional space of constant curvature 1 in S^{5} and therefore $x \in\left[\Psi_{(0,0,0)}\right]$. In the case of $N_{(2)}>0$, vectors $\sum_{\alpha} h_{\alpha 11} e_{\alpha}$ and $\sum_{\alpha} h_{\alpha 12} e_{\alpha}$ are linearly independent on R^{2}. Let

$$
\begin{equation*}
e_{3}^{*}=\frac{\sum_{\alpha} h_{\alpha 11} e_{\alpha}}{\sqrt{\sum_{\alpha} h_{\alpha 11}^{2}}}, \quad e_{4}^{*}=\frac{\sum_{\alpha} h_{\alpha 12} e_{\alpha}-\left(\sum_{\alpha} h_{\alpha 11} e_{\alpha}, e_{3}^{*}\right) e_{3}^{*}}{\left\|\sum_{\alpha} h_{\alpha 12} e_{\alpha}-\left(\sum_{\alpha} h_{\alpha 12} e_{\alpha}, e_{3}^{*}\right) e_{3}^{*}\right\|} \tag{13}
\end{equation*}
$$

and e_{5}^{*} is the unit normal vector field which span the 3rd osculating space. Then we have

$$
\left(h_{4 i j}^{*}\right)=\left(\begin{array}{cc}
0 & h_{412}^{*} \tag{14}\\
h_{412}^{*} & 0
\end{array}\right), \quad h_{5 i j}^{*}=0,
$$

where we may assume $h_{412}^{*} \geqq 0$. We take e_{i}^{*} such that

$$
\left(h_{3 i j}^{*}\right)=\left(\begin{array}{lr}
h_{311}^{*} & 0 \tag{15}\\
0 & -h_{311}^{*}
\end{array}\right),
$$

where if necessary taking $-e_{3}^{*}$, we may assume $h_{311}^{*} \geqq 0$. As (14) is valid for any orthonormal system $\left\{e_{i}\right\}$, it follows that we have obtained frame fields $\left\{e_{A}^{*}\right\}$ such that (14) and (15) are valid at the same time. By the Gauss equation and the constancy of $N_{(2)}, h_{311}^{*}$ and h_{412}^{*} are also positive constant and $h_{311}^{* 2}+h_{412}^{* 2}=1$, hence we can set $h_{311}^{*}=\sqrt{t}$ and $h_{412}^{*}=\sqrt{1-t}$. If $t>1 / 2$, we set $e_{3}=-e_{4}^{*}, e_{4}=e_{3}^{*}, e_{1}=(1 / \sqrt{2})\left(e_{1}^{*}-e_{2}^{*}\right)$ and $e_{2}=$ $(1 / \sqrt{2})\left(e_{1}^{*}+e_{2}^{*}\right)$. For the new frame fields, we have $h_{311}=\sqrt{1-t}$. By virtue of (14) and (15), we have

$$
\begin{align*}
\sqrt{t} w_{35}^{*} & =h_{5111}^{*} w_{1}^{*}+h_{5112}^{*} w_{2}^{*}, \\
\sqrt{1-t} w_{45}^{*} & =h_{5112}^{*} w_{1}^{*}-h_{5111}^{*} w_{2}^{*}, \tag{16}\\
w_{12}^{*} & =w_{34}^{*}=0
\end{align*}
$$

From the last formula of (16), we have $D h_{\alpha i j}^{*}=0$. It follows from (4) that we have

$$
\begin{equation*}
h_{5111}^{* 2}+h_{5112}^{* 2}=2 t(1-t) . \tag{17}
\end{equation*}
$$

By (5), we get $h_{5 i j k, l}^{*}=0$. From the definition of $D h_{5 i j_{k}}^{*}$ and $w_{12}^{*}=0, h_{5 i j j_{k}}^{*}$ are all constant. If necessary, taking $-e_{5}^{*}$, we may assume $h_{511}^{*} \geqq 0$. By the same way as the proof of the case (ii) in the Proposition 2, we may also assume $h_{5112}^{*} \geqq 0$. Let $u=h_{5111}^{*}$ and $v=h_{5112}^{*}$. Thus we have $x=\Psi_{(t, u, v)}$ on some open set of R^{2}. Since x and $\Psi_{(t, u, v)}$ are real analytic, we have $x=\Psi_{(t, u, v)}$ on the whole plane R^{2}.

The proof of Theorem 1 now follows immediately from Propositions 1,2 and 3. Thus (9) with (7) gives a parametrization of minimal immersions of R^{2} into S^{5}. At the same time we have also

TheOrem 3. Any isometric minimal immersion of R^{2} into S^{5} is an orbit of the action of an abelian Lie subgroup in $S O(6)$.
5. Proof of Theorem 2. Let $\Psi=\Psi_{(t, u, v)}$. By definition Ψ can be represented by the following equations, for $\left(Y_{1}, Y_{2}, Y_{3}\right) \in C^{3}$,

$$
\left\{\begin{array}{l}
\left|Y_{i}\right|^{2}=1, \quad i=1,2,3, \tag{18}\\
Y_{1}^{\left(\lambda_{3} \mu_{2}-\lambda_{3} \mu_{2}\right)} Y_{2}^{\left(\lambda_{1} \mu_{3}-\lambda_{1} \mu_{3}\right)} Y_{3}^{\left(\lambda_{2} \mu_{1}-\lambda_{2} \mu_{1}\right)}=1,
\end{array}\right.
$$

where $\Psi_{0 j}, 0 \leqq j \leqq 5$, are the j-th component of Ψ_{0} in R^{6} and

$$
Y_{1}=\frac{\Psi_{00}+i \Psi_{01}}{T_{00}+i T_{01}}, \quad Y_{2}=\frac{\Psi_{02}+i \Psi_{03}}{T_{02}+i T_{03}}, \quad Y_{3}=\frac{\Psi_{04}+i \Psi_{00}}{T_{04}+i T_{05}}
$$

In fact, since we have $Y_{i}=\exp \sqrt{-1}\left(\lambda_{i} x+\mu_{i} y\right)$, (18) is directly verified. It follows from (18) that Ψ is real algebraic if and only if there exist integers m_{i} such that

$$
\left|\begin{array}{cc}
\lambda_{1} & \mu_{1} \tag{19}\\
\lambda_{2} & \mu_{2}
\end{array}\right|:\left|\begin{array}{cc}
\lambda_{1} & \mu_{1} \\
\lambda_{3} & \mu_{3}
\end{array}\right|:\left|\begin{array}{cc}
\lambda_{2} & \mu_{2} \\
\lambda_{3} & \mu_{3}
\end{array}\right|=m_{1}: m_{2}: m_{3} .
$$

If Ψ induces a minimal immersion of the flat torus into S^{5}, there is a set of points $(a, c),(b, d)$ such that

$$
\begin{align*}
& \lambda_{i} a+\mu_{i} c=p_{i}, \\
& \lambda_{i} b+\mu_{i} d=q_{i}, \quad i=1,2,3, \tag{20}
\end{align*}
$$

where $a d-b c \neq 0$ and $\left\{p_{i}, q_{i}\right\}$ are integers. By the direct calculation, we get (19) with $m_{1}=\left(p_{1} q_{2}-q_{1} p_{2}\right), m_{2}=\left(p_{1} q_{3}-q_{1} p_{3}\right)$ and $m_{3}=\left(p_{2} q_{3}-\right.$ $q_{2} p_{3}$.

We shall study the converse problem. We may assume $\lambda_{j} \mu_{i}-\lambda_{i} \mu_{j} \neq 0$ for some $i<j$. For the simplicity, we set $i=1, j=2$ and $\lambda_{1} x+\mu_{1} y=\theta$ and $\lambda_{2} x+\mu_{2} y=\tau$. Then if we have (19), we get $\lambda_{3} x+\mu_{3} y=-\left(m_{3} / m_{1}\right) \theta+$ (m_{2} / m_{1}) τ and hence Ψ induces a minimal immersion of the flat torus into S^{5}. The proof of the former part of the Theorem 2 completes and the latter half follows from the following section.
q.e.d.

The another proof of Theorem 2. G is the closed Lie subgroup of $S O(6)$ if and only if the condition (19) is satisfied. Therefore by the Hsiang's Theorem [1] and the Theorem 3, Theorem 2 follows.
6. The case of $u=v$ or $v=0$. At the last section, we shall give explicitly constructed 1-parameter families of minimal immersions.
(i) In the case of $u=v$, we can get the following 1-parameter family $\Psi_{(t)}^{+}=\Psi_{(t, \sqrt{t(1-t)}, \sqrt{t(1-t)})}$:

$$
\begin{align*}
\Psi_{(t)}^{+}(x, y)= & \frac{1}{\sqrt{2(2-t)}}\left(\exp \sqrt{-1}\left(\sqrt{1+k^{2}} x+\sqrt{1-k^{2}} y\right),\right. \tag{21}\\
& \exp \sqrt{-1}\left(\sqrt{1-k^{2}} x+\sqrt{1+k^{2}} y\right), \sqrt{2(1-t)} \\
& \times \exp \sqrt{-1}(x-y)), \text { where } k^{2}=\sqrt{t(2-t)} .
\end{align*}
$$

(ii) If $v=0$, we set $\Psi_{(t)}^{0}(x, y)=\Psi_{(t, \sqrt{2 t(1-t), 0)}}$. Then we get

$$
\begin{align*}
\Psi_{(t)}^{0}(x, y)= & \frac{1}{\sqrt{2(1+t)}}(\exp \sqrt{-1}(\sqrt{1-t} x+\sqrt{1+t} y) \tag{22}\\
& \exp \sqrt{-1}(\sqrt{1-t} x-\sqrt{1+t} y), \sqrt{2 t} \exp \sqrt{-1} \sqrt{2} x) .
\end{align*}
$$

We remark that $\Psi_{(t)}^{+}$and $\Psi_{(t)}^{\circ}$ were constructed by T. Itoh [2]. If we set $\sqrt{1+k^{2}} x+\sqrt{1-k^{2}} y=\theta$ and $\sqrt{1-k^{2}} x+\sqrt{1+k^{2}} y=\tau$, then (21) is
simply represented by

$$
\frac{1}{\sqrt{2(2-t)}}\left(e^{i \theta}, e^{i \tau}, \sqrt{2(1-t)} e^{i \frac{\theta-\tau}{\sqrt{2 t}}}\right) .
$$

Thus $\Psi_{(t)}^{+}$is the algebraic minimal immersion of $S^{1} \times S^{1}$ into S^{5} if and only if $\sqrt{2 t}$ is a rational number, and so there exist infinitely many algebraic minimal tori.

References

[1] W. Y. Hsiang, Remarks on closed minimal submanifolds in the standard riemannian m-sphere, J. Diff. Geom., 1 (1967), 257-267.
[2] T. Iтон, On minimal surfaces in a Riemannian manifold of constant curvature, to appear.
[3] K. Kenmotsu, On compact minimal surfaces with non negative Gaussian curvature in a space of constant curvature 1, Tôhoku Math. J., 25 (1973), 469-479; II, to appear.
Department of Mathematics
College of General Education
Tônoku University
Kawauchi, Sendai, Japan

