Tôhoku Math. Journ. 27 (1975), 69-74.

EXISTENCE OF ALMOST PERIODIC SOLUTIONS BY LIAPUNOV FUNCTIONS

F. NAKAJIMA

(Received December 8, 1973)

1. Introduction. The existence of almost periodic solutions of almost periodic systems has been studied by many authors. Generally, the existence of a bounded solution does not imply the existence of almost periodic solutions [4]. To obtain almost periodic solutions, we need additional conditions, for example, separation conditions and stability conditions. Another approach is to assume the existence of a Liapunov function with some properties ([2], [5]). Relationships between separation conditions and stability conditions have been discussed by the author [3].

In this paper, by assuming the existence of some Liapunov function, we shall obtain an existence theorem for an almost periodic solution, which improves Fink and Seifert's result [2] and proves Yoshizawa's result [5] as a corollary.

We denote by \mathbb{R}^n the Euclidean *n*-space and set $\mathbb{R} = \mathbb{R}^1$ and $\mathbb{R}^+ = [0, \infty)$. Let |x| be the Euclidean norm of $x \in \mathbb{R}^n$.

2. Theorem and some remarks. Consider the almost periodic system

(2.1)
$$x' = f(t, x)$$
 $(' = d/dt)$,

where $x, f \in \mathbb{R}^n$ and f(t, x) is defined on $\mathbb{R} \times D$, D open set of \mathbb{R}^n , and is almost periodic in t uniformly for $x \in D$. The following theorem is an improvement of Fink and Seifert's result [2].

THEOREM. Suppose that the system (2.1) has a solution $\phi(t)$ such that $\phi(t) \in K$ on R^+ , where K is a compact subset of D, and assume that there exists a continuous scalar function V(t, x) defined on $R^+ \times D$, which satisfies the following conditions:

(i) $V(t, \phi(t))$ is bounded on R^+ ,

(ii) $|V(t, x) - V(t, y)| \leq L |x - y|$ for $x, y \in S$, $t \in R^+$, where S is any compact subset of D and L may depend on S,

(iii) $\dot{V}(t, x) \ge a(|x - \phi(t)|)$, where a(r) is continuous and positive definite and

$$\dot{V}(t, x) = \overline{\lim_{h \to +0}} \frac{1}{h} \left\{ V(t+h, x+hf(t, x)) - V(t, x) \right\}.$$

F. NAKAJIMA

Then the system (2.1) has a unique almost periodic solution in D whose module is contained in the module of f(t, x).

The proof shall be given in the next section. In order to obtain a unique almost periodic solution in K, Fink and Seifert have assumed the following conditions; in addition to the conditions in our theorem, V(t, x) is defined on $R \times D$ and is continuous in t uniformly for $(t, x) \in R \times S$ for each compact subset S of D, and $V(t, \phi(t)) = 0$. Our theorem shows that we can drop these conditions and furthermore we can verify the uniqueness in D of the almost periodic solution. As will be seen from the example below, the uniqueness of the almost periodic solutions in any compact subset of D does not necessarily imply the uniqueness in D.

Consider

$$egin{cases} x' = \Big(1 - rac{x - \phi(t)}{3 - \phi(t)}\Big) \phi'(t) \ y' = (x - \phi(t))^2 (x - 3)^2 + y^2 \; , \end{cases}$$

where $\phi(t) = \sin t + \sin \sqrt{2t}$. Let $D = (-2, \infty) \times (-\infty, \infty)$. Then there are exactly two almost periodic solutions in D, that is, $\{x = \phi(t), y = 0\}$ and $\{x = 3, y = 0\}$. However, any compact subset of D contains at most one almost periodic solution $\{x = 3, y = 0\}$, because $\inf_{t \in R} \phi(t) = -2$.

In our theorem, we have to know what $\phi(t)$ is. However, there is often a case where we know only the existence of a compact solution of (2.1). For such a case, the following corollary is useful and it also improves Yoshizawa's result [5], except the result on stability.

COROLLARY. Suppose that there exists a continuous scalar function V(t, x, y) defined on $R^+ \times D \times D$ which satisfies the following conditions:

(i) V(t, x, x) is bounded for $t \in R^+$, $x \in S$, where S is any compact subset of D,

(ii) $|V(t, x_1, y_1) - V(t, x_2, y_2)| \leq L\{|x_1 - x_2| + |y_1 - y_2|\}$ for $t \in \mathbb{R}^+$, x_1 , x_2 , y_1 , $y_2 \in S$, where L may depend on S,

(iii) $\dot{V}(t, x, y) \ge a(|x - y|)$, where a(r) is continuous and positive definite and

$$\dot{V}(t, x, y) = \overline{\lim_{h \to +0}} \frac{1}{h} \{ V(t + h, x + hf(t, x), y + hf(t, y)) - V(t, x, y) \}.$$

Moreover, assume that the system (2.1) has a solution which remains in a compact subset of D for $t \ge 0$.

Then the system (2.1) has a unique almost periodic solution in D whose module is contained in the module of f(t, x).

Let $\phi(t)$ be a given compact solution and consider $V(t, x, \phi(t))$ as the Liapunov function in Theorem. Then this corollary follows immediately from our theorem.

3. Proof of Theorem. The following lemma is well known (cf. [1]).

LEMMA. Let S be a compact subset of D. For each g in the hull of f, assume that the system

$$(3.1) x' = g(t, x)$$

has one and only one solution which remains in S for all $t \in R$.

Then the system (2.1) has an almost periodic solution whose module is contained in the module of f(t, x).

Under our assumption, we shall show that for each g in the hull of f, the system (3.1) has one and only one solution in K for all $t \in R$. Since f(t, x) is almost periodic in t, there is a sequence $\{t_k\}$ such that $t_k \to \infty$ as $k \to \infty$ and

$$(3.2) f(t + t_k, x) \rightarrow g(t, x)$$

uniformly on $R \times K$ as $k \to \infty$. Since $\{\phi(t + t_k)\}_{k=1}^{\infty}$ is uniformly bounded and equicontinuous on any compact interval in R, we can assume that

$$(3.3) \qquad \qquad \phi(t+t_k) \mapsto \psi(t)$$

uniformly on any compact interval in R as $k \rightarrow \infty$.

Then $\psi(t) \in K$ for all $t \in R$ and $\psi(t)$ is a solution of (3.1). We shall show that if system (3.1) has a solution x(t) such that $x(t) \in K$ for all $t \in R$, then $x(t) = \psi(t)$ for all $t \in R$.

Let V_k be defined by

$${V}_{{\scriptscriptstyle k}}(t)=\,V(t\,+\,t_{{\scriptscriptstyle k}},\,x(t))\quad ext{for}\quad t\geq\,-\,t_{{\scriptscriptstyle k}}$$
 ,

and set

$$D^+V_k(t) = \overline{\lim_{h \to +0}} \frac{1}{h} \{ V(t + t_k + h, x(t + h)) - V(t, x(t)) \}.$$

Then, by condition (ii), we have

$$D^+V_k(t) \geq \dot{V}(t+t_k, x(t)) - A_k(t)$$
,

where $A_k(t) = L |g(t, x(t)) - f(t + t_k, x(t))|$ and L = L(K') is the constant in condition (ii) for K', K' compact neighbourhood of K. Clearly we have

(3.4)
$$\lim_{k\to\infty} A_k - (t) = 0 \quad \text{uniformly on} \quad R.$$

By condition (iii), we have

$$D^+V_k(t) \ge a(|x(t) - \phi(t + t_k)|) - A_k(t)$$
.

On any interval [b, c], if k is sufficiently large so that $b + t_k \ge 0$, we obtain

(3.5)
$$V_k(c) - V_k(b) \ge \int_b^c a(|x(s) - \phi(s + t_k)|) ds - \int_b^c A_k(s) ds$$
.

By conditions (i) and (ii), there exists a B > 0 such that

 $|V_k(c) - V_k(b)| = |V(c + t_k, x(c)) - V(b + t_k, x(b))| \leq B$ for all k. Therefore we have

$$\int_b^{\circ} a(|x(s) - \phi(s + t_k)|) ds - \int_b^{\circ} A_k(s) ds \leq B$$
.

Letting $k \rightarrow \infty$, it follows from (3.3) and (3.4) that

$$\int_b^s a(|x(s) - \psi(s)|) ds \leq B.$$

Since b and c are arbitrary, we have

$$\int_{-\infty}^{\infty} a(|\,x(s)\,-\,\psi(s)\,|) ds \,\leq\, B$$
 ,

and hence, there exist sequences $\{\tau_m\}$ and $\{\sigma_m\}$ such that $\tau_m \to -\infty$, $\sigma_m \to +\infty$, as $m \to \infty$ and that $a(|x(\tau_m) - \psi(\tau_m)|) \to 0$, $a(|x(\sigma_m) - \psi(\sigma_m)|) \to 0$ as $m \to \infty$. This shows

$$(3.6) \qquad |x(\tau_m) - \psi(\tau_m)| \to 0 , \quad |x(\sigma_m) - \psi(\sigma_m)| \to 0 \quad \text{as} \quad m \to \infty$$

since a(r) is continuous, positive definite and $|x(\tau_m) - \psi(\tau_m)|$, $|x(\sigma_m) - \psi(\sigma_m)|$ are bounded.

In (3.5), let $b = \tau_m$ and $c = \sigma_m$. Then, if k is sufficiently large so that $\tau_m + t_k \ge 0$, we have

$$V_k(\sigma_m) - V_k(\tau_m) \ge \int_{\tau_m}^{\sigma_m} a(|x(s) - \phi(s + t_k)|) ds - \int_{\tau_m}^{\sigma_m} A_k(s) ds$$

and

$$\begin{split} &\int_{\tau_m}^{\sigma_m} a(|x(s) - \phi(s+t_k)|) ds - \int_{\tau_m}^{\sigma_m} A_k(s) ds - V(\sigma_m + t_k, \phi(\sigma_m + t_k)) \\ &+ V(\tau_m + t_k, \phi(\tau_m + t_k)) \\ &\leq V_k(\sigma_m) - V_k(\tau_m) - V(\sigma_m + t_k, \phi(\sigma_m + t_k)) + V(\tau_m + t_k, \phi(\tau_m + t_k)) \\ &\leq L\{|x(\sigma_m) - \phi(\sigma_m + t_k)| + |x(\tau_m) - \phi(\tau_m + t_k)|\} \\ &\leq L\{|x(\sigma_m) - \psi(\sigma_m)| + |\psi(\sigma_m) - \phi(\sigma_m + t_k)| + |x(\tau_m) - \psi(\tau_m)| \\ &+ |\psi(\tau_m) - \phi(\tau_m + t_k)|\} \,. \end{split}$$

72

Hence, letting $k \rightarrow \infty$, we can see that for a fixed m,

(3.7)
$$\begin{aligned} \int_{\tau_m}^{\sigma_m} a(|x(s) - \psi(s)|) ds &- \overline{\lim_{k \to \infty}} \left\{ V(\sigma_m + t_k, \phi(\sigma_m + t_k)) - V(\tau_m + t_k, \phi(\tau_m + t_k)) \right\} \\ & \leq L\{|x(\sigma_m) - \psi(\sigma_m)| + |x(\tau_m) - \psi(\tau_m)|\} . \end{aligned}$$

However, since $V(t, \phi(t))$ is bounded and $D^+V(t, \phi(t)) \ge 0$, $V(t, \phi(t)) \rightarrow v_0$ as $t \rightarrow \infty$ for some constant v_0 , and hence, (3.7) implies

$$\int_{\tau_m}^{\sigma_m} a(|x(s) - \psi(s)|) ds \leq L\{|x(\sigma_m) - \psi(\sigma_m)| + |x(\tau_m) - \psi(\tau_m)|\}.$$

Letting $m \to \infty$, it follows from (3.6) that

$$\int_{-\infty}^{\infty}a(|x(s)-\psi(s)|)ds=0$$
 ,

which implies $a(|x(s) - \psi(s)|) = 0$, that is, $x(s) = \psi(s)$ for all $s \in R$.

Now we shall show the uniqueness of the almost periodic solution in D. Let $\{t_k\}$ be a sequence such that $t_k \to \infty$, $f(t + t_k, x) \to f(t, x)$ uniformly on $R \times S$, S any compact set in D, and $\phi(t + t_k) \to \psi(t)$ uniformly on any compact interval in R as $k \to \infty$. Then $\psi(t) \in K$ for all $t \in R$ and, as was seen above, $\psi(t)$ is the unique solution in K of system (2.1). Thus $\psi(t)$ is an almost periodic solution of system (2.1). Therefore it is sufficient to show that $\psi(t) = p(t)$ for any almost periodic solution p(t) of (2.1) in D.

Suppose that there exists an almost periodic solution p(t) of (2.1) such that $p(t) \in D$ for all $t \in R$ and $|p(t_0) - \psi(t_0)| = \varepsilon$ at some $t_0 \in R$ for some $\varepsilon > 0$. Since $p(t_0) \in D$, there exists an open set O with the compact closure $\overline{O} \subset D$ such that $p(t_0) \in O \subset \overline{O} \subset D$. Since p(t) is almost periodic, there exists a sequence $\{\sigma_m\}$ such that $\sigma_m \to \infty$ as $m \to \infty$ and $p(\sigma_m) \in \overline{O}$ for all m.

Let $V_k(t) = V(t + t_k, p(t))$. Then, by the same argument as used in obtaining (3.5), we have

$$(3.8) \quad V_k(\sigma_m) - V_k(t_0) \geq \int_{t_0}^{\sigma_m} a(|p(t) - \phi(t + t_k)|) dt - \int_{t_0}^{\sigma_m} A_k(m, t) dt ,$$

where $A_k(m, t) = L_m |f(t + t_k, p(t)) - f(t, p(t))|$ and L_m may depend on a compact set K_m in D which is a neighbourhood of the compact set $\{p(t); t_0 \leq t \leq \sigma_m\}$. Clearly, for a fixed m,

$$\lim_{k \to \infty} A_k(m, t) = 0 \quad \text{uniformly for} \quad t \in [t_0, \sigma_m] .$$

Since $p(\sigma_m) \in \overline{O}$ and we have conditions (i), (ii), there exists a B > 0 such that

F. NAKAJIMA

$$|V_k(\sigma_m) - V_k(t_0)| \leq B \quad ext{for all} \quad m \; .$$

Letting $k \rightarrow \infty$ in (3.8), we have

$$\int_{t_0}^{\sigma_m} a(|p(t) - \psi(t)|) dt \leq B$$
,

which implies

(3.9)
$$\int_{t_0}^{\infty} a(|p(t) - \psi(t)|)dt \leq B.$$

Since $p(t) - \psi(t)$ is almost periodic, there exists a sequence $\{\tau_m\}$ such that

$$(3.10) \qquad |p(t_0)-\psi(t_0)-p(\tau_m)+\psi(\tau_m)|<\varepsilon/3 \quad \text{for all} \quad m$$

and

The uniform continuity of $p(t) - \psi(t)$ implies the existence of a δ , $0 < \delta < 1$, such that

$$\begin{array}{ll} (3.12) & | \ p(t) - \psi(t) - \ p(\tau_m) + \psi(\tau_m) \ | < \varepsilon/3 \quad \text{for} \quad \tau_m - \delta < t < \tau_m + \delta \ . \\ \text{From (3.10), (3.12) and} & | \ p(t_0) - \psi(t_0) \ | = \varepsilon, \ \text{it follows that} \end{array}$$

 $arepsilon/3 < \mid p(t) - \psi(t) \mid < 5arepsilon/3 ext{ for } au_m - \delta < t < au_m + \delta ext{ and all } m.$

Let

$$a_{\scriptscriptstyle 0} = \min \left\{ a(r); \, arepsilon/3 \leq r \leq 5 arepsilon/3
ight\} \, \, (>0) \; .$$

Then we have

$$B \ge \sum_{m=1}^{\infty} \int_{\mathfrak{r}_m - \delta}^{\mathfrak{r}_m + \delta} a(|p(t) - \psi(t)|) dt \ge \sum_{m=1}^{\infty} 2\delta a_0 = \infty$$

since the intervals $(\tau_m - \delta, \tau_m + \delta)$ are disjoint by (3.11). This is a contradiction. Thus $p(t) = \psi(t)$. This completes the proof.

References

- L. AMERIO, Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici o limitate, Ann. Mat. Pura. Appl., 39 (1955), 97-119.
- [2] A. M. FINK AND G. SEIFERT, Liapunov functions and almost periodic solutions for almost periodic systems, J. Diff. Eqs., 5 (1969), 307-313.
- [3] F. NAKAJIMA, Separation conditions and stability properties in almost periodic systems, Tôhoku Math. J., 26 (1974), 305-314.
- [4] Z. OPIAL, Sur une equation différentielle presque-périodique sans solution presquepériodique, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 9 (1961), 673-676.
- [5] T. YOSHIZAWA, Extreme stability and almost periodic functional differential equations, Arch. Rational. Mech. Anal., 17 (1964), 148-170.

Mathematical Institute, Tôhoku University, Sendai, Japan.

74