THE UNSTABLE DIFFERENCE BETWEEN HOMOLOGY COBORDISM AND PIECEWISE LINEAR BLOCK BUNDLES

Takao Matumoto ${ }^{1)}$ and Yukio Matsumoto ${ }^{2)}$

(Received December 5, 1973)
0. Introduction and statement of results. N. Martin and C. R. F. Maunder [9] developed the theory of homology cobordism bundles which is an adequate bundle theory in the category of polyhedral homology manifolds. They introduced certain Δ-sets $H(n)$ which play the role of "structure groups" in the bundle theory. A typical k-simplex of $H(n)$ is a homology cobordism bundle-automorphism of the product bundle $\Delta^{k} \times$ S^{n-1}, or equivalently, a homology cobordism bundle over $\Delta^{k} \times I$ which is the product bundle over $\Delta^{k} \times\{0,1\}$. According to N. Martin [10], the structure groups $\widetilde{P L}(n)$ of $P L n$-block bundles are homotopically equivalent to sub- - -sets $\overline{P L}(n)$ of $H(n)$. By definition a typical k-simplex of $\overline{P L}(n)$ is a $P L n$-block bundle over $\Delta^{k} \times I$ which is the product bundle over $\Delta^{k} \times$ $\{0,1\}$.

Our main result is the following
Theorem 1. If $n \geqq 3$, we have

$$
\pi_{k}(H(n), \overline{P L}(n))= \begin{cases}0 & (k \neq 3) \\ \mathscr{H}^{3} & (k=3),\end{cases}
$$

where \mathscr{H}^{3} is the abelian group of PL H-cobordism classes of oriented PL homology 3-spheres.

This improves the result of [10] in the unstable ranges. Theorem 1 will be proved in §1.

Now for the case $n=2$, let \mathscr{G}_{k} be the ordinary knot cobordism group of $P L(k, k+2)$-sphere pairs and let \mathscr{G}_{k}^{H} be the knot cobordism group of $P L$ homology ($k, k+2$)-sphere pairs; any element of \mathscr{G}_{k}^{H} is represented by a locally flat pair (M^{k}, N^{k+2}) consisting of oriented $P L$ homology k - and $(k+2)$-spheres. Such pairs $\left(M_{1}^{k}, N_{1}^{k+2}\right)$ and $\left(M_{2}^{k}, N_{2}^{k+2}\right)$ represent the same element of \mathscr{G}_{k}^{H} if and only if the connected sum ($M_{1}^{k} \#-M_{2}^{k}, N_{1}^{k+2} \#-N_{2}^{k+2}$) bounds a locally flat pair of acyclic manifolds (V^{k+1}, W^{k+3}). Also $\mathscr{G}^{A H}$ denotes the subgroup of \mathscr{G}_{1}^{H} whose element is represented by a pair (M^{1},

[^0]N^{3}) such that N^{3} bounds an acyclic 4-manifold. It is easy to show that $0 \rightarrow \mathscr{G}^{A H} \rightarrow \mathscr{G}_{1}^{H} \rightarrow \mathscr{H}^{3} \rightarrow 0$ is a split exact sequence. Then our result for $n=2$ is stated as follows.

Theorem 2. We have

$$
\pi_{k}(H(2), \overline{P L}(2)) \cong \begin{cases}\mathscr{G}_{k} & (k \geqq 4) \\ 0 & (k=2) \\ \mathscr{G}^{A H} & (k=1)\end{cases}
$$

and for $k=3$, there is an exact sequence

$$
0 \rightarrow \mathscr{G}_{3} \rightarrow \pi_{3}(H(2), \overline{P L}(2)) \rightarrow \mathscr{H}^{3} \rightarrow 0
$$

We shall prove Theorem 2 in §2 after studying some kinds of knot cobordism groups. Note that $\mathscr{G}_{k}=0$ for even k and the following proposition.

Proposition 3. Suppose $k \geqq 2$ and $k \neq 3$, then the natural homomorphism $\psi_{k}: \mathscr{G}_{k} \rightarrow \mathscr{G}_{k}^{H}$ is an isomorphism. If $k=3$, we have an exact sequence

$$
0 \rightarrow \mathscr{G}_{3} \rightarrow \mathscr{G}_{3}^{H} \rightarrow \mathscr{H}^{3} \rightarrow 0
$$

Remark 4. For the case $n=1$, it is easy to see that $\pi_{k}(H(1), \overline{P L}(1))=$ 0 for any $k \geqq 1$.

In §3 we shall introduce a Δ-set $R N_{2}$ which plays the role of the "structure Δ-set" of the bundle theory of codimension 2 regular neighbourhoods. This bundle theory has been considered by Cappell and Shaneson [2]. Then the Δ-set $R N_{2}$ will be regarded as an intermediate Δ-set between $H(2)$ and $\overline{P L}(2)$.

Theorem 5. We have

$$
\pi_{k}\left(R N_{2}, \overline{P L}(2)\right) \cong \mathscr{G}_{k}
$$

and

$$
\pi_{k}\left(H(2), R N_{2}\right) \cong \begin{cases}0 & (k \geqq 4) \\ \mathscr{H}^{3} & (k=3) \\ \mathscr{K}^{\prime} & (k=2) \\ \mathscr{K}^{\prime} & (k=1)\end{cases}
$$

where \mathscr{K} and \mathscr{K}^{\prime} are the kernel group and the cokernel group of the natural homomorphism $\psi: \mathscr{G}_{1} \rightarrow \mathscr{G}^{A H}$ respectively. (We do not know whether \mathscr{K}^{\prime} or \mathscr{K}^{\prime} are trivial or not.)

1. Proof of Theorem 1. Throughout this paper, we use the same
notation as N. Martin [10]. Let $P L H(n)$ be an intermediate Kan 4 -set of which a typical k-simplex is a block-preserving H-cobordism by $P L$-manifolds between $\Delta^{k} \times S^{n-1}$ and itself (See [10], pp. 200-201.).

Lemma 1.1. For $n \geqq 2$ we have

$$
\pi_{k}(H(n), P L H(n)) \cong\left\{\begin{array}{lll}
0 & (k \neq 3 & \text { and } \quad n+k \neq 4) \\
\mathscr{H}^{3} & (k=3 & \text { or } n+k=4) .
\end{array}\right.
$$

Moreover unless $k=3$, the natural homomorphism

$$
\pi_{k}(H(n), \overline{P L}(n)) \rightarrow \pi_{k}(H(n), P L H(n))
$$

is a zero map.
Proof. (Cf. [10], Lemma 2.) According to Martin [10], any element α of $\pi_{k}(H(n), P L H(n))$ is representable as a homology cobordism S^{n-1} bundle over $4^{k} \times I$ with the total space G, which is a block preserving $P L H$-cobordism over $\partial \Delta^{k} \times I$ and is the product bundle over $\Delta^{k} \times\{0,1\} \cup$ $\Delta^{k-1} \times I$ where Δ^{k-1} is a $(k-1)$-face of $\Delta^{k} . G$ is an oriented connected homology $(n+k)$-manifold with $P L$ boundary. Recall that there is the obstruction theory to resolving the singularities of G to make it a $P L$ manifold [13], [1], [14]. It tells us that there exists a well-defined obstruction element $\lambda(G, \partial G) \in H^{4}\left(G, \partial G\right.$; $\left.\mathscr{H}^{3}\right)$ which vanishes if and only if G is H-cobordant relative the boundary to a $P L$ manifold G^{\prime}. (For the obstruction theory in this form we refer to Proposition in [10] at p. 199.)
N. Martin proved that $\pi_{k}(H(n), P L H(n))=0$ assuming that $k \neq 3$ and $n+k \neq 4$. Indeed under this assumption we have $H^{4}\left(G, \partial G ; \mathscr{H}^{3}\right)=0$, so G is H-cobordant relative the boundary to a $P L H$-cobordism, that is, $\alpha=[G]=0$.

Now we assume that $k=3$ and $n \geqq 2$. Then, given a fixed orientation on $\Delta^{3} \times S^{n-1} \times\{0\}$, the obstruction theory gives an element $\lambda(\alpha)=\lambda(G, \partial G)$ of $\mathscr{H}^{3}=H^{4}\left(G, \partial G ; \mathscr{H}^{3}\right)$. This homomorphism $\lambda: \pi_{3}(H(n), P L H(n)) \rightarrow \mathscr{H}^{3}$ is proved to be surjective because $C \Sigma^{3} \times S^{n-1}$ represents an element of $\pi_{3}(H(n), P L H(n))$ with $\lambda\left(\left[C \Sigma^{3} \times S^{n-1}\right]\right)=\left[\Sigma^{3}\right]$ (See [10], p. 203.). On the other hand, $\lambda(G, \partial G)=0$ implies that G is H-cobordant relative the boundary to a $P L H$-cobordism, so λ is injective, and hence bijective.

In order to complete the proof, it remains to show Lemma in the case when $n+k=4$. Now suppose that $n+k=4$, then the singularities of G to be resolved consist of a finite number of points p_{1}, \cdots, p_{n} in Int G. Let $S t\left(p_{i}, G\right)$ be a star neighbourhood of p_{i} in Int G. Construct a boundary connected sum of them within G along suitable arcs:

$$
\operatorname{St}\left(p_{1}, G\right) \text { に } \cdots \operatorname{A} t\left(p_{r}, G\right)
$$

Denote the resulting manifold by M^{4}. The boundary ∂M^{4}, which is an oriented $P L$ homology 3 -sphere, represents $\lambda([G]) \in \mathscr{H}^{3} \cong H^{4}\left(G, \partial G ; \mathscr{H}^{3}\right)$.

A boundary connected sum $G^{\prime}=G \sharp C \Sigma^{3}$ along a 3 -disk over $\left(\partial \Delta^{k}-\right.$ Δ^{k-1}) $\times I$ gives a new element

$$
\left[G^{\prime}\right] \in \pi_{k}(H(n), P L H(n))
$$

with

$$
\lambda\left(\left[G^{\prime}\right]\right)=\left[\partial M^{4}\right]+[\Sigma] \in \mathscr{H}^{3} \cong H^{4}\left(G^{\prime}, \partial G^{\prime} ; \mathscr{H}^{3}\right)
$$

Therefore, if $n+k=4, \lambda: \pi_{k}(H(n), P L H(n)) \rightarrow \mathscr{H}^{3}$ is surjective and hence bijective, because λ is injective by the obstruction theory.

Suppose now that the element $[G] \in \pi_{k}(H(n), P L H(n))$ is in the image of $\pi_{k}(H(n), \overline{P L}(n)) \rightarrow \pi_{k}(H(n), P L H(n))$ with $n+k=4$. Then the restriction $G \mid \partial\left(\Delta^{k} \times I\right)$ is a $P L$ block S^{n-1}-bundle, and it is extended to a $P L$ block n-disk bundle η over $\partial\left(\Delta^{k} \times I\right)$ with the total space $E(\eta)$. Gluing $E(\eta)$ to G along $\partial G=\partial E(\eta)$, we obtain a homology 4 -sphere $X^{4}=G \cup E(\eta)$. Let $W^{4}=\operatorname{cl}\left[X^{4}-M^{4}\right]$. Then W^{4} is an acyclic $P L$ manifold with $\partial W^{4}=$ $-\partial M^{4}$, so by the definition of \mathscr{H}^{3}, we have $\lambda([G])=\left[\partial M^{4}\right]=0$. Therefore, $[G]=0$ by the bijectivity of λ. This completes the proof of Lemma 1.1.
q.e.d.

Lemma 1.2. (Cf. [10], Lemma 1.) If $k \geqq 1$ and $n \geqq 3, \pi_{k}(P L H(n)$, $\overline{P L}(n))=0$.

Proof. If $k=1, n \geqq 3$, this lemma is an implication of Lemma 1 in [10]. Hereafter, we may suppose that $k \geqq 2$ and $n \geqq 3$. Any element α of $\pi_{k}(P L H(n), \overline{P L}(n))$ may be represented by a $P L H$-cobordism G between $\Delta^{k} \times S^{n-1}$ and itself, which is a $P L$ block-bundle over $\partial \Delta^{k} \times I$ and which is the product bundle over $\Delta^{k-1} \times I$ for a $(k-1)$-face Δ^{k-1} of Δ^{k}. Let $P^{\prime}=(p, 0) \times S^{n-1}$, which is contained in ∂G, where $(p, 0)$ is a point of $\Delta^{k} \times\{0\}$. By pushing P^{\prime} slightly into the interior of G, Int G, we obtain a submanifold P of Int G with a trivial normal bundle. Clearly the inclusion $i: P G G$ induces an isomorphism of cohomology groups with arbitrary coefficients. Let w_{2} denote the 2-nd Stiefel-Whitney class, then $i^{*} w_{2}(G)=$ $w_{2}(P)=0$. This implies $w_{2}(G)=0$, for i^{*} is an isomorphism. Recall here the following lemma due to Kato, who proved it in a more general setting. For the proof, refer to Kato [6].

Lemma 1.3. (Kato [6], Lemma 3.4.) Let G be a compact PL q-manifold, P a connected sub-polyhedron of G with $\pi_{1}(P)=\{1\}$ or Z. Suppose $q \geqq 5, w_{2}(G)=0$ and $H_{i}(G, P ; Z)=0$ for $i \leqq 2$. Then one can attach to Int $G \times\{1\} \subset G \times I$ a finite number of handles of indices $\leqq 3$ to form
a $P L(q+1)$-manifold U and a $P L$-manifold $G^{\prime}=\operatorname{cl}[\partial U-G \times\{0\}]$ such that $\pi_{1}\left(G^{\prime}\right) \cong \pi_{1}(U) \cong \pi_{1}(P)$ and $H_{i}(U, G \times\{0\}) \cong H_{i}\left(U, G^{\prime}\right)=0$ for all $i \geqq 0$.

Remark. For our purpose in this section, it is sufficient to restrict ourselves to the case $\pi_{1}(P)=\{1\}$. However, in §2, we will have to consider the case when $\pi_{1}(P) \cong Z$.

Proof of Lemma 1.2. (Continued) By Lemma 1.3, G is $P L H$ cobordant relative the boundary to a simply-connected $P L$ manifold G^{\prime}. Clearly, G^{\prime} is a $P L h$-cobordism between $\Delta^{k} \times S^{n-1}$ and itself. Let η be the $P L$ block n-disk bundle over $\partial\left(\Delta^{k} \times I\right)$ constructed by conical extension from the block S^{n-1}-bundle $G \mid \partial\left(\Delta^{k} \times I\right)$. As before, let $E(\eta)$ denote the total space of η. Gluing $E(\eta)$ to G^{\prime} along ∂G^{\prime}, we obtain a closed $(n+k)$ manifold $\Sigma=E(\eta) \cup G^{\prime}$. By a simple calculation Σ is a $P L$ homotopy sphere, and so by the h-cobordism theorem it is a natural sphere. (N.B. $n+k \geqq 5$.) The k-sphere $\partial\left(\Delta^{k} \times I\right)$ is regarded as a locally flat submanifold of $E(\eta)$ and hence of Σ. Since the codimension n is greater than or equal to 3 , the sphere pair ($\Sigma, \partial\left(\Delta^{k} \times I\right)$) is $P L$ homeomorphic to the standard sphere pair (Zeeman's unknotting theorem). Therefore, we may find a locally flat $P L$ embedding $e:\left(\Delta^{k} \times I, \partial\left(\Delta^{k} \times I\right)\right) \rightarrow(D, \Sigma)$ extending the inclusion $\partial\left(\Delta^{k} \times I\right) \subsetneq \Sigma$, where D is an $(n+k+1)$-disk bounded by Σ. Let N be a normal $P L$ block disk bundle of $\left(4^{k} \times I\right)$ in D. It is easy to see that the associated $P L$ block S^{n-1}-bundle N_{0} represents the same element as α. However, clearly N_{0} represents the zero element of $\pi_{k}(P L H(n), \overline{P L}(n))$. Thus $\alpha=0$. This completes the proof of Lemma 1.2.
q.e.d.

Proof of Theorem 1. Consider the exact sequence

$$
\begin{aligned}
& \pi_{k}(P L H(n), \overline{P L}(n)) \xrightarrow{i} \pi_{k}(H(n), \overline{P L}(n)) \xrightarrow{j} \pi_{k}(H(n), P L H(n)) \rightarrow \\
& \quad \pi_{k-1}(P L H(n), \overline{P L}(n)) .
\end{aligned}
$$

By Lemma 1.2, the first group is a trivial group for $n \geqq 3, k \geqq 1$. On the other hand, Lemma 1.1 states that $j=0$ for $k \neq 3$. Therefore, we have

$$
\pi_{k}(H(n), \overline{P L}(n))=0 \quad \text { for } \quad n \geqq 3, k \neq 3
$$

For the case $k=3$ and $n \geqq 3$, Lemma 1.2 states that the first group and the last group are trivial. Therefore, we get that $\pi_{3}(H(n), \overline{P L}(n)) \cong$ $\pi_{3}(H(n), P L H(n))$, while the latter group is isomorphic to \mathscr{H}^{3} by Lemma 1.1.

[^1]2. Some kinds of knot cobordism groups and proof of Theorem 2.

In the proof of Lemma 1.2, $\pi_{k}(P L H(n), \overline{P L}(n))$ is considered to be the knot cobordism group of pairs of a $P L k$-sphere locally flatly embeded in a $P L$ homology $(k+n)$-sphere; any element of $\pi_{k}(P L H(n), \overline{P L}(n))$ is representable as a locally flat pair (Σ^{k}, N^{k+n}) consisting of oriented $P L$ k-sphere and oriented $P L$ homology ($k+n$)-sphere. Such pairs ($\sum_{1}^{k}, N_{1}^{k+n}$) and ($\Sigma_{2}^{k}, N_{2}^{k+n}$) represent the same element of $\pi_{k}(P L H(n), \overline{P L}(n))$ if and only if the connected sum ($\Sigma_{1}^{k} \#-\Sigma_{2}^{k}, N_{1}^{k+n} \#-N_{2}^{k+n}$) bounds a locally flat pair of ($k+1$)-disk and $P L$ acyclic $(k+n+1)$-manifold $\left(D^{k+1}, W^{k+n+1}\right)$.

Now we restrict ourselves to the case when $n=2$. (The above observation remains true in this case.)

Lemma 2.1. We have

$$
\pi_{2}(P L H(2), \overline{P L}(2))=\mathscr{G}_{2}^{H}=0
$$

More precisely, let $\left(M^{2}, N^{4}\right)$ be any representative of an element of $\pi_{2}(P L H(2), \overline{P L}(2))$ or of \mathscr{G}_{2}^{H}, and let W^{5} be a contractible manifold bounded by N^{4}. (Such W always exists.) Then, there exists a 3-disk D^{3} which is embedded in W^{5} locally flatly and such that $\partial D^{3}=M^{2}$.

Proof of Lemma 2.1. The proof is essentially the same as that of THEOREME III. 6 in [7]. The argument of pp. 265-266 in [7] can be applied to our situation without any essential change: Let K^{3} be a locally flat oriented submanifold of N^{4} such that $\partial K^{3}=M^{2}$, and let D^{3} be a 3 -disk. We construct an orientable closed 3 -manifold L^{3} from the disjoint union $K^{3} \cup D^{3}$ by identifying the boundaries. L^{3} bounds a parallelizable 4-manifold P^{4} which admits a handle-body decomposition of the form

$$
P^{4}=L^{3} \times I+\sum_{i}\left(\varphi_{i}^{1}\right)+\sum_{j}\left(\varphi_{j}^{2}\right)+\sum_{k}\left(\varphi_{k}^{3}\right)+\left(\varphi^{4}\right) .
$$

We may assume that $\varphi_{i}^{1}, \varphi_{j}^{2}, \varphi_{k}^{3}$ are disjoint from $D^{3} \times I \subset L^{3} \times I$, and we obtain a manifold with corners

$$
P_{0}^{4}=K^{3} \times I+\sum_{i}\left(\varphi_{i}^{1}\right)+\sum_{j}\left(\varphi_{j}^{2}\right)+\sum_{k}\left(\varphi_{k}^{3}\right) .
$$

Let X_{p} denote the $s u b$-handlebody of P_{0}^{4} consisting of handles of indices $\leqq p$. By the general position argument, the embedding $K^{3} \rightarrow N^{4}$ can be extended to the embedding $X_{2} \rightarrow W^{5}$. The boundary ∂X_{2} is the union of $K^{3}, \partial K^{3} \times I$ and Y^{3}. Here Y^{3} is $P L$ homeomorphic with the connected sum of finite number of copies of $S^{1} \times S^{2}$ minus a 3 -disk. We may assume that $\partial Y^{3}=M^{2}$. Again by the general position argument, it is shown that the spherical modification starting with the canonical system of generators of $\pi_{1}\left(Y^{3}\right)$ is realizable as a modification within W^{5}. After the modification, we obtain a desired 3 -disk D^{3} in W^{5} such that $\partial D^{3}=M^{2}$. This completes
the proof of Lemma 2.1.
q.e.d.

Lemma 2.2. If $k \geqq 2$, we have

$$
\pi_{k}(P L H(2), \overline{P L}(2)) \cong \mathscr{G}_{k} .
$$

We consider here $\pi_{k}(P L H(2), \overline{P L}(2))$ to be the knot cobordism group of pairs of $P L k$-spheres embedded locally flatly in $P L$ homology $(k+2)$ spheres. Take the natural homomorphisms, $\varphi_{k}: \mathscr{G}_{k} \rightarrow \pi_{k}(P L H(2), \overline{P L}(2))$ and $\tau_{k}: \pi_{k}(P L H(2), \overline{P L}(2)) \rightarrow \mathscr{G}_{k}^{H}$. Remark that $\psi_{k}=\tau_{k} \circ \varphi_{k}$. Now we prove Lemma 2.2. and Proposition 3 of § 0 simultaneously.

Proof of Lemma 2.2 and Proposition 3. Since $\mathscr{G}_{2}=\pi_{2}(P L H(2)$, $\overline{P L}(2))=\mathscr{G}_{2}^{H}=0$ by Lemma 2.1., we may assume that $k \geqq 3$. The proof is devided into several steps.

1) If $k \geqq 3, \psi_{k}$ is injective and hence so is φ_{k}. Since $\mathscr{G}_{k} \cong 0$ for even k [7], we may assume $k=2 n-1$. Let ($\sum^{2 n-1}, S^{2 n+1}$) be a representative of an element of $\mathscr{G}_{2 n-1}$ which belongs to the kernel of $\psi_{2 n-1}$. Then it bounds a locally flat pair ($V^{2 n}, W^{2 n+2}$) of acyclic manifolds. Let $K^{2 n}$ be the oriented submanifold of $S^{2 n+1}$ bounded by $\Sigma^{2 n-1}$, and let $L^{2 n}$ be the manifold obtained from the union $K^{2 n} \cup V^{2 n}$ by identifying the boundaries. $L^{2 n}$ bounds a submanifold $Y^{2 n+1}$ of $W^{2 n+2}$ by the Pon-trjagin-Thom construction. Let $\theta: H_{n}\left(K^{2 n}\right) \times H_{n}\left(K^{2 n}\right) \rightarrow Z$ be the pairing defined by Levine [8] from which the Seifert matrix A is defined. Then the same argument as in § 8 of [8, pp. 232-233] works equally well in our situation, and one can prove that θ vanishes on the subspace Ker (inclusion ${ }_{*}: H_{n}\left(K^{2 n}\right) \rightarrow H_{n}\left(Y^{2 n+1}\right)$), and that the subspace has half a rank of $H_{n}\left(K^{2 n}\right)$. Therefore, the associated Seifert matrix A is null-cobordant in the sense of Levine, and by Lemmas 4 and 5 in [8], ($\sum^{2 n-1}, S^{2 n+1}$) is null-cobordant in the usual sense.

Remark. Step 1) may be proven more formally by making use of the results of [11].
2) If $k \geqq 4, \tau_{k}$ is surjective. Let (M^{k}, N^{k+2}) be a representative of an element of \mathscr{G}_{k}^{H}. Since $k \geqq 4, M^{k}$ is $P L H$-cobordant to a natural k sphere Σ^{k}, so by virtue of the cobordism extension property, M^{k} itself may be assumed to be the k-sphere Σ^{k}.
3) If $k \geqq 3$, φ_{k} is surjective. Let U be the regular neighbourhood of Σ^{k} in N^{k+2}, and E the exterior of U in $N^{k+2} ; E=\operatorname{cl}\left[N^{k+2}-\right.$ $U]$. By Kato's lemma (Lemma 1.3), E is $P L H$-cobordant relative the boundary to a $P L$-manifold E^{\prime} with $\pi_{1}\left(E^{\prime}\right) \cong Z$. Identifying the boundaries, we obtain a $P L$ homotopy $(k+2)$-sphere $E^{\prime} \cup U$ which is, by the h cobordism theorem, a natural sphere S^{k+2}. Hence $\left(\Sigma^{k}, N^{k+2}\right)=\varphi_{k}\left(\left[\Sigma^{k}, S^{k+2}\right]\right)$.

Remark that $\psi_{k}=\tau_{k} \circ \varphi_{k}$ is surjective for $k \geqq 4$ by 2) and 3).
4) There is an exact sequence: $0 \rightarrow \mathscr{G}_{3} \xrightarrow{\psi_{3}} \mathscr{G}_{3}^{H} \rightarrow \mathscr{H}^{3} \rightarrow 0$. A homomorphism $\sigma: \mathscr{G}_{3}^{H} \rightarrow \mathscr{H}^{3}$ is defined by sending an element $\left[\left(M^{3}, N^{5}\right)\right] \in \mathscr{G}_{3}^{H}$ to the element of \mathscr{H}^{3} represented by M^{3}. From Step 1) and the arguments in 2) and 3), the exactness of the sequence $0 \rightarrow \mathscr{G}_{3} \xrightarrow{\psi_{3}} \mathscr{G}_{3}^{H} \rightarrow \mathscr{H}^{3}$ follows immediately. However, any homology 3 -sphere can be embedded in S^{5} (See for example [4].), so σ is surjective. The proof of 4) is completed. Lemma 2.2 follows from 1) and 3), and Proposition 3 follows from 1), 2), 3) and 4).
q.e.d.

For the case $k=1$, since a $P L$ homology 1 -sphere is an 1 -sphere and a $P L$ acyclic 2 -manifold is a 2 -disk, the knot cobordism interpretation of $\pi_{1}(P L H(2), \overline{P L}(2))$ coincides with \mathscr{G}_{1}^{H}, that is,

Lemma 2.3.

$$
\pi_{1}(P L H(2), \overline{P L}(2)) \cong \mathscr{G}_{1}^{H}
$$

Now we are in a position to prove Theorem 2.
Proof of Theorem 2. We consider the homotopy long exact sequence of a triple, $(H(2), P L H(2), \overline{P L}(2))$.

1) First for $k \geqq 4$, since $\pi_{k}(H(2), P L H(2))=0$ by Lemma 1.1, we get an exact sequence

$$
0 \rightarrow \pi_{k}(P L H(2), \overline{P L}(2)) \rightarrow \pi_{k}(H(2), \overline{P L}(2)) \rightarrow 0
$$

Therefore, $\pi_{k}(H(2), \overline{P L}(2)) \cong \mathscr{G}_{k}$ for $k \geqq 4$ by Lemma 2.2.
2) For the case $k=3$, since $\pi_{4}(H(2), P L H(2))=0$ and $\pi_{3}(H(2), P L H(2)) \cong$ \mathscr{H}^{3} by Lemma 1.1 and $\pi_{2}(P L H(2), \overline{P L}(2))=0$ by Lemma 2.1, we get an exact sequence

$$
0 \rightarrow \pi_{3}(P L H(2), \overline{P L}(2)) \rightarrow \pi_{3}(H(2), \overline{P L}(2)) \rightarrow \mathscr{H}^{3} \rightarrow 0
$$

Replacing $\pi_{3}(P L H(2), \overline{P L}(2))$ with \mathscr{G}_{3} by virtue of Lemma 2.2, we get the desired exact sequence

$$
0 \rightarrow \mathscr{G}_{3} \rightarrow \pi_{3}(H(2), \overline{P L}(2)) \rightarrow \mathscr{H}^{3} \rightarrow 0
$$

3) For $k=2$, we consider the following exact sequence

$$
\pi_{2}(P L H(2), \overline{P L}(2)) \xrightarrow{i} \pi_{2}(H(2), \overline{P L}(2)) \xrightarrow{j} \pi_{2}(H(2), P L H(2)) .
$$

Then, since the first group is a trivial group because of Lemma 2.1 and j is a zero map by Lemma 1.1, we get that

$$
\pi_{2}(H(2), \overline{P L}(2))=0
$$

4) For $k=1$, by Lemma 1.1 and Lemma 2.3 we get a following
commutative diagram of exact sequences

$$
\begin{aligned}
0 \rightarrow \pi_{2}(H(2), P L H(2)) & \rightarrow \pi_{1}(P L H(2), \overline{P L}(2)) \rightarrow \pi_{1}(H(2), \overline{P L}(2)) \rightarrow 0 \\
& \lambda \downarrow \cong \\
0 & \mathscr{H}^{3} \longrightarrow i \cong \\
& i \cong \mathscr{G}_{1}^{H} .
\end{aligned}
$$

Since $\lambda\left(\left[\Delta^{2} \times I \times S^{1} \boxminus C \Sigma\right]\right)=[\Sigma]$, we know that $i([\Sigma])$ is the class of the trivial knot connected summed with Σ in the ambient space. We define a map $j: \mathscr{G}_{1}^{H} \rightarrow \mathscr{C}^{A H}$ by $j\left(\Sigma^{1} \subset \Sigma^{3}\right)=\Sigma^{1} \subset \Sigma^{3} \#-\Sigma^{3}$, then, $0 \rightarrow \mathscr{H}^{3} \xrightarrow{i} \mathscr{\mathscr { G }}_{1}^{H} \xrightarrow{j} \mathscr{G}^{A H} \rightarrow$ 0 is an exact sequence, because $j \circ i$ is clearly a zero map and $\Sigma^{1} \subset \Sigma^{3} \#-\Sigma^{3}=0$ means that $\left[\Sigma^{1} \subset \Sigma^{3}\right]-i\left(\left[\Sigma^{3}\right]\right)=0$.

Therefore, there exists a natural homomorphism: $\pi_{1}(H(2), \overline{P L}(2)) \rightarrow$ $\mathscr{G}^{4 H}$ which is seen to be an isomorphism by the 5 -Lemma.

Note that the natural inclusion $i_{0}: \mathscr{G}^{A H} \rightarrow \mathscr{G}_{1}^{H}$ makes the above sequence split because $j \circ i_{0}=i d$. q.e.d.
3. Bundle theory for codimension two regular neighbourhoods. In this section, we will briefly describe a block-bundle theory for codimension two regular neighbourhoods. A definition of a Δ-set $R N_{2}$ will be given, and the relationship between $R N_{2}$ and $H(2)$ will be studied. $R N_{2}$ plays the role of the structure Δ-set for the block-bundle theory. (Cf. Cappell and Shaneson [2].)

The definition of the block-bundle is quite analogous to the usual one given in [5] or [12].

Let K be a $P L$ cell complex.
Definition 3.1. An $R N_{2}$-bundle ξ over K consists of a polyhedron $E(\xi)$ called the total space, the base complex K and a $P L$ embedding $c:|K| \rightarrow E(\xi)$ called a cross section. The following conditions are to be satisfied:
(i) For each n-cell $\sigma_{i} \in K$, there exists an ($n+2$)-ball $\beta_{i} \subset E(\xi)$ such that $\iota\left(\sigma_{i}, \partial \sigma_{i}\right) \subset\left(\beta_{i}, \partial \beta_{i}\right)$, and such that the restriction $\iota \mid\left(\sigma_{i}, \partial \sigma_{i}\right):\left(\sigma_{i}, \partial \sigma_{i}\right) \rightarrow$ ($\beta_{i}, \partial \beta_{i}$) is a proper $P L$ embedding. (N.B. ι is not necessarily locally flat.) β_{i} is called the block over σ_{i}.
(ii) $E(\xi)$ is the union of the blocks β_{i}.
(iii) The interiors of the blocks are disjoint.
(iv) Let $L=\sigma_{i} \cap \sigma_{j}$, then $\beta_{i} \cap \beta_{j}$ is the union of the blocks over the cells of L.

Definition 3.2. Two $R N_{2}$-bundles ξ, η over K are isomorphic if there exists a $P L$ homeomorphism $h: E(\xi) \rightarrow E(\eta)$ such that $h \circ \iota_{\xi}=\iota_{\eta}$, and such that for each cell $\sigma_{i} \in K, h\left(\beta_{i}(\xi)\right)=\beta_{i}(\eta)$. Notation: $\xi \cong \eta$ or $h: \xi \cong \eta$.

Definition 3.3. Two $R N_{2}$-bundles ξ, η over K are concordant if there exists an $R N_{2}$-bundle ζ over the cell complex $K \times I$ such that $\zeta \mid K \times$ $\{0\} \cong \xi, \zeta \mid K \times\{1\} \cong \eta$. Notation: $\xi \sim \eta$ or $\zeta: \xi \sim \eta$.

The "isomorphism" and the "concordance" relations are obviously equivalence relations. Let $C(K)$ denote the set of concordance classes of $R N_{2}$-bundles over K. All of our definitions can be carried over in the category of Δ-sets, and we can define the notion of induced bundles. Then $C(K)$ is a contravariant homotopy functor from the category of Δ-sets to the category of sets. It is proved to be representable, and one can construct the classifying space $B R N_{2}$ and the natural equivalence of functors $T:\left[\quad, B R N_{2}\right] \rightarrow C(\quad)$. (Cf. [9], [12].)

The proof of the following proposition is not difficult.
Proposition 3.4. Let M be an m-manifold properly embedded in an ($m+2$)-manifold Q. Suppose M and Q are triangulated so that M is a full subcomplex of Q. Let E be the derived neighbourhood of M in Q. (Note that $E \cap \partial Q$ is the derived neighbourhood of ∂M in ∂Q. .) Then E is the total space of an $R N_{2}$-bundle ν over the dual cell complex K of M. In fact the block over a dual cell $D(\sigma, M)(o r ~ D(\sigma, \partial M))$ is the dual cell $D(\sigma, Q)$ (or $D(\sigma, \partial Q)$), where σ is a simplex of M. The cross section c: $M \rightarrow E$ is defined by the inclusion. Moreover, the concordance class of ν depends only on the concordance class of the embedding of M in Q.

Definition 3.5. The $R N_{2}$-bundle ν constructed in Proposition 3.4 is called a normal $R N_{2}$-bundle of M in Q.

Now we will construct a Δ-set $R N_{2}$: A typical k-simplex of $R N_{2}$ is an $R N_{2}$-bundle ξ over the cell complex $\Delta^{k} \times I$ which over $\Delta^{k} \times\{0,1\} \cup \Delta^{k-1} \times I$ is the product bundle. It is easy to see that $R N_{2}$ is a Kan Δ-set and is considered to be the fiber of the universal principal $R N_{2}$-bundle over $B R N_{2}$.

By considering the "associated S^{1}-bundle" of ξ as a homology cobordism bundle with the fiber S^{1}, we have a Δ-map $i: R N_{2} \rightarrow H(2)$. With this map i, we regard $R N_{2}$ as a subcomplex of $H(2)$.

We are now in a position to prove Theorem 5. Proof of that $\pi_{k}\left(R N_{2}\right.$, $\overline{P L}(2)) \cong \mathscr{G}_{k}$.

An element $\alpha \in \pi_{k}\left(R N_{2}, \overline{P L}(2)\right)$ is represented by an $R N_{2}$ disk bundle with total space $E(\xi)$ over $\Delta^{k} \times I$ which is a $P L$ block disk bundle over $\partial \Delta^{k} \times I$ and which is the product bundle over $\Delta^{k} \times\{0,1\} \cup \Delta^{k-1} \times I$. Let η be the $P L$ block bundle $\xi \mid \partial\left(\Delta^{k} \times I\right)$ and $\Sigma^{k} \subset E(\eta)$ be the section of this $P L$ block disk bundle. Since $E(\xi)$ is a $(k+3)$-disk, $\partial E(\xi)$ is a $(k+2)$ sphere. Therefore, we get a knot $\Sigma^{k} \subset S^{k+2}=\partial E(\xi)$. (The construction of the ambient sphere is the same as in the case of $\pi_{k}(P L H(2), \overline{P L}(2))$ if
we use an $R N_{2}$ sphere bundle as a representative of $\pi_{k}\left(R N_{2}, \overline{P L}(2)\right)$.)
Clearly a concordance between the representatives gives a concordance between the induced knots. So we get a map: $\pi_{k}\left(R N_{2}, \overline{P L}(2)\right) \rightarrow \mathscr{G}_{k}$, which is easily seen to be a homomorphism. Assume that the induced knot $\Sigma^{k} \subset S^{k+2}$ is cobordant to zero, that is, there exists a locally flat disk pair $D^{k+1} \subset$ D^{k+3} which bounds the knot $\Sigma^{k} \subset S^{k+2}$. Take a sufficiently fine subdivision of the cone $C D^{k+1} \subset C D^{k+3}$ so that $C D^{k+1}$ is a full subcomplex of $C D^{k+3}$. Then we get a normal $R N_{2}$ disk bundle over the dual cell complex of $C D^{k+1}$ by Proposition 3.4. By an appropriate amalgamation, we get a concordance between a normal $R N_{2}$ disk bundle of $C \Sigma^{k}$ in $C S^{k+2}$ which is concordant to $E(\xi)$ and a normal $P L$ block disk bundle of D^{k+1} in D^{k+3}. q.e.d.

Proof of the latter part of Theorem 5 . We consider the homotopy long exact sequence of the triple ($\left.H(2), R N_{2}, \overline{P L}(2)\right)$. Then, by taking account of the following commutative diagram and noting that $\mathscr{G}_{2}=\pi_{2}(H(2)$, $\overline{P L}(2))=0$, we get easily the results.

The only rather non-trivial part is the surjectivity of the map: $\pi_{1}(H(2)$, $\overline{P L}(2)) \rightarrow \pi_{1}\left(H(2), R N_{2}\right)$. But since any tame embedding of S^{1} into $P L s$ manifold is locally flat, any element of $\pi_{1}\left(H(2), R N_{2}\right)$ has an element of $\mathscr{G}^{A H}=\pi_{1}(H(2), \overline{P L}(2))$ as its representative.
q.e.d.

References

[1] M. M. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Inventiones Math. 10 (1970), 239-250.
[2] S. E. Cappell and J. L. Shaneson, Nonlocally flat embeddings, smoothings, and group actions, Bull. Amer. Math. Soc. 79 (1973), 577-582.
[3] R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[4] M. W. Hirsch, The imbedding of bounding manifolds in euclidean space, Ann. of Math. (2) 74 (1961), 494-497.
[.5] M. Kato, Combinatorial prebundles, Part I, Osaka J. Math. 4 (1967), 289-303.
[6] M. Kato, Embedding spheres and balls in codimension § 2, Inventiones Math. 10 (1970), 89-107.
[7] M. A. Kervaire, Les noeuds de dimensions supérieures, Bull Soc. Math. France 93 (1965), 225-271.
[8] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
[9] N. Martin and C. R. F. Maunder, Homology cobordism bundles, Topology 10 (1971), 93-110.
[10] N. Martin, On the difference between homology and piecewise-linear bundles, J. London Math. Soc. 6 (1973), 197-204.
[11] Y. Matsumoto, Knot cobordism groups and surgery in codimension two, J. Fac. Sci. Univ. Tokyo, sect IA $20 \mathrm{n}^{\circ} 2$ (1973), 253-317.
[12] C. P. Rourke and B. J. Sanderson, Block bundles I, Ann. of Math. 87 (1968), 1-28.
[13] H. Sato, Constructing manifolds by homotopy equivalences I, An obstruction to constructing $P L$-manifolds from homology manifolds, Ann. Inst. Fourier, 22, 1 (1972), 271-286.
[14] D. Sullivan, Geometric periodicity and the invariants of manifolds, Lecture Notes in Math. Springer Verlag 197, 44-75.
T. Matumoto

Department of Mathematics
Faculty of Science
Kyoto University
Y. Matsumoto

Department of Mathematics
College of General Education
University of Tokyo

[^0]: 1) Partially supported by Sakkokai Foundation.
 2) Partially supported by Fūjukai Foundation.
[^1]: q.e.d.

