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0. Introduction and statement of results. N. Martin and C. R. F.
Maunder [9] developed the theory of homology cobordism bundles which
is an adequate bundle theory in the category of polyhedral homology
manifolds. They introduced certain J-sets H{n) which play the role of
"structure groups" in the bundle theory. A typical λ -simplex of H{n) is
a homology cobordism bundle-automorphism of the product bundle Δk x
Sn~\ or equivalently, a homology cobordism bundle over Δk x I which is
the product bundle over Δk x {0, 1}. According to N. Martin [10], the

structure groups PL(n) of PL w-block bundles are homotopically equivalent
to sub-J-sets PL(n) of H(n). By definition a typical Λ-simplex of PL(n)
is a PL w-block bundle over Ak x I which is the product bundle over j k x
{0, 1}.

Our main result is the following

THEOREM 1. If n^ 3, we have

πk(H(n), PL(n)) = j

where £ίf* is the abelian group of PL H-cobordism classes of oriented PL
homology 3-spheres.

This improves the result of [10] in the unstable ranges. Theorem 1
will be proved in §1.

Now for the case n = 2, let g^ be the ordinary knot cobordism group
of PL (k, k + 2)-sphere pairs and let &* be the knot cobordism group of
PL homology (k, k + 2)-sphere pairs; any element of <&ξ is represented
by a locally flat pair (ikP, Nk+2) consisting of oriented PL homology k- and
(k + 2)-spheres. Such pairs {Mk, Nk+2) and (Mk

9 Nk+2) represent the same
element of gff if and only if the connected sum (Afft - M%, Ni+*% - Nt2)
bounds a locally flat pair of acyclic manifolds (Vk+\ Wk+3). Also %?ΛH

denotes the subgroup of &ξ whose element is represented by a pair (M\
x> Partially supported by Sakkokai Foundation.
2> Partially supported by Fΰjukai Foundation.
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N3) such that N* bounds an acyclic 4-manifold. It is easy to show that
0 —> ̂ AH —> &ΊH —> £ίfz —* 0 is a split exact sequence. Then our result
for n = 2 is stated as follows.

THEOREM 2. We have

(S?> (k ̂  4)

πk(H(2), PL(2)) s 0 (fc = 2)

(k = l)

and for k = 3, there is an exact sequence

0-+&s-> ττ8(i5Γ(2)f FL(2)) — J T 3 ^ 0 .

We shall prove Theorem 2 in §2 after studying some kinds of knot
cobordism groups. Note that ^k = 0 for even k and the following pro-
position.

PROPOSITION 3. Suppose k ^ 2 αwc? Λ ^ 3, £Aew £λe natural homo-
morphism ψk: &k —* Ŝ /f is cm isomorphism. If k = 3, we Λαt e α
sequence

REMARK 4. i^or ίλe case w = 1, iί is eaŝ / ίo see ίΛ,aί 7Γfc(iϊ(l), PL(1)) =
0 /or any k Ξ> 1.

In §3 we shall introduce a z/-set RN2 which plays the role of the
"structure J-set" of the bundle theory of codimension 2 regular neighbour-
hoods. This bundle theory has been considered by Cappell and Shaneson
[2]. Then the J-set RN2 will be regarded as an intermediate J-set between
H(2) and 7L(2).

THEOREM 5. We have

πk(RN2, PL(2)) s

and
0 (k ^ 4)

(k = 3)

' (k = 1) ,

where 3ίΓ and J ^ ' are the kernel group and the cokernel group of the
natural homomorphism ψ: &x —• <&AH respectively. {We do not know
whether 3ίΓ or J%Γ' are trivial or not.)

1. Proof of Theorem 1. Throughout this paper, we use the same
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notation as N. Martin [10]. Let PLH(n) be an intermediate Kan J-set of
which a typical Λ-simplex is a block-preserving if-cobordism by PL-mani-
folds between Δk x Sn~ι and itself (See [10], pp. 200-201.).

LEMMA 1.1. For n ^ 2 we have

πk{H{n\ PLH{n)) ~
0 (k Φ 3 and n + k Φ 4)

(& = 3 or n + k = 4).

Moreover unless k = 3, £/&β natural homomorphism

πk(H(n), PL(n))~>πk(H(n), PLH(n))

is a zero map.

PROOF. (Cf. [10], Lemma 2.) According to Martin [10], any element
a of πk(H(ri), PLH(n)) is representable as a homology cobordism S71"1-
bundle over Δk x I with the total space G, which is a block preserving
PL iϊ-cobordism over dΔk x / and is the product bundle over Δk x {0, 1} U
Δk~ι x I where Δk~ι is a (k — l)-face of Δk. G is an oriented connected
homology (n + &)-manifold with PL boundary. Recall that there is the
obstruction theory to resolving the singularities of G to make it a PL
manifold [13], [1], [14]. It tells us that there exists a well-defined
obstruction element λ(G, dG) e H\Gf dG; έ%f%) which vanishes if and only
if G is ίf-cobordant relative the boundary to a PL manifold G\ (For
the obstruction theory in this form we refer to Proposition in [10] at
p. 199.)

N. Martin proved that πk(H(ri), PLH(n)) = 0 assuming that k Φ 3 and
n + k Φ 4. Indeed under this assumption we have H\G, dG; J%f*) = 0, so
G is ίZ-cobordant relative the boundary to a PL fZ-cobordism, that is,
a = [G]= 0.

Now we assume that k = 3 and n ;> 2. Then, given a fixed orientation
on Δz x S11'1 x {0}, the obstruction theory gives an element λ(α) = λ(G, dG)
of <^T3 - H\G, dG; ^T 3). This homomorphism λ: π%{H(n\ PLH(n)) ~* £ίf%

is proved to be surjective because CΣZ x S""1 represents an element of
πB(H(n), PLH(n)) with X([CΣ* x S*"1]) = [̂ 3] (See [10], p. 203.). On the
other hand, λ(G, dG) = 0 implies that G is fZ-cobordant relative the bound-
ary to a PL ίZ-cobordism, so λ is injective, and hence bijective.

In order to complete the proof, it remains to show Lemma in the case
when n + k = 4. Now suppose that n + k = 4, then the singularities of
G to be resolved consist of a finite number of points plf •••, pn in IntG.
Let St(pi9 G) be a star neighbourhood of pt in Int G. Construct a boundary
connected sum of them within G along suitable arcs:
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Denote the resulting manifold by M4. The boundary dM4, which is an
oriented PL homology 3-sphere, represents λ([G]) 6 ^ T 3 = H4(G, dG; 3ί?z).

A boundary connected sum Gf = G%CΣ3 along a 3-disk over {dΔk —
J*"1) x I gives a new element

[G'] e πk(H(n), PLH(n))
with

λ([G']) = [dM4] + [Σ] e J T 3 = iϊ4(G', 3G'; <5T3) .

Therefore, if n + k = 4, λ: πk(H(ri), PLH(n)) —> <^ 3 is surjective and hence
bijective, because λ is injective by the obstruction theory.

Suppose now that the element [G] e πk(H(n), PLH{n)) is in the image of
πk{H(n\ ~PL{n)) — πk{H{n\ PLH(n)) with n + k = 4. Then the restriction
Cr|d(z/fc x I) is a PL block Sίl~1-bundle, and it is extended to a PL block
w-disk bundle η over d(jfc x /) with the total space E{rj). Gluing E(rf)
to G along dG = dE{rj), we obtain a homology 4-sphere X* = G U -E'(̂ ).
Let W* = d[X4 - M4]. Then W4 is an acyclic PL manifold with dW4 =
- 3ikf4, so by the definition of Jg^3, we have λ([G]) = [31ί4] = 0. There-
fore, [G] = 0 by the bijectivity of λ. This completes the proof of Lemma
1.1. q.e.d.

LEMMA 1.2. (Cf. [10], Lemma 1.) If k ^ 1 and n ^ 3, πk(PLH(n),
PL(n)) = 0.

PROOF. If & = 1, n ^ 3, this lemma is an implication of Lemma 1 in
[10]. Hereafter, we may suppose that k ^ 2 and n ^ 3. Any element
α: of πk(PLH(ri), PL(n)) may be represented by a PL iϊ-cobordism G between
Ak x Sn - 1 and itself, which is a PL block-bundle over BAk x I and which
is the product bundle over Δk~ι x I for a (fc — l)-face J f c - 1 of Δk. Let
P' = (py 0) x S*"S which is contained in dG, where (p, 0) is a point of
Δk x {0}. By pushing P' slightly into the interior of G, Int G, we obtain
a submanifold P of Int G with a trivial normal bundle. Clearly the inclu-
sion i: PQG induces an isomorphism of cohomology groups with arbitrary
coefficients. Let w2 denote the 2-nd Stiefel-Whitney class, then i*w2(G) =
w2(P) = 0. This implies w2(G) = 0, for i* is an isomorphism. Recall here
the following lemma due to Kato, who proved it in a more general setting.
For the proof, refer to Kato [6].

LEMMA 1.3. (Kato [6], Lemma 3.4.) Let G be a compact PL q-mani-
fold, P a connected sub-polyhedron of G with π^P) = {1} or Z. Suppose
q ;> 5, w2(G) = 0 and H^G, P; Z) = 0 for ί ^ 2. Then one can attach to
Int G x {1} c G x / a finite number of handles of indices ^ 3 to form
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a PL (q + l)-manifold U and a PL q-manifold G' = cl[dU - G x {0}]
such that π,{Gf) - π,(U) ~ π,{P) and H^U, G x {0}) = H^U, G') = 0 for
all i ^ 0.

REMARK. For our purpose in this section, it is sufficient to restrict
ourselves to the case π^P) = {1}. However, in §2, we will have to consider
the case when π^P) = Z.

PROOF OF LEMMA 1.2. (Continued) By Lemma 1.3, G is PL H-
cobordant relative the boundary to a simply-connected PL manifold G'.
Clearly, G' is a PL ft-cobordism between Δk x Sn~x and itself. Let η be
the PL block %-disk bundle over d(Δk x I) constructed by conical extension
from the block ^"'-bundle G\d{Δk x I). As before, let E{η) denote the
total space of η. Gluing E{ή) to G' along 3G', we obtain a closed {n + k)-
manifold Σ = E{rj) u G'. By a simple calculation Σ is a PL homotopy
sphere, and so by the ft-cobordism theorem it is a natural sphere. (N.B.
n + k ^ 5.) The ά-sphere d(Δk x I) is regarded as a locally flat submani-
fold of E(η) and hence of Σ. Since the codimension n is greater than or
equal to 3, the sphere pair (Σ, d(Δk x /)) is PL homeomorphic to the
standard sphere pair (Zeeman's unknotting theorem). Therefore, we may
find a locally flat PL embedding e: (Δk x I, d(Δk x I)) — (D, Σ) extending
the inclusion d(Δk x I)QΣ, where D is an (n + k + l)-disk bounded by
Σ. Let N be a normal PL block disk bundle of (Δk x /) in D. It is
easy to see that the associated PL block S^-bundle JV0 represents the
same element as a. However, clearly No represents the zero element of
πk(PLH(ri), Ί?L(n)). Thus a = 0. This completes the proof of Lemma 1.2.

q.e.d.

PROOF OF THEOREM 1. Consider the exact sequence

πk{PLH{n), PL(n)) - U πk(H(n), PL{n)) -^-> πk(H(n), PLH{n)) —

π^iPLHin), PL(n)) .

By Lemma 1.2, the first group is a trivial group for n ^ 3, k ^ 1. On
the other hand, Lemma 1.1 states that j = 0 for k Φ 3. Therefore, we
have

πk{H{n\ PL(n)) = 0 for n ^ 3, k Φ 3 .

For the case k = 3 and n ^ 3, Lemma 1.2 states that the first group
and the last group are trivial. Therefore, we get that πd(H(ri), TL(n)) =
π3(H(ri), PLH(n)), while the latter group is isomorphic to £ίfz by Lemma
1.1. q.e.d.

2. Some kinds of knot cobordism groups and proof of Theorem 2.
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In the proof of Lemma 1.2, πk(PLH(ri), PL(n)) is considered to be the
knot cobordism group of pairs of a PL fc-sphere locally flatly embeded
in a PL homology (k + w)-sphere; any element of πk(PLH(ri), PL(n)) is
representable as a locally flat pair (Σk, Nk+n) consisting of oriented PL
λ -sphere and oriented PL homology (k + w)-sphere. Such pairs (Σk, Nk+n)
and (Σ2f Nk+n) represent the same element of πk(PLH(n), PL(n)) if and only
if the connected sum (Jfft - Σ\, Nf+n# - N?+n) bounds a locally flat pair
of (k + l)-disk and PL acyclic (k + n + l)-manifold (Dk+\ Wk+n+1).

Now we restrict ourselves to the case when n = 2. (The above
observation remains true in this case.)

LEMMA 2.1. We have

π2{PLH{2\ PL(2)) - gf f - 0 .

More precisely, let (M2, iV4) be any representative of an element of
π2(PLH(2), PL(2)) or of S f̂, and let Wδ be a contractible manifold bounded
by N\ (Such W always exists.) Then, there exists a Z-disk Dz which
is embedded in Wδ locally flatly and such that 3D* = M2.

PROOF OF LEMMA 2.1. The proof is essentially the same as that of
THέORδME III. 6 in [7]. The argument of pp. 265-266 in [7] can be
applied to our situation without any essential change: Let Ks be a locally
flat oriented submanifold of iV4 such that dKz = M2, and let Dz be a
3-disk. We construct an orientable closed 3-manifold L3 from the disjoint
union K3 U D5 by identifying the boundaries. L3 bounds a parallelizable
4-manifold P4 which admits a handle-body decomposition of the form

P4 = U x 1+ Σ ( ^ ) + Σ(<P? ) + Σ ( ^ ) +

We may assume that φ\, φ% φ\ are disjoint from Dz x / cz L3 x I, and we
obtain a manifold with corners

P0

4 - K* X ί + Σ ( ? ί ) + Σ(<P;) + Σ K )
i j k

Let Xp denote the swδ-handlebody of P0

4 consisting of handles of indices
^ p. By the general position argument, the embedding Ks —• N* can be
extended to the embedding X2 -> Wδ. The boundary dX2 is the union of
ϋΓ3, dKz x / and YB. Here Yz is PL homeomorphic with the connected
sum of finite number of copies of S1 x S2 minus a 3-disk. We may assume
that dY3 = M2. Again by the general position argument, it is shown that
the spherical modification starting with the canonical system of generators
of π^Y*) is realizable as a modification within W6. After the modification,
we obtain a desired 3-disk D3 in W6 such that 3D3 = M2. This completes



HOMOLOGY COBORDISM 6 3

the proof of Lemma 2.1. q.e.d.

LEMMA 2.2. 1/ k ^ 2, we have

πk(PLH(2),PL(2))^S?k.

We consider here πk(PLH(2), ΎL{2)) to be the knot cobordism group
of pairs of PL Zc-spheres embedded locally flatly in PL homology (k + 2)-
spheres. Take the natural homomorphisms, φk: &k—+ πk(PLH(2),ΨL(2))
and τk: πk(PLH(2), ~PL{2)) -> <&ξ. Remark that ψk = τko φk. Now we
prove Lemma 2.2. and Proposition 3 of §0 simultaneously.

PROOF OF LEMMA 2.2 AND PROPOSITION 3. Since Ŝ 2 = π2(PLH(2),
PL{2)) = &2

H = 0 by Lemma 2.1., we may assume that k ^ 3. The proof
is devided into several steps.

1) If k^ 3, ψk is injective and hence so is φk. Since &k = 0 for
even k [7], we may assume k = 2n — 1. Let (Σ2n~\ S2n+1) be a represen-
tative of an element of %?2n-i which belongs to the kernel of ψ2n^.
Then it bounds a locally flat pair (V2n, W2n+2) of acyclic manifolds.
Let K2n be the oriented submanifold of S2n+1 bounded by Σ2n~\ and let
L2n be the manifold obtained from the union K2n U V2n by identifying
the boundaries. L2n bounds a submanifold Y2n+1 of W2n+2 by the Pon-
trjagin-Thom construction. Let θ: Hn(K2n) x Hn(K2n) —+ Z be the pairing
defined by Levine [8] from which the Seifert matrix A is defined. Then
the same argument as in § 8 of [8, pp. 232-233] works equally well
in our situation, and one can prove that θ vanishes on the subspace
Ker (inclusion*: Hn(K2n) -+ Hn(Y2n+1)), and that the subspace has half a rank
of Hn(K2n). Therefore, the associated Seifert matrix A is null-cobordant
in the sense of Levine, and by Lemmas 4 and 5 in [8], (Σ2n~\ S2n+1) is
null-cobordant in the usual sense.

REMARK. Step 1) may be proven more formally by making use of
the results of [11].

2) If k^ 4, τk is surjective. Let (Mk, Nk+2) be a representative of
an element of gff. Since k^ 4, Mk is PL fZ-cobordant to a natural k-
sphere Σk, so by virtue of the cobordism extension property, Mk itself
may be assumed to be the Λ-sphere Σk.

3) If k^ 3, ψk is surjective. Let U be the regular neighbour-
hood of Σk in Nk+2, and E the exterior of U in N fc+2; E = cl [Nk+2 -
17]. By Kato's lemma (Lemma 1.3), E is PL ϋf-cobordant relative the
boundary to a PL-manifold Ef with πJJE') s Z. Identifying the boundaries,
we obtain a PL homotopy (k + 2)-sphere Ef (J U which is, by the h-
cobordism theorem, a natural sphere Sk+2. Hence (Σk, Nk+2) = φk([Σk, Sk+2]).
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Remark that ψk = τkoφk is surjective for k ̂  4 by 2) and 3).

4) Γftere is an exact sequence: 0 —> S 3̂ — ^ ^ f —> < ^ 3 —• 0. A homo-
morphism σ: <&ξ -+ £ίfz is defined by sending an element [(M3, N6)] e &f
to the element of 3ίfz represented by Mz. From Step 1) and the

nft

arguments in 2) and 3), the exactness of the sequence 0 —>^3 —*-> ̂  —* ^f%

follows immediately. However, any homology 3-sphere can be embedded
in Sδ (See for example [4].), so σ is surjective. The proof of 4) is com-
pleted. Lemma 2.2 follows from 1) and 3), and Proposition 3 follows from
1), 2), 3) and 4). q.e.d.

For the case k = 1, since a PL homology 1-sphere is an 1-sphere and
a PL acyclic 2-manifold is a 2-disk, the knot cobordism interpretation of
π1(PLH(2)9 PL(2)) coincides with gff, that is,

LEMMA 2.3.

^(PLH(2), PL(2)) = gf* .

Now we are in a position to prove Theorem 2.

PROOF OF THEOREM 2. We consider the homotopy long exact sequence
of a triple, (if(2), PLH{2\ PL(2)).

1) First for k ̂  4, since πk(H(2), PLH{2)) = 0 by Lemma 1.1, we get
an exact sequence

0 -> πk(PLH(2), PL(2)) — πk(H(2), PL{2)) -+ 0 .

Therefore, πk(H(2), ~PL(2)) s &k for k ̂  4 by Lemma 2.2.
2) For the case k = 3, since ; Γ 4 ( 1 Γ ^ P L J 3 ( 2 ) ) - 0 and ττ3(JΪ(2), PLH{2)) s

Jg^3 by Lemma 1.1 and π2(PLH(2), PL{2)) = 0 by Lemma 2.1, we get an
exact sequence

0 -* π3(PLH(2), ΨL{2)) ~> π3(H(2), ~PL{2)) — ̂ T 3 — 0 .

Replacing πz(PLH(2), ~PL{2)) with ^ 3 by virtue of Lemma 2.2, we get the
desired exact sequence

0 -> gf3 — ττ3(iϊ(2), PL(2)) ~* J T 3 — 0 .

3) For k = 2, we consider the following exact sequence

π2(PLH(2), PL{2)) - U 7Γ2(ίί(2), PL(2)) - ^

Then, since the first group is a trivial group because of Lemma 2.1 and
j is a zero map by Lemma 1.1, we get that

τr2(iϊ(2), PE(2)) = 0 .

4) For k = 1, by Lemma 1.1 and Lemma 2.3 we get a following
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commutative diagram of exact sequences

0 — π2(H(2), PLH(2)) — πι{PLH{2\ ~PL(2)) — ^(H(2), PL(2)) — 0

0 > 2έ?z > gff .

Since λ([J2 x I x S^CΣ]) = [Σ], we know that i([Σ]) is the class of the trivial
knot connected summed with Σ in the ambient space. We define a map

j: &?-+ <&AH by i ( Γ c P ) = Σ1 c Σ*% -Σ3, then, 0 — ^ T 3 - ^ g f ? - ^ - * gf'*—
0 is an exact sequence, because i©i is clearly a zero map and
Σ1 c Γ j f - P = 0 means that [ r c ί 3 ] - i([Σ3]) = 0.

Therefore, there exists a natural homomorphism: π1(H(2), PL(2)) —>
g^ f f which is seen to be an isomorphism by the 5-Lemma.

Note that the natural inclusion ί0: &AH —> ̂ f makes the above sequence
split because joi0 = id. q.e.d.

3. Bundle theory for codimension two regular neighbourhoods.
In this section, we will briefly describe a block-bundle theory for
codimension two regular neighbourhoods. A definition of a J-set RN2

will be given, and the relationship between RN2 and H(2) will be studied.
RN2 plays the role of the structure J-set for the block-bundle theory.
(Cf. Cappell and Shaneson [2].)

The definition of the block-bundle is quite analogous to the usual one
given in [5] or [12].

Let if be a PL cell complex.

DEFINITION 3.1. An BN2-bundle ζ over K consists of a polyhedron
E(ζ) called the total space, the base complex K and a PL embedding
ί\ \K\ —>E(ζ) called a cross section. The following conditions are to be
satisfied:

( i ) For each w-cell σt e K, there exists an (n + 2)-ball βt c E(ζ) such
that c(σif dσ^ c (βif 5/3*), and such that the restriction c\(σi9 dσ^): (σif dσ^ —>
{βu dβi) is a proper PL embedding. (N.B. c is not necessarily locally flat.)
βi is called the block over af.

(ii) E(ξ) is the union of the blocks βt.
(in) The interiors of the blocks are disjoint.
(iv) Let L = σiΠ σά, then βt Π βj is the union of the blocks over the

cells of L.

DEFINITION 3.2. Two i2iV2-bundles ξ, η over K are ίsomorphic if
there exists a PL homeomorphism h:E(ζ)-+E(η) such that hocξ = cv, and
such that for each cell at e K, h(βi(ζ)) = βi{rj). Notation: ξ ~ rj or h: ζ = η.
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DEFINITION 3.3. Two JSiV2-bundles ξ, η over K are concordant if there
exists an i?iV2-bundle ζ over the cell complex K x I such that ζ | K x
{0} ~ ξ, ζ\K x {1} ~ 97. Notation: f ~ 77 or ζ: £ ~ 97.

The "isomorphism" and the "concordance" relations are obviously
equivalence relations. Let C(K) denote the set of concordance classes
of i2iV2-bundles over K. All of our definitions can be carried over in
the category of J-sets, and we can define the notion of induced bundles.
Then C(K) is a contravariant homotopy functor from the category of
J-sets to the category of sets. It is proved to be representable, and one
can construct the classifying space BRN2 and the natural equivalence of
functors T: [ ,BRN2]->C( ). (Cf. [9], [12].)

The proof of the following proposition is not difficult.

PROPOSITION 3.4. Let M be an m-manίfold properly embedded in an
(m + 2)-manifold Q. Suppose M and Q are triangulated so that M is
a full subcomplex of Q. Let E be the derived neighbourhood of M in Q.
(Note that E Π dQ is the derived neighbourhood of dM in dQ.) Then E is
the total space of an RN2-bundle v over the dual cell complex K of M.
In fact the block over a dual cell D(σ, M){or D(σ, dM)) is the dual cell
D(σ, Q) (or D(σ, dQ)), where σ is a simplex of M. The cross section
r.M-^E is defined by the inclusion. Moreover, the concordance class of
v depends only on the concordance class of the embedding of M in Q.

DEFINITION 3.5. The i^-bundle v constructed in Proposition 3.4 is
called a normal RN2-bundle of M in Q.

Now we will construct a z/-set RN2: A typical fc-simplex of RN2 is an
i?iV2-bundle ξ over the cell complex Δk x I which over Δk x {0, 1} U Δh~^ x I
is the product bundle. It is easy to see that RN2 is a Kan J-set and is
considered to be the fiber of the universal principal i2iV2-bundle over BRN2.

By considering the "associated S^bundle" of ξ as a homology cobordism
bundle with the fiber S\ we have a J-map ί: RN2-+ H(2). With this map
i, we regard RN2 as a subcomplex of H{2).

We are now in a position to prove Theorem 5. Proof of that πk(RN2,
PL(2)) = S?4. _

An element a e πk(RN2, PL(2)) is represented by an RN2 disk bundle
with total space E(ζ) over Ah x I which is a PL block disk bundle over
dAk x / and which is the product bundle over Δh x {0, 1} U Δ10'1 x I. Let
Ύ] be the PL block bundle ξ | d(Δk x /) and Σk c E{η) be the section of this
PL block disk bundle. Since E(ξ) is a (k + 3)-disk, dE(ξ) is a (k + 2)-
sphere. Therefore, we get a knot Σk a Sk+2 = dE(ζ). (The construction
of the ambient sphere is the same as in the case of πk(PLH(2), PL{2)) if
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we use an RN2 sphere bundle as a representative of πk(RN2, PL(2)).)
Clearly a concordance between the representatives gives a concordance

between the induced knots. So we get a map: πk(RN2i 7L(2)) ~* &k, which
is easily seen to be a homomorphispn. Assume that the induced knot Σk c Sk+2

is cobordant to zero, that is, there exists a locally flat disk pair Dk+1a
Dk+* which bounds the knot Σk c Sk+2. Take a sufficiently fine subdivision
of the cone CDk+1 c CDk+s so that CDk+ί is a full subcomplex of CDk+\
Then we get a normal RN2 disk bundle over the dual cell complex of
CDk+i by Proposition 3.4. By an appropriate amalgamation, we get a con-
cordance between a normal RN2 disk bundle of CΣk in CSk+2 which is
concordant to E(ζ) and a normal PL block disk bundle of Dk+1 in Dk+\

q.e.d.

PROOF OF THE LATTER PART OF THEOREM 5. We consider the homotopy
long exact sequence of the triple (iί(2), RN2, PL(2)). Then, by taking
account of the following commutative diagram and noting that ^2=
PL(2)) = 0, we get easily the results.

πk(RN2, ΨL(2)) > πk(H(2), PL(2))

2?*
The only rather non-trivial part is the surjectivity of the map: 7Γ1(fί(2),
~PL(2))-+π1(H(2), RN2). But since any tame embedding of S1 into PL s-
manifold is locally flat, any element of π1(H(2)f RN2) has an element of
&AH = π1(H(2)f PL(2)) as its representative. q.e.d.
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