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Introduction. The nullity space of the curvature tensor in a
Riemannian manifold was first introduced by S. S. Chern and N. H. Kuiper
[3] and then generalized to any curvature-like tensor by A. Gray [6].
The nullity distribution is an interesting object, and it has been studied
by many geometers with applications in the imbedding problem ([3]-[ll]).
The distribution is differentiate and involutive. Its maximal integral
manifolds are totally geodesic, and complete provided that the ambient
manifold is complete.

In this paper we define the k-th nullity space in Riemannian mani-
folds which includes Chern-Kuiper's as the 0-th nullity space. The defining
equations contains the successive covariant derivatives of the Riemannian
curvature tensor up to the λ -th order.

We fix the notations in §1. The Λ-th nullity space is introduced in
§ 2 and we discuss the differentiability of its distribution. § 3 is devoted
itself for some lemmas. It is shown in §4 that the distribution is in-
tegrable and the maximal integral manifolds are totally geodesic. The
stable nullity distribution is introduced. In the last section an example
of the 1-st (but not 0-th) nullity distribution is given.

A similar discussion for the relative nullity will appear in a forthcom-
ing paper [12].

1. Preliminaries. Let M be an n dimensional C°° Riemannian mani-
fold, and < , > its Riemannian metric. We denote by TP(M), ^(M) and
<%f(M) the tangent space of M at the point p, the algebra of C°° differ-
entiable functions and the algebra of vector fields on M, respectively.
The Riemannian curvature tensor R of M is a tensor field of type (1,3)
which gives an endomorphism R(X, Y) of <gf{M) for X, Ye<g?(M) by

R(X, Y) = [Fx, VY\ - ru.τl ,

where Vx denotes the Riemannian connection.
As is well known, R satisfies the following identities:

R(X, Y)=-R(Y,X)f
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(R(X, Y)Z, W) = -<R(X, Y)W, Z) = (R(Z, W)X, Y) ,

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 ,

(FXR)(Y, Z) + (VYR)(Z, X) + (rzR)(X, Y) = 0.

For any tensor field K of type (r, s) the covariant differential VK of
K is defined by

(VK)(W; Xl9 , X.) = (rwK)(Xί9 , X), Xi9 We T9(M) .

VK is a tensor field of type (r, s + 1). The fc-th co variant differential
VkK is defined inductively to be V(Vk~ιK): For simplicity, we use the
notation

(r'KXWu,.^,xu - . - , x . )
or

(F f ciί)(T7 f c,.., ί + 1; TΓ,; W^.y, Xu - .-, Z.)

instead of

^ ^ ; •; Wi; X,, , X.),
where F 0 ^ means K.

Henceforth let us agree with the following conventions unless otherwise
stated:

U, V, W, Wlf , Wk mean any vectors (or vector fields)

X, Y are specified whenever they appear .

2. The Λ -th nullity space of R. The nullity space at p in the sense
of Chern-Kuiper is the subspace of TP(M) defined as

^rp

(0) = {Xe TP(M) I R(U, V)X = 0} .

Generalizing this space we give the following

DEFINITION. For any point p of M and a non-negative integer k,
^Vp{k) is the subspace of TP(M) given by

^KJk) = {Xe TP(M) I (FhR)(Whf...Λ; U, V)X = 0 for 0 ^ h ^ k) .

We call <yΓv

κk) the &-th nullity space of R at p, and its dimension the
λ -th nullity of R at p.

The series ^Kp{k) (k = 0, 1, •) of subspaces of TP(M) clearly satisfies

We denote by ^" ( f c ) the distribution which assigns ^Vv

{k) to p.
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THEOREM 1. // μ{k) = dim ̂ V{h) is constant on M, the distribution
is differentiate.

PROOF. Let S^> be the subspace of TP(M) spanned by vectors of the
form

( F h R ) ( W h , . . . Λ ; U, V ) W , O^h^k.

Then we have ^ς ( f c ) = £fp

L, the orthogonal complements of Sfv. For,
is equivalent to X e y / by virtue of the identity

((FhR)(Wh>...y, U, V)W, X) = -((FhR)(Wh,...y, U, V)X, W) .

The rest of the proof is similar to that of Rosenthal [11, p. 470, Th. 2.1].

3. Propositions. We shall prepare some lemmas which will be useful
in the next section.

PROPOSITION 1. Xe^V{k) implies VwXe^V{k~l) for 1 ^ k.

PROOF. It is easy to see the following identity to be valid for 0 ^ h:

( * ) {VhR){Wh,...Λ\ U, V)VWX

h,...Λ\ U, V)X) - (Fh+1R)(W; Wh>...Λ; U, V)X

..,i+1;FwWi; W W , i ; U, V)X

(FhR){Wh,...Λ;VwU, V)X- (F'RχWn,...,,; U, VWV)X.

As the right hand members all vanish under the assumption
and h ^ k — 1, the proof is completed.

PROPOSITION 2. For X, Ye^V(k) and 0 <: h ^ k, the following equa-
tion holds good:

(Fh+1R)(X; Wk,...Λ\ U, V)Y=0.

PROOF. For any X, Ye £?(M) and 1 ^ h, we have

(F*+1Λ)(X; Wh,...Λ; U, V)Y

= (rJrWkr*-ιEKWk-1,...,1; U, V)Y-(PhR)(FxWh; W^,...^, U, V)Y

= Wπfx + Vix>Wh, + R(X, Wh))F^R)(Wh^...Λ; U, V)Y

- (FhR){Fx Wh; Wh^,...Λ , U, V)Y

= FWh((F*R)(X; Wh^,...Λ; U, V)Y) - {F"R){FWhX;Wh^...A; U, V)Y

- h-£(FhR){X; Wh_u...,i+l; FWhW<;, wt.u...Λ; U, V)Y

- (FhR)(X; Wk-1....,1;ΓWhU, V)Y- (FhR)(X; Wh-U...Λ; U, FWhV)Y

- (PhR)(X; Wh.lt...,ύ U, V)FWhY+ (R(X, Wh)F^-ιR){Wh^...Λ; U, V)Y.
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Hence if X, Ye Λ~{k) and 1 ^ h ^ k, it follows that

(**) (Γh+ίR)(X; Wh,...tl; U9 V)Y = -(FhR)(X; Wh-lt...tl; U, V)VWhY.

On the other hand, we know that X and FWhYe^K{k"l) by taking
account of Proposition 1. Thus the right hand side of (**) becomes

(F^RXX; Wh.2,...y, U, V)VWh_ιVWhY.

Repeating this process and denoting Yh = VWl FWh Y we have

(***) (Fh+1R)(X; Wh,...tl; U, V)Y=(-l)ψxR)(U, V)Yh

= (-l)h+WuR)(V, X)Yh + {VVR){X, U)Yh) .

It must be noticed that (***) is true even for h = 0. Thus the case of
1 5g k is proved because the right hand members of (***) vanish by
Xe^Γ{k). For the case k = h = 0, the proof follows from (***) taking
account of

{FϋR){V9X)Y

- VV{R{V, X)Y) - R(PvV, X)Y- R(V, VVX)Y- R(V, X)VπY.

4. Theorems. In this section we study at first the integrability of
the distribution <Λ^{k) and generalize well known theorems for ^4^w to
^V{k\ Next the stable nullity distribution is introduced.

THEOREM 2. // μ{k) is constant on M, then the distribution ^Γ{k)

is involutive, and each maximal integral manifold of ^/K*{k) is totally
geodesic.

PROOF. Let X, Ye^T{k) and 0 ^ h ^ k. Operating Vx to

(F\R)(TΓA,..fl; U,V)Y=0

we have by virtue of (*)

(Fh+ίR)(X; Wh,...tl; U, V)Y + (FhR)(Wh,...Λ; U, V)VXY= 0 .

This equation and Proposition 2 lead us to

(F\R)(W»,..fl; U, V)FxY=0

which implies VxYe^V{k). Hence it follows that <yΓ{k) is involutive.
Consider a maximal integral manifold L of <yK{k). The second fun-

damental form a of L in M is defined by

a(X9 Y) = VXY-VXY, X, Ye J2f(L) ,

where Vx is the induced Riemannian connection on L. VXY being nothing
but the orthogonal projection of VXY to ^f{L), we have VXY = VXY and
hence a vanishes identically. Thus L is totally geodesic. q.e.d.
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Now, we assume that there is an integer k ^ 1 such that μ[k) is con-
stant on M and ^r*-" = ^Γik). Then, a s l e ^ ( f c ) implies FwXe
by Proposition 1, we have

0 = (FkR)(Wk,...Λ; U, V)VWX

= (Fk+1R)(W; Wk,...tl; ϋf V)X

by virtue of (*). Thus I e ^ ( H 1 ) follows.
Consequently we get the distribution

which will be called the stable nullity distribution.
From the above argument we get

THEOREM 3. The stable nullity distribution is parallel.

Conversely, suppose that the distribution ^/K{k) is parallel for an
integer fc^O, then we have FwXe^i^{k) for any Xe^V{k). Thus we see

(Fk+1R)(W; Wk,...tί; U, V)X = 0

by virtue of (*). This implies Xe^V{k+1) and hence the distribution
,yK{k) is stable. Thus we have the following

THEOREM 4. // the distribution <yK{k) is parallel for an integer
k ^ 0, then it is stable.

5. An example. We shall give an example of 0-th and 1-st nullity
spaces. Let E be the half plane in the Euclidean w-space defined by
x1 > 0, where (x\ —-,xn) is an orthogonal coordinate system of this
Euclidean space. Let M be a Riemannian manifold of constant curvature
K(Φ 1). The warped product M = E x fM [2] is the product manifold
E x M with the Riemannian structure such that

where π: M-+E, η: M—> M are the projections and / is a positive func-
tion on E. Now we set / = x\ Then, by Bishop-O'Neill [2], pp. 23-25
and Tanno [13], pp. 68-70, the Riemannian curvature tensor R of M
satisfies the following relations:

R(U, V)d/dxi = 0f i = l,2, -- ,n,

R(X, Y)Z = CBΓ - 1)« Y, Z)X - <X, Z) Y) ,

A L , X)Y- <F, xyz),
X1

Γ, W)dβxi = 0 , i = 2, 3, '",% ,
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where U, V, Wz<g?{M), X, Y,Ze£?(M) and < , > is the Riemannian
metric on Jlί, and Vu is the Riemannian connection on M. Hence

= the subspace spanned by (d/dx%, i = 1, 2, , n ,

= the subspace spanned by (3/d#% i = 2, 3, , n

are the 0-th and 1-st nullity spaces at p e M respectively. As the dis-
tribution ^ ( 1 ) is parallel, it is stable by virtue of Theorem 4. The metric
of this type has appeared in Yano-Sasaki [14].
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