ON THE k-th NULLITY SPACE OF THE RIEMANNIAN CURVATURE TENSOR

Shun-tchi Tachibana and Masami Sekizawa

(Received August 24, 1973)

Introduction. The nullity space of the curvature tensor in a Riemannian manifold was first introduced by S. S. Chern and N. H. Kuiper [3] and then generalized to any curvature-like tensor by A. Gray [6]. The nullity distribution is an interesting object, and it has been studied by many geometers with applications in the imbedding problem ([3]-[11]). The distribution is differentiable and involutive. Its maximal integral manifolds are totally geodesic, and complete provided that the ambient manifold is complete.

In this paper we define the k-th nullity space in Riemannian manifolds which includes Chern-Kuiper's as the 0 -th nullity space. The defining equations contains the successive covariant derivatives of the Riemannian curvature tensor up to the k-th order.

We fix the notations in $\S 1$. The k-th nullity space is introduced in $\S 2$ and we discuss the differentiability of its distribution. $\S 3$ is devoted itself for some lemmas. It is shown in $\S 4$ that the distribution is integrable and the maximal integral manifolds are totally geodesic. The stable nullity distribution is introduced. In the last section an example of the 1 -st (but not 0 -th) nullity distribution is given.

A similar discussion for the relative nullity will appear in a forthcoming paper [12].

1. Preliminaries. Let M be an n dimensional C^{∞} Riemannian manifold, and \langle,$\rangle its Riemannian metric. We denote by T_{p}(M), \mathscr{F}(M)$ and $\mathscr{X}(M)$ the tangent space of M at the point p, the algebra of C^{∞} differentiable functions and the algebra of vector fields on M, respectively. The Riemannian curvature tensor R of M is a tensor field of type $(1,3)$ which gives an endomorphism $R(X, Y)$ of $\mathscr{X}(M)$ for $X, Y \in \mathscr{X}(M)$ by

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]},
$$

where ∇_{X} denotes the Riemannian connection.
As is well known, R satisfies the following identities:

$$
R(X, Y)=-R(Y, X)
$$

$$
\begin{gathered}
\langle R(X, Y) Z, W\rangle=-\langle R(X, Y) W, Z\rangle=\langle R(Z, W) X, Y\rangle \\
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \\
\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y)=0
\end{gathered}
$$

For any tensor field K of type (r, s) the covariant differential ∇K of K is defined by

$$
(\nabla K)\left(W ; X_{1}, \cdots, X_{s}\right)=\left(\nabla_{W} K\right)\left(X_{1}, \cdots, X_{s}\right), \quad X_{i}, W \in T_{p}(M)
$$

∇K is a tensor field of type $(r, s+1)$. The k-th covariant differential $\nabla^{k} K$ is defined inductively to be $\nabla\left(\nabla^{k-1} K\right)$: For simplicity, we use the notation

$$
\left(\nabla^{k} K\right)\left(W_{k}, \cdots, 1 ; X_{1}, \cdots, X_{s}\right)
$$

or

$$
\left(\nabla^{k} K\right)\left(W_{k, \cdots, i+1} ; W_{i} ; W_{i-1, \cdots, 1} ; X_{1}, \cdots, X_{s}\right)
$$

instead of

$$
\begin{aligned}
& \left(\nabla^{k} K\right)\left(W_{k} ; \cdots ; W_{1} ; X_{1}, \cdots, X_{s}\right) \\
& \quad=\left(\nabla_{W_{k}}\left(\nabla^{k-1} K\right)\right)\left(W_{k-1} ; \cdots ; W_{1} ; X_{1}, \cdots, X_{s}\right)
\end{aligned}
$$

where $V^{0} K$ means K.
Henceforth let us agree with the following conventions unless otherwise stated:
$U, V, W, W_{1}, \cdots, W_{k}$ mean any vectors (or vector fields) ;
X, Y are specified whenever they appear.
2. The k-th nullity space of \boldsymbol{R}. The nullity space at p in the sense of Chern-Kuiper is the subspace of $T_{p}(M)$ defined as

$$
\mathscr{N}_{p}^{(0)}=\left\{X \in T_{p}(M) \mid R(U, V) X=0\right\} .
$$

Generalizing this space we give the following
Definition. For any point p of M and a non-negative integer k, $\mathscr{N}_{p}^{(k)}$ is the subspace of $T_{p}(M)$ given by

$$
\mathscr{N}_{p}^{(k)}=\left\{X \in T_{p}(M) \mid\left(\nabla^{h} R\right)\left(W_{h, \cdots, 1} ; U, V\right) X=0 \text { for } 0 \leqq h \leqq k\right\}
$$

We call $\mathscr{N}_{p}^{(k)}$ the k-th nullity space of R at p, and its dimension the k-th nullity of R at p.

The series $\mathscr{N}_{p}^{(k)}(k=0,1, \cdots)$ of subspaces of $T_{p}(M)$ clearly satisfies

$$
\mathscr{N}_{p}^{(0)} \supset \mathscr{N}_{p}^{(1)} \supset \cdots \supset \mathscr{N}_{p}^{(k)} \supset \cdots
$$

We denote by $\mathscr{N}^{(k)}$ the distribution which assigns $\mathscr{N}_{p}^{(k)}$ to p.

Theorem 1. If $\mu^{(k)}=\operatorname{dim} \mathscr{N}^{(k)}$ is constant on M, the distribution $\mathscr{N}^{(k)}$ is differentiable.

Proof. Let \mathscr{S}_{p} be the subspace of $T_{p}(M)$ spanned by vectors of the form

$$
\left(\nabla^{h} R\right)\left(W_{h}, \cdots, 1 ; U, V\right) W, \quad 0 \leqq h \leqq k
$$

Then we have $\mathscr{N}_{p}^{(k)}=\mathscr{S}_{p}^{\perp}$, the orthogonal complements of \mathscr{S}_{p}. For, $X \in \mathscr{N}_{p}^{(k)}$ is equivalent to $X \in \mathscr{S}_{p}^{\perp}$ by virtue of the identity

$$
\left\langle\left(V^{h} R\right)\left(W_{h, \cdots, 1} ; U, V\right) W, X\right\rangle=-\left\langle\left(V^{h} R\right)\left(W_{h, \cdots, 1} ; U, V\right) X, W\right\rangle
$$

The rest of the proof is similar to that of Rosenthal [11, p. 470, Th. 2.1].
3. Propositions. We shall prepare some lemmas which will be useful in the next section.

Proposition 1. $X \in \mathscr{N}^{(k)}$ implies $\nabla_{W} X \in \mathscr{N}^{(k-1)}$ for $1 \leqq k$.
Proof. It is easy to see the following identity to be valid for $0 \leqq h$: (*) $\quad\left(\nabla^{h} R\right)\left(W_{h, \cdots, 1} ; U, V\right) \nabla_{W} X$

$$
\begin{aligned}
= & \nabla_{W}\left(\left(\nabla^{h} R\right)\left(W_{h, \ldots, 1} ; U, V\right) X\right)-\left(\nabla^{h+1} R\right)\left(W ; W_{h, \ldots, 1} ; U, V\right) X \\
& -\sum_{i=1}^{h}\left(\nabla^{h} R\right)\left(W_{h, \cdots, i+1} ; \nabla_{W} W_{i} ; W_{i-1, \cdots, 1} ; U, V\right) X \\
& -\left(\nabla^{h} R\right)\left(W_{h, \ldots, 1} ; \nabla_{W} U, V\right) X-\left(\nabla^{h} R\right)\left(W_{h, \cdots, 1} ; U, \nabla_{W} V\right) X .
\end{aligned}
$$

As the right hand members all vanish under the assumption $X \in \mathscr{N}^{(k)}$ and $h \leqq k-1$, the proof is completed.

Proposition 2. For $X, Y \in \mathscr{N}^{(k)}$ and $0 \leqq h \leqq k$, the following equation holds good:

$$
\left(\nabla^{h+1} R\right)\left(X ; W_{h, \cdots, 1} ; U, V\right) Y=0
$$

Proof. For any $X, Y \in \mathscr{X}(M)$ and $1 \leqq h$, we have

$$
\begin{aligned}
& \left(\nabla^{h+1} R\right)\left(X ; W_{h, \cdots, 1} ; U, V\right) Y \\
= & \left(\nabla_{X} \nabla_{W_{h}} \nabla^{h-1} R\right)\left(W_{h-1, \cdots, 1} ; U, V\right) Y-\left(\nabla^{h} R\right)\left(\nabla_{X} W_{h} ; W_{h-1, \cdots, 1} ; U, V\right) Y \\
= & \left(\left(\nabla_{W_{h}} V_{X}+\nabla_{\left[X, W_{h}\right]}+R\left(X, W_{h}\right)\right) V^{h-1} R\right)\left(W_{h-1, \cdots, 1} ; U, V\right) Y \\
& -\left(\nabla^{h} R\right)\left(\nabla_{X} W_{h} ; W_{h-1, \cdots, 1} ; U, V\right) Y \\
= & V_{W_{h}}\left(\left(V^{h} R\right)\left(X ; W_{h-1, \cdots, 1} ; U, V\right) Y\right)-\left(\nabla^{h} R\right)\left(\nabla_{W_{h}} X ; W_{h-1, \cdots, 1} ; U, V\right) Y \\
& -\sum_{i=1}^{h-1}\left(\nabla^{h} R\right)\left(X ; W_{h-1, \cdots, i+1} ; \nabla_{W_{h}} W_{i} ; W_{i-1, \cdots, 1} ; U, V\right) Y \\
& -\left(\nabla^{h} R\right)\left(X ; W_{h-1, \cdots, 1} ; \nabla_{W_{h}} U, V\right) Y-\left(\nabla^{h} R\right)\left(X ; W_{h-1, \cdots, 1} ; U, \nabla_{W_{h}} V\right) Y \\
& -\left(\nabla^{h} R\right)\left(X ; W_{h-1, \cdots, 1} ; U, V\right) \nabla_{W_{h}} Y+\left(R\left(X, W_{h}\right) V^{h-1} R\right)\left(W_{h-1, \cdots, 1} ; U, V\right) Y .
\end{aligned}
$$

Hence if $X, Y \in \mathscr{N}^{(k)}$ and $1 \leqq h \leqq k$, it follows that

$$
\left(^{* *}\right) \quad\left(\nabla^{h+1} R\right)\left(X ; W_{h, \cdots, 1} ; U, V\right) Y=-\left(\nabla^{h} R\right)\left(X ; W_{h-1, \cdots, 1} ; U, V\right) \nabla_{W_{h}} Y
$$

On the other hand, we know that X and $\nabla_{W_{h}} Y \in \mathscr{N}^{(k-1)}$ by taking account of Proposition 1. Thus the right hand side of (**) becomes

$$
\left(\nabla^{h-1} R\right)\left(X ; W_{h-2, \ldots, 1} ; U, V\right) \nabla_{W_{h-1}} \nabla_{W_{h}} Y
$$

Repeating this process and denoting $Y_{h}=\nabla_{W_{1}} \cdots \nabla_{W_{h}} Y$ we have

$$
\begin{gathered}
\left({ }^{* * *} \quad \quad\left(\nabla^{h+1} R\right)\left(X ; W_{h}, \cdots, 1 ; U, V\right) Y=(-1)^{h}\left(\nabla_{X} R\right)(U, V) Y_{h}\right. \\
=(-1)^{h+1}\left(\left(\nabla_{U} R\right)(V, X) Y_{h}+\left(\nabla_{V} R\right)(X, U) Y_{h}\right) .
\end{gathered}
$$

It must be noticed that $\left({ }^{* * *}\right)$ is true even for $h=0$. Thus the case of $1 \leqq k$ is proved because the right hand members of (${ }^{* * *)}$ vanish by $X \in \mathscr{N}^{(k)}$. For the case $k=h=0$, the proof follows from (***) taking account of

$$
\begin{aligned}
& \left(\nabla_{U} R\right)(V, X) Y \\
= & \nabla_{U}(R(V, X) Y)-R\left(\nabla_{U} V, X\right) Y-R\left(V, \nabla_{U} X\right) Y-R(V, X) \nabla_{U} Y .
\end{aligned}
$$

4. Theorems. In this section we study at first the integrability of the distribution $\mathscr{N}^{(k)}$ and generalize well known theorems for $\mathscr{N}^{(0)}$ to $\mathscr{N}^{(k)}$. Next the stable nullity distribution is introduced.

Theorem 2. If $\mu^{(k)}$ is constant on M, then the distribution $\mathscr{N}^{(k)}$ is involutive, and each maximal integral manifold of $\mathscr{N}^{(k)}$ is totally geodesic.

Proof. Let $X, Y \in \mathscr{N}^{(k)}$ and $0 \leqq h \leqq k$. Operating ∇_{X} to

$$
\left(\nabla^{h} R\right)\left(W_{h, \ldots, 1} ; U, V\right) Y=0
$$

we have by virtue of (*)

$$
\left(\nabla^{h+1} R\right)\left(X ; W_{h, \cdots, 1} ; U, V\right) Y+\left(\nabla^{h} R\right)\left(W_{h, \cdots, 1} ; U, V\right) \nabla_{X} Y=0
$$

This equation and Proposition 2 lead us to

$$
\left(\nabla^{h} R\right)\left(W_{h}, \ldots, 1 ; U, V\right) \nabla_{X} Y=0
$$

which implies $\nabla_{X} Y \in \mathscr{N}^{(k)}$. Hence it follows that $\mathscr{N}^{(k)}$ is involutive.
Consider a maximal integral manifold L of $\mathscr{N}^{(k)}$. The second fundamental form α of L in M is defined by

$$
\alpha(X, Y)=\nabla_{X} Y-\bar{\nabla}_{X} Y, \quad X, Y \in \mathscr{X}(L)
$$

where $\bar{\nabla}_{X}$ is the induced Riemannian connection on $L . \bar{\nabla}_{X} Y$ being nothing but the orthogonal projection of $\nabla_{X} Y$ to $\mathscr{P}(L)$, we have $\bar{\nabla}_{X} Y=\nabla_{X} Y$ and hence α vanishes identically. Thus L is totally geodesic.
q.e.d.

Now, we assume that there is an integer $k \geqq 1$ such that $\mu^{(k)}$ is constant on M and $\mathscr{N}^{(k-1)}=\mathscr{N}^{(k)}$. Then, as $X \in \mathscr{N}^{(k)}$ implies $\nabla_{W} X \in \mathscr{N}^{(k-1)}$ by Proposition 1, we have

$$
\begin{aligned}
0 & =\left(\nabla^{k} R\right)\left(W_{k, \cdots, 1} ; U, V\right) \nabla_{W} X \\
& =\left(\nabla^{k+1} R\right)\left(W ; W_{k, \cdots, 1} ; U, V\right) X
\end{aligned}
$$

by virtue of (*). Thus $X \in \mathscr{N}^{(k+1)}$ follows.
Consequently we get the distribution

$$
\mathscr{N}^{(k-1)}=\mathscr{N}^{(k)}=\mathscr{N}^{(k+1)}=\cdots
$$

which will be called the stable nullity distribution.
From the above argument we get
Theorem 3. The stable nullity distribution is parallel.
Conversely, suppose that the distribution $\mathscr{N}^{(k)}$ is parallel for an integer $k \geqq 0$, then we have $\nabla_{W} X \in \mathscr{N}^{(k)}$ for any $X \in \mathscr{N}^{(k)}$. Thus we see

$$
\left(\nabla^{k+1} R\right)\left(W ; W_{k, \cdots, 1} ; U, V\right) X=0
$$

by virtue of (*). This implies $X \in \mathscr{N}^{(k+1)}$ and hence the distribution $\mathscr{N}^{(k)}$ is stable. Thus we have the following

Theorem 4. If the distribution $\mathscr{N}^{(k)}$ is parallel for an integer $k \geqq 0$, then it is stable.
5. An example. We shall give an example of 0 -th and 1 -st nullity spaces. Let E be the half plane in the Euclidean n-space defined by $x^{1}>0$, where $\left(x^{1}, \cdots, x^{n}\right)$ is an orthogonal coordinate system of this Euclidean space. Let M be a Riemannian manifold of constant curvature $K(\neq 1)$. The warped product $\widetilde{M}=E \times{ }_{f} M$ [2] is the product manifold $E \times M$ with the Riemannian structure such that

$$
\|U\|^{2}=\left\|\pi_{*} U\right\|^{2}+\left(f^{2} \cdot \pi\right)\left\|\eta_{*} U\right\|^{2}, \quad U \in \mathscr{X}(\tilde{M})
$$

where $\pi: \widetilde{M} \rightarrow E, \eta: \widetilde{M} \rightarrow M$ are the projections and f is a positive function on E. Now we set $f=x^{1}$. Then, by Bishop-O'Neill [2], pp. 23-25 and Tanno [13], pp. 68-70, the Riemannian curvature tensor \widetilde{R} of \widetilde{M} satisfies the following relations:

$$
\begin{gathered}
\widetilde{R}(U, V) \partial / \partial x^{i}=0, \quad i=1,2, \cdots, n, \\
\widetilde{R}(X, Y) Z=(K-1)(\langle Y, Z\rangle X-\langle X, Z\rangle Y), \\
\left(\tilde{\nabla}_{X} \widetilde{R}\right)(Y, Z) \partial / \partial x^{1}=-\frac{K-1}{x^{1}}(\langle Z, X\rangle Y-\langle Y, X\rangle Z), \\
\left(\tilde{V}_{U} \widetilde{R}\right)(V, W) \partial / \partial x^{i}=0, \quad i=2,3, \cdots, n,
\end{gathered}
$$

where $U, V, W \in \mathscr{X}(\tilde{M}), X, Y, Z \in \mathscr{X}(M)$ and \langle,$\rangle is the Riemannian$ metric on M, and \tilde{V}_{U} is the Riemannian connection on \tilde{M}. Hence
$\mathscr{N}_{p}^{(0)}=$ the subspace spanned by $\left(\partial / \partial x^{i}\right)_{p}, i=1,2, \cdots, n$,
$\mathscr{N}_{p}^{(1)}=$ the subspace spanned by $\left(\partial / \partial x^{i}\right)_{p}, i=2,3, \cdots, n$
are the 0 -th and 1 -st nullity spaces at $p \in \widetilde{M}$ respectively. As the distribution $\mathscr{N}^{(1)}$ is parallel, it is stable by virtue of Theorem 4. The metric of this type has appeared in Yano-Sasaki [14].

Bibliography

[1] K. Abe, A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tôhoku Math. J., 23 (1971), 219-244.
[2] R. L. Bishop and B. O'Neill, Manifold of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[3] S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math., 56 (1952), 422-430.
[4] Y. H. Clifton and R. Maltz, The K-nullity spaces of the curvature operator, Michigan Math. J., 17 (1970), 85-89.
[5] D. Ferus, On the completeness of nullity foliations, Michigan Math. J., 18 (1971), 61-64.
[6] A. Gray, Spaces of constancy of curvature operators, Proc. Amer. Math. Soc., 17 (1966), 897-902.
[7] A. Gray, Some relations between curvature and characteristic classes, Math. Ann., 184 (1970), 257-267.
[8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I and II, Wiley-Interscience, New York, 1963 and 1969.
[9] R. Maltz, The nullity spaces of the curvature operator, Top. et Géom. Diff., 8 (1966), 1-20.
[10] T. Ôtsuki, Isometric imbedding of Riemann manifolds in a Riemann manifold, J. Math. Soc. Japan, 6 (1954), 221-234.
[11] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480.
[12] S. Tachibana and M. Sekizawa, On the k-th relative nullity space of a Riemannian manifold in E^{N}, Tamkang J. Math., 5 (1974), 133-138.
[13] S. Tanno, A class of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, Nagoya Math. J., 42 (1971), 67-77.
[14] K. Yano et S. Sasaki, Sur la structure des espaces de Riemann dont le groupe d'holonomie fixe un plan à un nombre quelconque de dimensions, Proc. Japan Acad., 24 (1948), 7-13.

Department of Mathematics
Ochanomizu University
Tokyo, Japan
And
Tokyo Gakugei University
Tokyo, Japan

