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Introduction. Throughout this paper we will denote by G a locally
compact abelian group and by M(G) the measure algebra consisting of
all bounded regular Borel measures on G. Measure algebras on Raikov
systems (see Definition 2.1) are important objects in a study of the struc-
ture of the measure algebra M(G). But they are unclarified even now
([9], [12], [13]). In this paper we shall consider measure algebras on
some topological groups as a kind of measure algebras on Raikov systems.
To be exact, we shall investigate how a set of bounded measures on G
with a general group topology stronger than the original topology of G
can be imbedded into M(G) as a measure algebra on a Raikov system
and what properties it has in M{G).

In the first section of this paper, we shall construct a measure al-
gebra on G with a group topology stronger than the original topology
of G. The method of such a construction is based on [1], [6] and [7].
Further we shall show that the measure algebra constructed above can be
imbedded into M(G) as a measure algebra on a Raikov system. This fact
is well-known in such a case that its stronger group topology is locally
compact ([10] p. 496). In the second section, we shall see that the set
of all measure algebras on Raikov systems with one single generators
coincides with the set of all measure algebras on certain topological
groups. Furthermore, we shall investigate a measure algebra on an
inductive limit group of topological groups. In the final section, we shall
consider whether a measure algebra determines its group topology uni-
quely or not.

We will follow [2] and [4] for terminology.

1. Construction of a measure algebra on a stronger topological
group. Let Go be G with a stronger topology than the original topology
of G and let C(G0) be the Banach space of all bounded continuous func-
tions on Go under the supremum norm. C*(GQ) means the set of limits
/ = limα I fa of increasing generalized sequences {fa} in C+(GQ), the set of
all non-negative functions in C(G0). ^£ means the smallest σ-field which
renders all of elements in C*(G0) measurable.
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REMARK 1. Λί has following properties;
( i ) Λ€ is contained in the Borel field of Go.
(ii) Λ€ contains the Baire field of Go.
(iii) ^ contains the Borel field of G.
(iv) Especially, ^t contains all compact subsets in Go.
(v) For each compact set K in Go, two classes of K ΓΊ ̂  = {K Π E:

E e ^) and the Borel field in K coincide.
(vi) In such a case that GQ is completely regular, ^ coincides with

the Borel field of Go.

A measure μ on ^ will be said to be regular if

I μ \{E) = sup {| μ \(C): C is compact in Go and

for each E G . / . We denote by M(GQ) the space of all bounded regular
measures on Λ Z and M+(GQ) means the set of all non-negative measures in
M(G0). Let ^ ( G o ) be the set of all bounded linear functionals L on
C(G0) whose restrictions on the unit ball of C(GQ) are continuous for the
compact convergence topology. ^P+(GO) is the set of all positive func-
tionals L in £f(G0) in the sense that L{f) ^ 0 for all feC+(G0). Note
that Sf (Go) is a Banach space under the operator norm. Especially, if
Go is locally compact, ^f(G0) is the Banach dual of C0(G0) the set of all
continuous functions vanishing at infinity. In fact, let L be an element
of *2f(G0) vanishing on C0(G0) and let e > 0. Then there exists a compact
set K in Go such that if fe C(G0) vanishes on K and | | / | | ^ 1 then | L(f) \ <
ε ([1] p. 53, Corollary of Theorem 2). We choose a function g e C0(G0)
such that g = 1 on ίΓ, 0 <; # <: 1 and g has compact support. For any
fe C(G0), f = fg + (l- g)f. Therefore,

I L(f) I = I L(fg) + L((l - g)f)\ = \ L((l - g)f) \ < e

because fg e C0(G0) and (1 - g)f = 0 on K. Hence L = 0 on C(G0). By
the Hahn-Banach theorem, £?(G0) = C0(G0)*.

THEOREM 1.1 (cf. [6], [1] p. 52, Theorem 2). There is an isometric
isomorphism between M(G0) and *Sf(GQ) as Banach spaces such that cor-
responding elements L and μ satisfy the identity;

L(f) = \fdμ for every fe C(G0) .

Furthermore, this isomorphism preserves order.

PROOF. TO see that every μ e M(G0) determines an element L of
£f(G0), let ε > 0 and fix non-zero μ e M(G0). We choose a compact set
K in Go such that | μ \{KC) < ε/2 where Kc is the complement of K in Go.
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We put

V(K, e) = {fe C(GQ): \\f\\ ^ 1, sup \f(x) \ < e/2|| μ ||} .
xeK

Then

\L(f)\ = \\fdμ\ S \\χfdμ\ + \\κ/dμ

< (β/2|| μ\\) \μ \(K) + | μ \(K°) < ε/2 + ε/2 = β

for each / e F(iΓ, ε). Hence, L e .Sf (Go).
For any L e Sf (Go) we will next find a measure μ e M(G0) with the

form:

L(f) = ̂ fdμ for every fe C(G0) .

First we consider the case L e J?f+(G0). To do it we shall now imitate
the DanielPs construction ([7] p. 65). If f0 is a limit of an increasing
generalized sequence {fa} in C+(G0) then L(fQ) = limα ] L(fa) unambiguously
defines an extension on C*(G0). For, by the Dini's theorem,

lim 1 L(fa) - 0
a

for every generalized sequence {fa} decreasing to 0 in C(G0). We put

ζ={E:χEeC*(G0)},

where χE is the characteristic function of E. We define the set function

μ*(F) = mf{L(χE):.

for each subset F in Go. Then the class & = (#: j«*(ίf) + /ί*(JEβ) =
is a σ-field and the restriction of μ* to 3f is a measure. ^ contains ζ
and therefore, also the σ-field which ζ generates. The σ -field generated
coincides with the smallest σ-field ^ which renders all of elements in
C*(GQ) measurable. We denote by μ the restriction to ^/ί oί μ*. Then μ
is a bounded non-negative measure such that

L(f) = \fdμ

for every /eC*(G0) and therefore, also for every feC(GQ). To see μ is
regular, let ε > 0 and then there exists a compact set K in Go such that
if feC(G0) vanishes on K and | | / | | ^ 1 then | L ( / ) | < ε / 2 ([1] p. 53,
Corollary of Theorem 2). Since C(G0) 3 C(G), it follows that Kceζ and
μ(Kc) = sup {L(f):feC(G0) vanishes on K and 0 ^ / ^ l } . Therefore

^ ε/2. From the fact that elements in ζ are all open, for any B e
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there exists a closed set F in Go such that μ(B) < μ(F) + ε/2 and Bz)F.
Hence we have an inequality:

μ(B)<μ(Ff]K) + ε.

As F Π if is compact in GOf it holds that

μ(B) = sup {μ(C): C is compact in GQ and J? ID C} .

Therefore μ is regular.
For an arbitrary element L of J?f(G0), we will show the existence

of the corresponding measure. L can be expressed as the form:

L = (L\ - Lϊ) + i{L\ - Lί) ,

where each L)(j = 1, 2; k = 1, 2) is a positive bounded linear functional on
C(G0) and

!,*(/) = sup {{L\ - L fc

2)ω: 0 ̂  ^ ^ /, ̂  e C(GQ)} , for fc = 1, 2 ,

Lfc

2(/) - - inf {{L\ - L*)(flr): 0 ^ ff ^ /, g e C(G0)} , for k = 1, 2 ,

for each feC+(G0) ([4] (B. 34), (B. 37) and (B. 38)). To show L)e^{GQ)
(j = 1, 2; fc = 1, 2), let {/α} be a generalized sequence in C(G0) converging
to 0 uniformly on each compact set in Go and | | / β | | <£ 1 for all a. Then
by the definition of L\, there exists a generalized sequence {ha} in C(G0)
satisfying:

0 ^ Λβ ̂  | Λ I , and L\(\fa |) ̂  2(L* - Lfc

2)(fcα) ^ 2| L(λβ) | .

Then ha —• 0 uniformly on each compact set in Go, and therefore L(ha) -+ 0.
Hence L?(/α) -> 0, that is, Lϊe .^+ίGo). Similarily, LJ e ^f + (G 0 ). From
the preceding assertion there exists μ) e M(G0) for j = 1, 2; & = 1, 2, such
that

for every fe C(G0). If we put in M(G0)

μ = μl - μϊ + i(i"ϊ - μί),

then we have

L(f) = LJ(/) - W ) +

- \fdμ\ - \fdμ\ + i

for each fe C(G0). This implies that the mapping in Theorem 1.1 is onto.
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Since L(f) = ^fdμ^O for every μeM+(G0) and every feC+(G0), the

mapping in Theorem 1.1 is order preserving.
We will show that the mapping in Theorem 1.1 is an isometry. It

is clear that \\L\\ ̂  \\μ\\ for corresponding elements μ and L. To show
the converse inequality, let ε > 0 and let Elf , En be disjoint sets such
that

Let Ct be a compact set in Go such that

I μ \(Et\Ct) < ε/An , and E, z> C, (i = 1, 2, .. , n) .

We can choose open sets Ulf •••, Un in Go such t h a t

( i ) ui=>C, (i = l , 2 , •••,*),

(ii) Ut is open in G (i = 1, 2, , ri),

(iii) i/jL, ί72, •••, Un a re disjoint, and

(iv) \μ\(Uι\Ci)<e/An.
This choice is possible since μ is regular and the topology of Go is stronger
than that of G. Hence there exist flf •••,/» in C(G) such that f^x) = 0
outside J7<f fi(x) = 1 on Ci and 0 ^ ft ^ 1 for i = 1, 2, , n. Let α̂ , ,
αw be complex numbers such that a^(E,) = \ μ(Eτ) \ and put f0 = Σ?=i <**/*•
Then

Σ ^. \fidμ Σ α*

<Σ
< e/2 + ε/2 = ε ,

+ ε/2 ^ Σ ίl MQ - M^) I + I μ mxcj} + e/2
< 1

so that || μ \\ = supM/M<a | L{f) \ = \\L\\. Hence the mapping is an isometry.
It is obvious that the mapping is a homomorphism. Hence, the proof is
complete.

THEOREM 1.2. Let i:GQ—+G be the continuous identity mapping.
Define a homomorphism i*: M(G0) —> M(G), by i*μ(E) = μ{i~ι(E)) for every
Borel set E in G. Then i* is an isometric ^-isomorphism of M(G0)
into M(G).

PROOF. It is clear from ([10] p. 493, Proposition 2).

THEOREM 1.3. Let i* be as in Theorem 1.2. Let μeM(G), then μ
belongs to i*M(G0) if and only if μ is concentrated on some σ-compact
set in Go as a subset of G.
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PROOF. The sufficiency is trivial, so that we prove the necessity.
We may assume that μ is positive. Let { Ϊ J ^ be an increasing sequence
of compact sets in Go such that μ is concentrated on U~=i -K» Since two
of the topology of Go and the topology of G coincide on each compact
set in Go, each restriction μ% of μ to Kn is in M(G0) by Remark l(v) and
μn converges to μ with the norm. Therefore, μ e i*M(G0).

Henceforth, let Go be the abstract group G with a stronger group
topology than the original topology of G. We say such a topological
group Go simply a stronger topological group Go. Since a topological
(Hausdorff) abelian group is completely regular ([4], (8.4)), M(G0) is the
set of all bounded regular Borel measures by Remark l(vi). By Theorem
1.1, ikf(G0) can be identified with £f(G0). Now, we will define a convolu-
tion in M(G0). We put

F(x) = j / ( s + y)dμ(y) for feC(G0) and μeM(G0) .

We fix non-zero fe C(G0) and non-zero μ e M(GQ), and let ε > 0. We choose
a compact set K in Go such that | μ\(Kc) < ε/4||/||. For fixed xoeGQ,
there exists a neighborhood V of x0 in Go such that

s u p I f(x + y)~ f(x0 + y)\< e/2|| μ \\
yeK

for every x e V. Therefore, we have

I F(x) - F(x0) \ = \\f(x + y)dμ(y) - j/(x, + y)dμ(y)

<Ξ 2II/H I μ \(K°) + \\μ\\ sup | f(x + y) - /(*„ + y) \
yeK

< e/2 + e/2 = ε .

Hence F(x) e C(GQ). For fixed v e M(G0), the mapping: /—• v(F) is a bounded
linear functional on C(G0). This functional will be called convolution of
μ and v, and it will be written μ*v. It is clear that || μ * v \\ ^ || μ || || i; ||y
μ*v = v*μ and (μ* v) * τ = μ * (v * r) for μ, v, τeM(G0). To show that
μ*ve£f(GQ), let ε > 0, then by Theorem 1.1 there exist <5 > 0 and a
compact set iΓ in Go such that if / is in C(G0) with | | / | | ^ 1 and | f(x) \ <
δ on K then | v{f) \ < ε. Moreover, there exist d' > 0 and a compact set
K' in Go such that if / is in C(G0) with | | / | | ^ 1 and \f(x)\ < S' on K'
then I μ(f) \ < δ. We put

K', δ') = {fe C(G0): \\f\\ <ί 1, | f ( x ) | < δ ' o n K

Then it holds that for x e K and for fe V(K + ίC', <5')
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so that

I v{F) | < e for feV(K + K\ δ') .

Therefore, μ* veSf{G,).
M(G0) becomes a commutative Banach algebra under this convolution

and i* as in Theorem 1.2 is an isometric *-isomorphism of M(GQ) into
M(G) as Banach algebras.

Henceforth, we will not distinguish M(G0) from its image of i*. We
will call it the measure algebra on GQ.

We have a following result as a corollary of Theorem 1.3;

COROLLARY 1.4. M(GQ) is a measure algebra on some Raikov system
in M(G) (see Definition 2.1).

PROOF. Since α-compact subsets in Go form a Raikov system in G,
it is clear from Theorem 1.3.

2. Raikov systems and an inductive limit topology of group topo-
logies.

DEFINITION 2.1. A Raikov system is a collection ^ of σ-compact
sets in G satisfying the following conditions;

( i ) If F G ^ and Έ is a σ-compact set in G with EaF then

(ii) If Fl9 F2eJ?~ then Fx + Ft

(iii) If Ft e ^ for i = 1, 2, then UΓ=i
(iv) If Fe &~ and a? e G then î 7 + x e J^

If this system also satisfies the following
(v) If Fz^~ then -Fz^

we shall call it a symmetric Raikov system. If a Raikov system is con-
tained properly in the Raikov system consisting of all σ-compact subsets
in G, we say that it is proper. If a Raikov system ά^ is the minimal
(symmetric) Raikov system containing a collection {Ha} of σ-compact sets
in G, then we say that each Ha is a generator of J^. If a Raikov system
has a countable set of generators then it has a single generator ([12]).
In a symmetric Raikov system, any generators may be assumed to be
(7-compact subgroups of G. Let J^~ be a Raikov system. Then bounded
measures in M(G) concentrated on &" form a subalgebra M(^) of M(G)
([9]). We shall call it the measure algebra on ^ T

Let ^l be the symmetric Raikov system consisting of all σ-compact
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sets in Go. Corollary 1.4 asserts that M(G0) = (^>)
A topological group is said to be locally σ-compact provided that

every point has a base of neighborhoods which are σ-compact.

PROPOSITION 2.2. The set of all measure algebras on symmetric
Raίkov systems with each single generator coincides with the set of all
measure algebras on G with locally σ-compact group topologies stronger
than the original topology of G.

PROOF. Let ^ be a symmetric Raikov system with a single generator
H which is a σ-compact subgroup in G. We introduce into G a topology
which has a neighborhood basis at the unit in H as a neighborhood basis
at the unit. The group G with such a topology is denoted by GH. GH

is a locally σ-compact group stronger than the original topology of G,
and H is an open σ-compact subgroup in GH. As H generates J^, every
set belonging to &* is σ-compact in GH. On the other hand, if a: GH —•
GH/H is the continuous canonical mapping, then a transfers σ-compact
sets in GH to σ-compact sets in GH/H. Since H is open in GH, GH/H is
discrete, so that every σ-compact set in GH is covered by a countable set
of translates of H, and therefore, every σ-compact set in GH belongs to
^ By Theorem 1.3, this proves that M(^~) = M(GH). Conversely, let
Go be a stronger locally σ-compact group and take a σ-compact symmetric
neighborhood V at the unit in GQ. We put

oo

H = U nV, where nV = {̂  + x2 + « + xn: xlf x2, , xn e V) .

Then H is an open σ-compact subgroup of Go. Hence, Go = GH using
the previous notation, and the Raikov system J^ consisting of all σ-com-
pact sets in Go is generated by H. By Theorem 1.3, M(G0) = M{^).

DEFINITION 2.3. Let {Ga}aeI be a family of stronger topological groups.
The inductive limit group Go = lim Ga is defined to be the abstract group

a

G with the strongest group topology weaker than that of Ga for every a.

REMARK 2 ([10] p. 467-471). Concerning the definition above,
(1) We can, without loss of generality, assume that {Ga}aeI is an

inductive system, by which we mean
(1) / is a directed set,
(ii) If a < β then the topology of Ga is stronger than that of Gβ.
(2) If the index / is countable then a basic set of neighborhoods

of Go is given in forms

V=Q(Vι+ F2+ . . . + VΛ),
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where Vn runs through a basic set of neighborhoods of Gn't n = 1, 2,
In this case, an inductive limit group of locally σ-compact groups is also
locally (7-compact. Further, an inductive limit group of locally compact
groups {Gn}n=i such that the topology of Gn is strictly stronger than that
of Gn+ί for each n, is locally σ-compact, but not locally compact.

PROPOSITION 2.4. Let Go be an inductive limit group of locally σ-
compact groups {Gw}"=i stronger than the original topology of G. Then
M(G0) is a closed subalgebra in M(G) generated by {M(Gn)}n=i.

PROOF. It is clear that M(G0) contains the closed subalgebra gener-
ated by {M(Gn)}n=ι. To see the converse inclusion, we may assume by
Remark 2(1) that

M(GJ c M(G2) c c M(Gn) c . c M(G0) .

Let μeM(G0). Since M(G0) = M(Gn) + M(GnY ([9]), μ can be decomposed
uniquely with the form

μ = μn + μ'n ,

where μneM(Gn) and μ'neM(Gn)
L for each n. We have

II μn+i - μ n II = II μ +i II - II μ» II for e a c h n ,
and

so that μn converges to a measure v in the closed subalgebra generated
by {M(Gn)}n=ί. Put μf = μ - v. Then μ' 1 M(Gn) for all n. By Remark
2(2), the Raikov system consisting of all σ-compact sets in Go coincides
with the symmetric Raikov system generated by all of σ-compact sets in
Gn for all n, so that μf ± M(G0). But μ' belongs to M(G0), so that μf =
0, that is, μ belongs to the closed subalgebra generated by {M(Gn)}Z=ι.

We don't know that Proposition 2.4 is true when an index is un-
countable (and further, for an inductive limit group of stronger general
topological groups). But this problem is reduced to the following problem;
"The Raikov system consisting of all σ-compact sets in an inductive limit
group of stronger topological groups {Ga}aei (not necessarily countable!)
is generated by all of σ-compact sets in Ga for all α."

If this problem can be solved affirmatively, the following extension
of Proposition 2.2 holds good; "Every symmetric Raikov system is a
measure algebra on some stronger topological group."

3. Uniqueness of a topological group determined by a measure
algebra. Generally, a measure algebra does not determine a topological
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group uniquely, that is, there exist stronger topological groups Glf G2

such that G, and G2 are different, but M(GX) = M(G2).

EXAMPLE. Let Z be the set of all integers. We define two different
topologies on Z;

(a) the weakest topology on Z for which all of elements in the
torus T are continuous as characters of Z, and

(b) the discrete topology on Z.
Zw(Zd) will mean the abstract group Z with the topology of (a) ((b),
respectively). Then Zw is a non-discrete pre-locally compact Hausdorff
group ([10] p. 480 and [4] (4.23)) and the completion Z of Z w is a locally
compact Hausdorff group ([5] p. 212). Let Zw(Zd) be Z with the topology
which has a neighborhood basis at zero in Zw (Zd, respectively) as a neigh-
borhood basis at zero. Since Z is a countable set, Z is σ-compact in Z.
Therefore, by Proposition 2.2, M(ZW) = M(Zd), but Zw and Zd are different.

However, we have a following proposition;

PROPOSITION 3.1. Let Gλ be a stronger topological group weaker than
that of a stronger locally compact group Go. If M(G0) = M{G^j and there
exists a nonzero positive measure μ in M(Gi) such that the mapping
x —> F(μ * δx) on G1 is continuous for each fixed FeM{G^)*, where δx is
denoted the measure with point mass 1 at x and M{G^* is the Banach
dual of M(G0, then Gλ = GQ.

PROOF. TO prove the Proposition, we will now repeat the argument
of [8].

The set L = {μe M{G^)\ x —• F(\ μ\*dx) is continuous on Gγ for each
FeMiGi)*} has not L-ideals in itself and is an L-ideal in M{G^). Hence,
L = I/^GQ), where U(GQ) is the group algebra on Go. Let {xa} be a gen-
eralized sequence converging to x0 in Gx then

for every FeM(G0)* and every XeL^Go). The mapping μ-+\fdμ for

each feC0(G0) is a bounded linear functional on M(G0), so that

for each fe CQ(G0), the set of all elements in C(G0) vanishing at infinity.
Since every feC0(G0) is uniformly continuous, for ε > 0, there exists
λ e L\GQ) such that || λ || = 1 and

< ε/3 for every xeG0 .
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Hence, there exists an index <xQ such that

\f(xa)-f(xo)\

y)d\(y) f(xo) - \f(x0 + v)d\{y)

+ I j f(y)d(\ * δXa)(y) - j f(y)d(X * δxo)(y)

< e/3 + e/3 + ε/3 = e ,

for a Ξ> a0. Therefore, f(xa)—>f(x0) for every feC0(G0)9 so that xa—>x0

in Go. This proves that the topology of G1 is stronger than that of Go,
and therefore, Gλ = Go.

COROLLARY (cf. [11]). Let Go, Gx be two locally compact groups
stronger than the original topology of G. If M(G0) = M{G^) then Go = Gx.

PROOF. Let G' be the inductive limit group of Go and Gx. By Propo-
sition 2.4, M(G0) = M{G,) = M(G'). By Proposition 3.1, Go = G' = Gλ.

The author thanks Professor S. Igari and Y. Kanjin for their helpful
criticism and invaluable suggestions.
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