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This paper is a sequel to the preceding ones with the same title
published in this Journal (Note I, Vol. 24, pp. 127-140; II, 24, pp. 551-
569). The contents of these notes are assumed to be known. References
are in alphabetical order in each paper; they as well as the sections are
numbered consecutively throughout this series.

9. Jackson- and Zamansky-type inequalities. In this paper we con-
tinue the study of multipliers with respect to orthogonal projections in
Banach spaces satisfying certain summability conditions. Whereas in Notes
I, II the (C, i)-boundedness of the expansion was assumed (for treatment
in the fractional case see [42]), we here commence with the (weaker) Abel-
boundedness which leads to (more restrictive) multiplier classes. The
usefulness of this multiplier concept may again be illustrated by a treat-
ment of certain fundamental approximation-theoretical problems. Whereas
Notes I and II dealt with the comparison and saturation problem, respec-
tively, we here choose the problem of establishing Jackson- and Zamansky-
type inequalities (for a first treatment see [33], [42]).

As was examplified in Sec. 2, 6, the translation of the above
approximation-theoretical problems to uniform multiplier conditions is
straight forward and indicated briefly in this section for the present topics.
The essential point is to be seen in deriving convenient multiplier criteria
to be carried out in Sec. 10 where we will also discuss the connection
with the multiplier sets bv3+1 and BVj+1 of Sec. 7. Finally Sec. 11 gives
applications to Hermite and Laguerre expansions in weighted ZZ-spaces.

Motivated by the applications, for which the projections {Pk} need not
necessarily be bounded with respect to the topology of the Banach spaces
X, let us modify slightly the multiplier concept (cf. [33]). Thus we
commence with some Hubert space H and suppose the Banach space X
to be represented as the X-closure of H in the following sense. Let
{Pk}t=o be a sequence of mutually orthogonal projections, which are

1 } This author was supported by DFG-grant Bu 166/23.
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continuous and complete on H, i.e., [Pk}cz[H] and / = ΣϊU-P*/ for any
f e H. It is assumed that Pk{H) c X for any keP, and that the set of
all polynomials 77, i.e. the set of all finite linear combinations Σϊ=o/*>
fkePk(H), is dense in X (with norm || |l) A sequence α e s is called a
multiplier on X if for each / = Σ&=0 Λ the polynomial / α = Σϊ=o α*/*
satisfies

(9.1) | | / * | | < : A | | / | | (/e77),

the constant A being independent of /e77. Then the operator, generated
by aes on 77, can be uniquely extended to all of X so that we again
write a e M(X; {Pk}) (cf. Sec. 2). Concerning the closed operator B^ in
Sec. 6, ψes is said to generate an X-closed B* if there exists a closed
linear operator B* with domain D(B^) = I ^ c l and range in X such
that ΠczX* and 5*/ = Σ?=o f Λ / for any / e 77. Note that the existence
of 7?^ in case {Pfc}c: [X] is obvious (cf. Sec. 6). With these modifications
the following result holds.

THEOREM 9.1. Let {T(p)}p>oa [X]M be a strong approximation process
with associated multiplier family {τ(p)}p>Of let χ(p) be some positive,
monotone function with lim^^ χ(^) = oo, and let ψes generate an X-
closed operator B^.

a) // there exists a uniformly bounded multiplier family {η{p)} such
that

(9.2) X(p){τk(ρ) -1} = ψkVk(p) (P > 0, k e P) ,

then there holds the Jackson-type inequality

1(P) II T(p)f-f\\ sΞ sup \\η{p) \\M \\B*f\\ (feX+) .
P>0

b) With (9.2) replaced by

(9.3) ψkτk(ρ) = χ(ρ)Vk(p){τk(ρ) - 1} (p > 0, k e P) ,

one has the Zamansky-type inequality

|| B*T(p)f\\ £ X(p)(suv \\V(P) \\M) II T(p)f - f\\ (/6 X) .
\ |O>0 /

Since the projections {Pk} are total on H and 77 is dense in X, the
assertions are obvious (cf. Sec. 2, 6, and [33]).

Concerning applications, the actual problem is to be seen in the
verification of the multiplier conditions (9.2) and (9.3). It hardly seems
possible to develop a satisfactory multiplier theory without assuming
further properties upon X and {Pk}. Here we suppose that the Abel means
are uniformly bounded on 77. This clearly weakens the hypothesis of



SUMMATION PROCESSES OF FOURIER EXPANSIONS 215

Note II since Abel-boundedness follows from (C, i)-boundedness (cf. Note
II, p. 560).

10. Multipliers for Abel-bounded expansions. We recall the defini-
tion of the Abel means (cf. (4.2) for K — 1)

(10.1) A(t)f=±e-»Pkf (feΠ),

which reduces to the more familiar form ^rkPkf by setting — t — logr,
0 < r < 1. Now assume the Abel means to be uniformly bounded, i.e.,

(10.2) || A(t)f\\£C 11/11 (/e/7),

the constant C being independent of t > 0 and /. It is clear by the
technique of Theorem 7.1 that we have to introduce the following moment
sequence space (lim*^ ak = a^):

(10.3) cbv = lae Γ; ak - a^ = Γ e~ktdb(t) for some b e BV[0, oo]| ,

THEOREM 10.1. // {Pk} as above satisfies (10.2), then every aecbv is
a multiplier and

\\a\\u^C\\a\\cbv. -

PROOF. For each / e Π set

f" = Γ Σ e-ktPkfdb(t) + amf .
JO k=0

Since the sum is finite one may interchange the order of integration and
summation to obtain / α = Σ MkPkf- Furthermore, fa satisfies the inequality
(9.1) since by (10.2)

Hence all is proved.
The class cbv may be characterized via completely monotone sequences,

a e l°° being called completely monotone if Δmak ^ 0, k, me P (note that
here Aak = ak — ak+1 in contrast to [44; p. 108]). Indeed,

PROPOSITION 10.2 (Hausdorff). aecbv if and only if a is the differ-
ence of two completely monotone sequences.

As already remarked in Sec. 3 and 7, it is quite useful to extend the
sequence aes to a, function α{x) defined for x ^ 0, particularly, if one has
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to deal with families of sequences. This is obvious in the present instance
by introducing the class (lim t^ a(t) ~ α(oo))

(10.4) CBV= {αe C[0, «,]; φ) - α(oo)

= \°° e-'db(t) for some beBV[0,

a \ \ C B V =
JO

Since the CB V-norm (also the cbv-norm) is invariant with respect to dila-
tions, | |α^|U v = || α Hear (independent of p) provided the family {a(p)}czs
is of Fejer's type: ak(p) = a(k/p).

Apart from verifying the Laplace representation I e~xtdb(t) explicitly

in concrete examples, one may use a characterization via completely
monotone functions. Here a function e(x) is called completely monotone
on 0 5S x < oo (on 0 < x < oo) if e(x) is continuous for x ^ 0 (for x > 0)
and (-l)ke^(x) ^ 0, heP, for x > 0 (see e.g. [45; p. 154-155]).

PROPOSITION 10.3 (Bernstein). aeCBV if and only if a is the differ-
ence of two completely monotone functions on 0 ^ x < oo.

Now Schoenberg [38] has proved that if e(x) is completely monotone
on 0 ^ x < oo so is e(φ(x)) provided φ satisfies

(10.5) φ(x) ̂  0 is continuous for x ^ 0, 0(0) = 0, φ'(x) is

completely monotone on x > 0 with \ 0'(#)cϊα; < oo .
Jo+

Thus we arrive at the analogue of Hardy's "Second Theorem of Consistency"
(cf. [42; p. 30, 50]).

THEOREM 10.4. If ae CBV, χ(p) is positive for p > 0, and φ satisfies
(10.5), then a(φ(x)/χ(ρ)) eCBV uniformly in p > 0.

Some examples of admissible functions φ are xκ, 0 < K ̂  1, logω (1 + x),
0 < ω 5g 1, but also logω (1 + xκ) since φ(x) = Φ^φzix)) satisfies (10.5) if φlf

φ2 do by a result due to Schoenberg [38]. Clearly Theorem 10.4 will
simplify the verification of (9.2) or (9.3).

Now it is interesting to ask for relations between the multiplier classes
bvi+1 and cbv as well as between BVd+1 and CBV, where BVj+i is normed
by

I a \\BVj+1 = * + \ X* I dα">(aθ | + | α(oo) | .



SUMMATION PROCESSES OF FOURIER EXPANSIONS 217

Note that BVj+1a BVk+1, 0 ^ k ^ j , in the sense of continuous embedding
(cf. [42; p. 24]).

As a first result we have

PROPOSITION 10.5. For each j e P, cbvabvj+] in the sense of continuous
embedding.

PROOF. By Prop. 10.2 any a e cbv may be written as a — {aJi =
a1 — a2 with completely monotone a\ Thus (cf. [7])

+. y ^ + 1 (*+
- (αϊ - αL) + (α0

2 - αL) + | αM | = || α I U

The relation between cbv and &^ +1 is, with respect to Prop. 10.2,
nicely illuminated by the following result (cf. [7]).

P R O P O S I T I O N 10 .6 . a e bvJ+1 if and only if a — {αTO} = a1 — a2 where
a1 e s , i = 1, 2, are (j + l)-times monotone, i.e., Δma\ ^ 0 , ί e P , O ^ m ^

The analogue to this proposition for the i?Fy+^classes reads

PROPOSITION 10.7. a eBV3+1 if and only if a(x) — α(oo) = a\x) — a\x),
where a\x), i = 1, 2, are {j + l)-times monotone on 0 ^ cc < oo, i.e., α*(a?)
is defined for x ^ 0 (continuous if j *> 1), ( — d/dx)ka*(x) ^ 0 /or ΛJ > 0,
0 ^ A; ̂  ^ — 1, αwώ ( — d/dx)jai(x) ^ 0 almost everywhere and non-increasing.

PROOF. If α e ΰ F i + 1 then one has the representation (cf. [42; p. 25])

a(x) =

Since ( — l)jaij)(x) is of bounded variation on [ε, oo) for each ε > 0, one
may apply the Jordan decomposition to obtain ( — iy'a{j)(x) = c^x) — c2(x)
with c\x) ^ 0 and decreasing for x > 0, thus

(10.6) a\x) = ~*. Γ (« ~ xydc*(t) .
Γ(j + 1) Jx

ai(x) exists at the origin since

the further properties required of a* are readily read from the represen-
tation (10.6).

Now assume conversely that a(x) is O' + l)-times monotone, where
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one may suppose α(oo) = 0 without loss of generality. Then

a(ε) - a(N) = -V a\u)du = -ua\u) \? + [* ua"(u)du

TT
Now Levy [36] and Williamson [46] have shown that a(x) being (j + 1)-
times monotone implies uka{k)(u) = o(l) for u-+0 + and for u—+ <χ>, 1 <;
k ^ j . Thus, one has

1 a i ^ Γi \J ~τ~ -Lj

by letting ε—•() +, iV~> oo, i.e., the converse holds.
Now carrying over the proof of Prop. 10.5 we immediately arrive at

PROPOSITION 10.8. For each jeP, CBV(zBVj+1 in the sense of con-
tinuous embedding.

Let us conclude this section with the observation that everything has
turned out to be as expected: the stronger the summability method the
narrower the multiplier class. For we have seen in Note II or in [42; p.
19, 54] that the Abel means are stronger than the (C, /9)-means, which
in turn are stronger than the (C, 7)-means for 0 ^ 7 ^ / 9 . Correspond-
ingly (for the last inclusions with arbitrary β ^ Ύ ̂ > 0 see [42; p. 20, 37])

cbv c bvβ+1 c bvr+1 , CBVczBVβ+1ciBVr+1 .

11. Applications.

11.1. Abel-Cartwright and Picard means. Let X, H, {Pk} be as in
Sec. 9 such that the sequence of projections {Pk} satisfies (10.2). Then the
Abel-Cartwright means (4.2) of order 0 < K ̂  1 are uniformly bounded
operators on X since exp { — xκ), 0 < tc :£ 1, is completely monotone on 0 ^
x < oo (cf. Theorem 10.4) and thus belongs to CBV by Prop. 10.3. The
Picard means of order tz > 0, defined by

PMf = Σ P,(k/p)Pkf, pκ(χ) = (1 + χ)~κ (feΠ),

are also uniformly bounded on X since (1 + x)~κ is completely monotone.
Since lim^^^ wκ(k/p) = lim^^^ pκ(kfp) = 1 for each keP, both means are
approximation processes.

Replacing the discrete parameter (n + 1) of the Abel-Cartwright means
(4.2) by the continuous one p = ε~1//c,
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W*(e)f = Σ e-^PJ (0 < K £ 1, fe Π) ,

it is immediately clear that {W*(ε)}8>0 is a uniformly bounded semi-group
of class (CO) on all of X with (closed linear) infinitesimal generator Aκ =
s-lime_0+ ε'^Wfiε) — /}. The restriction of Aκ to Π gives the representa-
tion

AJ= ±-k*Pkf
k0k=0

Since with Aκ also all integral powers of Aκ are closed linear operators
(cf. [26; p. 12]) we have proved that {kκ} e s generates an X-closed operator
B* for any ic > 0.

THEOREM 11.1. Let X, H, {Pk} be as in Sec. 9 with {Pk} satisfying
(10.2), and let Bβ be a closed linear operator generated by ψ = {kβ}, 0 <
β ^ K ̂  1. Then

|| Wκ(p)f-f\\ £ C'p't \\Bβf\\ (/eX*) .

In view of Theorem 9.1 a) we have only to examine the sequence
(7 = β/K)

τ]k{P) - e(kr/p') , e(x) = x~r(e- - 1) (0 < 7 ^ 1) .

By Theorems 10.1 and 10.4 one can restrict the matter to a discussion of
e(x). Since (cf. [43])

[ur~y , 0 < u < 1
e(χ) = - Γ e~xtc(t)dt , c(u) =

Jo Γ(7) [ur-1 - (U - ly-1 , U > 1 ,

c(t) being clearly integrable on (0, °o), everything is proved.
Note that for β = fc we have examined the saturation quotient of

Theorem 8.1 so that we could reformulate Theorem 8.1 for 0 < it ^ 1
under the weaker hypothesis (10.2) (after an obvious modification of state-
ment iii) in Theorem 8.1).

It is not possible to derive a Zamansky-type inequality for the Abel-
Cartwright means since one would have to examine functions of type
xre~*/(l — e~x), 7 ^ 1 , which, after analytic continuation, are not bounded
on vertical lines, thus cannot be Laplace-Stieltjes transforms of some b e
BV[0, oo].

To derive a Zamansky-type inequality for the Picard means we only
consider the case tc = 2 for the sake of simplicity. Thus we have to
examine the function

e(x) =
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(β ^ 1 being necessary to remove the singularity at x = 0, β ^ 2 being
necessary for the boundedness of e(x)). In case β = 1 (β = 2) the function
e(x) is completely monotone for x^>0 (difference of two completely monotone
functions), thus a Laplace-Stieltjes transform; in case 1 < β < 2 one has

e(χ) =
Jo

e-χtc{t)dt,

THEOREM 11.2. Let X, H, {Pk} be as in Sec. 9 with {Pk} satisfying
(10.2), and let Bβ be a closed linear operator generated by ψ = {kβ}, 1 ^
β ^ 2. Then

- f\\ (fe X) .

11.2. Hermite series with weight. Choose X = Lζ(—oof oo), w(x) =
e~χ2, 1 ^ p < co, i J = m ~ co, oo), where

Define projections on H with the aid of the Hermite polynomials Hk(x)
(cf. Sec. 8.5) by

PJ(x) = {2kkl VΈ}-^ J{u)Hk{u)e-u2duyik{x) (fe H) .

Then the projections {Pk} c [H] are mutually orthogonal, and satisfy the
representation / = X?=o Pkf for fe H since

lim
J-oc

- f(χ) e~χ2dx = 0 ,

this being not so for p Φ 2 as was shown by Pollard [16]. Furthermore,
Pk{H) c X for any keP, and the finite linear combinations Π of Hk(x)
are dense in Lp

w, 1 ti P < °°- For, according to the Stone-Weierstrass
theorem the (ordinary) polynomials are dense in Ll, and each (ordinary)
polynomial can be uniquely represented by a finite linear combination of
Hermite polynomials.

Muckenhoupt [37] has proved (0 < r < 1)

Σ rkPkf £C\\f\\ (feΠ),

and this coincides with our hypothesis (10.2) for — ί = logr. Mucken-
houpt 's result is best possible in the sense that the (C, i)-means of Σ Pkf
are not uniformly bounded for any j e N in case p Φ 2 as Askey-Hirschman
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[2] have shown.

Hence all hypotheses are fulfilled; in particular, Wκ(p), 0 < K <̂  1, is
an approximation process on Lp

w, 1 ^ p < oo, for p —• oo note that W^ip)
for p~ι = 2t2 coincides with Muckenhoupt's "alternate Poisson integral"
which satisfies a certain second order elliptic differential equation. Mucken-
houpt also gives the concrete extension of Wιi2{p) to all of Lζ by an
explicit representation. Further note that e~tlog{2x+1) eCBV according to
Theorem 10.4, so that

U'f=±(Zk + l)-tPkf (feΠ)

is a uniformly bounded semi-group of class (Co) on Lζ, 1 ^ p < oo. The
operators £7* were essentially introduced in [35; p. 672] as a semi-group
of class (Co). Before restating Theorems 11.1 and 11.2 observe that Bβ

for β = 1 has the representation B1 = l/2(d/dx)2 — x(d/dx).

COROLLARY 11.3. Let X be given as above.
a) For 0 < β ^ fc ̂  1 one has the Jackson-type inequality

(S I B>f(x)

for all feX^, where ψ = {kβ} generates the closed operator Bβ.
b) There holds the Zamansky-type inequality

^ C'p || P,(p)f - /H,,. (/6 X) .

REMARK. Let us return to Hermite expansions in usual Lp(—oof oo)-
spaces (cf. Sec. 8.5). Since Abel summability is then an old result we can
also cover the material in [25] on saturation completely. Moreover, we
recently noticed that Freud-Knapowski [34] have even proved (C, 1)-
boundedness for p = oo; observing that the multipliers on Lι{— oo, oo) and
L°°(— oo, oo) coincide (cf. [35; p. 572-574] and the literature cited there),
we may immediately apply all the general results of Sec. 4.1 and 8.1 for
all 1 ^ p ^ oo. Finally let us mention that our Theorem 10.1 (in case of
Hermite expansions in Lp(— oo, oo)) is derived in Hille-Phillips [35; p. 574]
by the same technique from Abel-boundedness (indeed, the substitution
r = e~ι shows that cbv is identical with the moment sequence space used
there).

11.3. Laguerre series with weight. Choose X = Ll(0, oo), w(x) =
xae~% a > - 1 , 1 ^ p < oo, H = L2

w(0, oo), where
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U(0, oo) = {/; H/IU = (j~ \f(x) f afe-dxy* <

Define projections on H with the aid of the Laguerre polynomials Lk

a)(x),
a> - 1 (cf. Sec. 4.4) by

Pl«f(x) = [r(a + l)lk * a)l ^J{u)Ua\u)u«e-«du^Uk

a){x) {a > -1) .

Then the projections {Pk} c [H] are mutually orthogonal, and satisfy the
representation / = Σ£U Pίca)f for any fe H since

limΓ ±Pίa)f{x)-f{x)
7l->oo JO k = 0

xae~xdx = 0 (a > -1)

this being not so for p Φ 2 as was indicated by Pollard [16]. Furthermore,
Pia)(H) c X for any keP, and the finite linear combinations Π of Lk

a)(x)
are dense in Ll, 1 ̂  p < °o. Indeed, each feLζ can be approximated
by a continuous function g with compact support in the L^-norm (cf. [39;
p. 45]), and the procedure described in Stone [40; p. 76] may be applied
to g so that the (ordinary) polynomials are dense in Ll, thus also Π is
dense in Ll (see also [41; Sec. 5.7]).

Again, Muckenhoupt [37] has verified our hypothesis (10.2),

(feΠ).

This result is again best possible in the sense that the (C, i)-means of
Σ Pka)f are not uniformly bounded for any j e N unless p = 2. In fact,
following a written communication of Professor Askey, one may use the
method of Askey-Hirschman [2] for the function ecx e Ll, 1/2 < c < 1/p,
1 ^ P < 2 (a duality argument then gives the assertion for p > 2). Thus
with the aid of the generating function for Laguerre polynomials [8; p.
189, (17)] it is clear that for - oo < c < 1/2

Since both sides are analytic in c for Re c < 1, this relation yields \\ Pk\\ =
O[c/(1 — c)]k, 1/2 < c < 1, in contradiction to (7.6) which is necessary for
the (C, i)-means, j e P, to be uniformly bounded.

Before restating the results of Sec. 11.1 we note that a natural closed
linear extension of Bβ for β = 1, ψ = { — &}, is given by the differential
operator B1 = x(d2/dx2) + (α + 1 - x)(d/dx).

COROLLARY 11.4. Lei X be given as above.
a) For 0 < /3 ̂  fc ̂  1 owe Λαs ίfee Jackson-type inequality
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Wκ(p)f(x) - f(x) \p xae-*dxJlP £ C7r '(£ | B'f(x)

for all feX^, where ψ = { — kβ} generates the closed operator Bβ.
b) There holds the Zamansky-type inequality

# + (a + 1 - x)A-)2p2(p)f £ Cy II P2(p)f - f\\p,w (fe X) .
dx2 dx/ p,v>
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