
Tόhoku Math. Journ.
27(1975), 153-173.

CENTRAL APPROXIMATION PROCESSES

To Prof. Dr. Hellmuth Kneser, on his 75th birthday, 16 April, 1973

BERND DRESELER AND WALTER SCHEMPP

(Received January 19, 1973)

1. Introduction. The first investigations which are concerned with
the saturation behaviour of approximation processes of the convolution
type on general locally compact abelian topological groups are due to
H. Buchwalter [7]. His brief sketch was followed by the recent papers
[17, 18], [42] which contain a detailed and extended treatment of the
locally compact abelian case by means of the quasimeasure concept. In-
spired by the results of S. Pawelke [35], the study of saturation theory
on compact (not necessarily abelian) groups was initiated by the junior
author [16]. Some of the results of his thesis were announced in [15].
The methods employed in these papers are based on the Peter-Weyl de-
composition theorem and remain to a certain extent in the algebraic
domain.

On the other hand the constructive approximation theory on Lie groups
has made some progress in the past years. In this connection we shall
refer the reader to the papers by P. L. Butzer-H. Johnen [9], H. Johnen
[25-27], R. A. Mayer [29-33] and D. L. Ragozin [37-40]. It is the primary
objective of the present paper to apply the general methods as developed
in [16] to the study of the saturation behaviour of central approximation
processes on compact Lie groups G. In particular, the approximations
by the heat-diffusion semigroup and by the Poisson semigroup which both
are, as is well known, closely connected with hypoelliptic partial differen-
tial equations, will be treated (Sections 4 and 5). Since it is shown in
[15, 16] that the techniques to deduce our saturation theorem for central
approximation processes on compact Lie groups (Theorems 2 and 3 in
Section 3 infra) apply also for zonal approximation processes on compact
homogeneous spaces associated with Riemannian symmetric pairs, we
shall deal in Section 6 with the interplay between zonal and central ap-
proximation processes on the compact Euclidean unit sphere SB. Finally,
Section 7 is devoted to an investigation of the approximation processes
of the de La Vallee Poussin type and of the Fejer type on the special
unitary group SU(2).
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2. Notation, Terminology and Preliminaries. Throughout this paper
G will denote a real compact connected Lie group with neutral element
1 e G and Haar measure v which is assumed to be normalized by v(G) =
1. Let g"(G) = Πm̂ o £??(G) be the complex vector space of all infinitely
differentiable complex-valued functions on G. We shall provide £?(G)
with the topology of uniform convergence of the functions and of all
their derivatives. Then the strong topological dual S?'(G) of the Frechet
space I?(G) consists of all complex distributions on G. The space g*'(G)
is a complex locally convex topological algebra with respect to the (jointly
continuous) convolution product

(R, S)~>i2*S

of distributions. Moreover, the Dirac measure εx forms the neutral ele-
ment of g"(G) and the mapping

which is the transpose of the continuous linear mapping

&(G) a/~> (/*: GBX~>/(x-1) eC)e gf (G) ,

is an involution of g"(G). The involutive topological C-algebra gf'(G) is
said to be the group algebra of G.

In the sequel, Λiβ) — g"°(G) will denote the involutive Banach algebra
of all complex Radon measures on G under convolution and Ssf(G) will
stand for the complex involutive Banach algebras I/(G) = L£(G; v), pe
[1, + oo [, and ^°(G) simultaneously. Thus the injections of the sequence

are monomorphisms with respect to the category of involutive topological
C-algebras. It will be convenient to denote the canonical norms of S*f(G)
and *s#(G) by the same symbol || ||.

It is well known (J. Dieudonne [14]) that L2(G) is a complex (com-
plete) Hubert algebra with respect to the standard scalar product. In
view of the spectral theorem of Ambrose-Gurevic let the external Hubert
sum

( 1 ) () 0
λeΛ(G)

be the specfral decomposition of L2(G). Using the picturesque terminology
of J. Dieudonne [13] for some ring theoretic concepts, the feet {aλ\ λe Λ(G)}
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are minimal self-adjoint two-sided ideals of L2(G) and also of ^
Moreover, each foot α^λ e A(G)) is a lame (complete) Hubert subalgebra
of L2(G) which has a (self-adjoint) identity element ux and the (finite)
dimension

dimc aλ = uλ{ΐ) = n\ (λ e Λ(G)) .

Here the natural number

nλ = \\uλ\\ =

denotes the longitude of the foot aλ. In the following α^ will always
denote the trivial foot of dimension n\ = 1 which consists of the constant
complex-valued functions on G. It should be observed that the socle of
the ring L2(G), i.e. the (algebraic) direct sum

which is a vector subspace of ^(G), is an everywhere norm dense two-
sided ideal of S*f(G). Moreover, according to the Peter-Weyl theorem,
there exists a bijection η of the set {aλ \ λ e Λ(G)} onto the dual object G
of G such that the group character

associated with the foot aλ and the equivalence class η(aλ) e G of con-
tinuous irreducible unitary representations of G are interrelated according
to the equation

Tr (y(cιλ)) = χλ

for any parameter λ e Λ(G).
Choose an orientation on G and equip G with a (fixed) Riemannian

structure such that the associated metric g is invariant by both right
and left translations. Since G may be identified with the Riemannian
homogeneous manifold G x G modulo the diagonal ofGxG such a choice
is indeed possible. Let A = Δg be the Laplace-Beltrami operator on G
with respect to the Riemannian metric g. Then

A: gf (G) 9/-> div, (gradff /) = * d * d/

where * denotes the Hodge star with respect to the oriented Riemannian
structure of G. It is a well known consequence of Schur's lemma that
(1) represents a discrete spectral decomposition of L2(G) with respect to
the self-ad joint positive-definite elliptic differential operator — A. For the
corresponding eigenvalues ζx (λ e A{G)) we have
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ζ,0 = 0, ζλ > 0 for XeΛ(G)\{\0}

and the countable family-

Spec (G, g) = {ζλ j λ G Λ(G)}

is said to be the (discrete) spectrum of the compact connected oriented
Riemannian manifold (G, g). In particular, the space of all harmonic
functions G—*C coincides with the trivial foot α v

3. Approximation Processes on Ssf(G). Let T be a non-empty di-
rected set of parameters. A family (It)teτ of continuous C-linear mappings
It: Sxf(β) —• J*f{G) is said to form an approximation process on the com-
plex Banach space Jzf(G) if it converges pointwise with respect to the
section filter of the directed set T towards the identity automorphism of

i.e. if

\im\\It(f)-f\\ = 0
teT

holds for each function
As usual R* = JO, +°o[ = iί+\{0} will denote the open positive real

half-line.

DEFINITION 1. The approximation process (It)teτ on Sf(β) is said to
have the saturation structure (φ; Ssf(β)\ V) iff the following conditions
are satisfied:

( I ) There exists a mapping φ: T-+ R% fulfilling lim ίeΓ <£>(£) = 0 such
that fe J^(G) and

(2) HI*ω-/ll =
imply

(II) There exists a vector subspace V of S*f(G) such that
and the condition

(3) \\It(f)-f\\ = O(φ(t)) (teT)

imply feV.
(Ill) Conversely, if fe V then / satisfies the condition (3).
In this case, V is called the Favard space of the saturation structure

(φ; J ^ ( G ) ; V).

After having reviewed these general concepts, let us now turn to
an important special class of approximation processes (of the convolution
type) on Ssf{β). We shall agree to retain the preceding notations. In
addition, denote by ^ l ^ ( G ) the center of the complex involutive Banach
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algebra ^(β) so that ^L^(G) is a closed involutive subalgebra of
^£(β). Observe that Ssf(G) is in particular a Banach %l^f(G)-moάύle.

DEFINITION 2. A family (μt)teτ of complex Radon measures which
belong to the convolution algebra %[^f(G) is said to form a central ap-
proximate unit for J%f(G) if the relations

μt{G) = 1 for any t e T

and

||/W/H
teT

hold for any function fejχ?(G).

Define for any parameter t e T the continuous linear mapping

It: Sf(β) 9/~> μt */€ sf(β) .
Then (It)teτ is said to be a central approximation process which is gen-
erated on S/{β) by the approximate unit (μt)teτ.

REMARK 1. Since J%f{G) is a Banach L^Gj-module, any central ap-
proximate unit for L^G) is also a central approximate unit for J*f(G).
See E. Hewitt-K. A. Ross [22], Chapter VIII.

Before presenting a general saturation theorem for central approxi-
mation processes, we shall make a few observations and introduce some
further concepts. Since each foot aλ is a two-sided ideal of the complex
Banach algebra ^£(β) it follows that %*^(β) * uλ is a vector subspace
of the center ^ α ; for each λ e A(G). On the other hand, since α; is a
simple complex algebra, its center ^ax is isomorphic with the field C.
Denoting by X the Gelfand functor, i.e. the contravariant functor from
the category of complex commutative Banach algebras with identity to
the category of compact topological spaces which assigns to each object
of the first category its space of characters, we obtain the following

THEOREM 1. For any λ e A(G) define

cλ: %lst(G) 3 μ-> — \ ΰλ(x) d μ(x) e C .
n\ JG

Then we have cλ e X(^^?{G)) and the identity

μ*uλ = cλ(μ) uλ

obtains for any measure μe ^L^(G).

REMARK 2. Y. Kawada [28] has shown that the identity

= {cλ I %TU{G) \ λ G Λ(G)}
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obtains. See also E. Hewitt-K. A. Ross [22], Chapter VII.

DEFINITION 3. A central approximate unit (μt)teτ for j^f(G) is said
to be a (central) pro-saturation measure of type (φ; ψ) with respect to
Jϊf(G) iff the following requirements are satisfied:

There exists a function φ:T-+R* satisfying limteτφ(t) = 0 and a
function ψι Λ(G) —• C where

ψ(χ) φθ for λ e Λ(G)\{X0}

in such a way that

lim c ^ ~ 1 = ψ{X)

holds for all XeΛ(G).

REMARK 3. Let if be a closed subgroup of G, with normalized Haar
measure vKf such that (G, K) forms a Riemannian symmetric pair. See,
for instance, R. R. Coifman-G. Weiss [12]. Then (G, K) is a Gelfand
pair, i.e. the convolution algebra ^f(K\G/K) of all complex Radon meas-
ures on G which are bi-invariant with respect to K, is a commutative
involutive Banach algebra with the identity element vκ. Denote by

U{GIK)= φ UG/K)
λeΛκ(G)

the spectral decomposition of the complex Hubert space U(G/K) which
is deduced from (1) and by (ωλ)XeΛκiG) the family of associated zonal
spherical functions. Then the mapping

cλ: ^t(K\G/K) sμ~*-L[ ώλ(x) d μ{x) e C

nλ JG

is an element of the space X(^f(K\G/K)) for any λ e ΛK(G) and we have

μ*ωx = cλ(μ) ωλ

for all measures
Thus, by a generalization of Definition 3, the concept of zonal pro-

saturation measure and, similarly, of zonal approximation process can
be considered for symmetric pairs. Details of a saturation theory which
is generalized in this direction may be found in [16] and [19]. Clearly,
if the subgroup K is the diagonal of G x G, the notion of central pro-
saturation measure for G and of zonal pro-saturation measure for (G x
G)/K coalesce. We shall return to this question in Example (ii) of Sec-
tion 6 infra.

We shall assign to s*f(G) a complex Banach space &(G) according
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to the following rule:

gf°(G) if jχ?{G) = U(G)

&(G) = - U(G) if jf{β) = gf °(G)

LP'(G) if £/{β) = I/((?) and pejl, +oo[ .

As usual, pf denotes the dual exponent of p. Under these circumstances,
we shall refer to (J^(G), &{G)) as an adapted pair. Bearing in mind
this terminology, we establish the following saturation theorem.

THEOREM 2. Let (It)teτ be an approximation process which is gen-
erated on J^f(G) by the central pro-saturation measure (μt)teτ of type
(φ; τ/r) with respect to J*f{G). Suppose that (sf(G), &(G)) is an adapted
pair and define

Ψψ(Szf(G)) = {f e j^(G) \ ψ(λ) uλ*f = uλ* p, p e &'{G), λ e Λ{G)} .

Then (It)teτ has the saturation structure (φ; Ssf(G)\ V) where the Favard
space V satisfies the condition

PROOF. (I) Suppose that the function fe J^(G) satisfies the condition
(2), i.e. that

holds. Then we obtain

= 0

ι i m c λ ( μ t ) - l . U λ * f = 0 ,
teT <p(t)

hence

uλ*f= 0

for any λ e Λ(G). It follows u2 *f = 0 for λ e Λ(G)\{\0}. Let g = f - uk */.
Then g e U(G) and uλ * g = 0 for each index λ e Λ(G). A familiar limiting
argument yields g = 0. Hence f = uλo*fe α v

(II) Suppose that fej*f{G) satisfies the condition (3). For brevity,
define the function

Qt(f) = - ^ " ( A */ " /)

for any teT. The task will be to show that the existence of a section
S of the directed set T and the existence of the upper bound
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+00
teS

imply the existence of an element p e &'(G) which verifies the identity

(4) ψ(\)-uλ*f=uλ*p

for each XeΛ(G). We provide &\G) with the strong dual topology
β{^'(G), &(G)). Since (J^(G), &{G)) is an adapted pair, there exists
a natural isometric isomorphism of the complex involutive Banach algebra
jχ?(G) onto a closed subalgebra of &\G). Let Stf(G) be identified with
its image under this isomorphism. Owing to the Alaoglu theorem, there
exists a cofinal subset To of S and an element p e &\G) such that

lim Qt(f) = p
teT

holds with respect to the weak dual topology σ(&'(G), &{G)). In par-
ticular, for any XeΛ(G), the identity

(5) lim uλ * Qt(f) = uλ*p
teT0

holds with respect to the topology of pointwise convergence. On the other
hand, the equality

(6) lim uλ * Qt(f) = iKλ) ^ * /
teTΌ

obtains pointwise for any XeΛ(G). Combining (5) and (6) we obtain the
desired identity (4).

This completes the proof of the saturation theorem.—

REMARK 4. Theorems 4, 5 and Theorems 7, 8 infra will show that,
in general, the "set theoretic estimate" Tψ(Ssf(G)) for the Favard space
V can not be improved.

In order to establish a further characterization of the space Tψ(J^(G))f

we shall recall the concept of relative completion in the sense of E.
Gagliardo [21], N. Aronszajn-E. Gagliardo [1] and H. Berens [4].

Let (X; II | | x ) , (Y; \\ \\γ) be complex Banach spaces. Suppose that
the inclusion XaY holds and that the canonical injection X^—> Y is
continuous and has norm 5g 1. The completion [X, Y]o of X relative to
Y is the complex vector space of all limits with respect to the norm
topology of Y of those sequences (scn)n*i in X which are bounded with
respect to || | | z . The natural norm

[X,Y]03V~* inf

turns [X, Y]o into a complex Banach space. It is to be emphasized that
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the identity [X, Y]o = X holds in the case when the space Xis reflexive.
Let (J^(G), &(β)) be an adapted pair and ψ: Λ(G) —• C be any mapp-

ing. The graph norm

where p e &'(G) is the unique element associated with / according to
the equations

α/r(λ) Uλ*f = Uλ*p (λ G Λ(G)) ,

turns 3^(J^(G)) into a complex Banach space. In a similar way, define
the complex vector space

^Ψ(J^(G)) = {fe J^(G) I ψ(x) -uλ*f=uλ*g,ge J*{G), λ e Λ(G)} .

Then cWψ{Ssf(G)) is a Banach space when equipped with the graph norm

S^(j^(G)) a / - | | / | μ = | | / |l + \\g \\ .

Now Ύψ(S/(β)) admits the following characterization:

THEOREM 3. Retain the above notations and assumptions - then the
identity

TΨ{J^{G)) = [ ̂ ( J ^ ( G ) ) , J^(G)]O

obtains.

PROOF. Let us suppose that Ssf{G) = U{G) holds and let/6 ^(L^G))
be fixed. In view of a result due to E. Hewitt-K. A. Ross [22], Chapter
VII, it is possible to construct a central approximate unit (hnv)n^ for
U(G) such that hne<&h2{G) and \\hnv\\ = l for any integer n^l. Let
p e ̂ £(β) be the Radon measure associated with / such that ψ(λ)uλ *f =
uλ*p holds for any XeΛ(G). This being so, it then follows that

K*fe

Conversely, let fe [W'iUiG)), L'(G)]0 be given. Choose sequences
£! and (gn)nzι in the space L'(G) such that

it; * / . = Ui*9» (n ^ 1, λe
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By virtue of the Alaoglu theorem, the subsets of ^ ( G ) which are bo-
unded with respect to the strong dual topology are relatively sequentially
compact with respect to the vague topology. This fact implies the ex-
istence of a subsequence {gnkv)k^i of the sequence (gnv)n^ and of a Radon
measure p e ^C(G) such that

lim g v = p
k-*oo

holds with respect to the vague topology of ^(G). Consequently, the
equations

lim uλ *gn]e = uλ*ρ (λe Λ(G))

k-*oo

and

lim f{X)uλ *fnk = uλ* p (λ€ Λ(G))

hold with respect to the topology of pointwise convergence. In particular

ψ(λ)Uχ *f = Uλ * p

obtains for any λeΛ(G), i.e. fe Tir(V{G)) and | | / | | 0 =
Summing up, we have proved the equality S^(J^(G)) = [

in the case J*?(G) = L^G). If j*f(G) = &\G), the proof follows
in a similar fashion. Finally, for Ssf(G) = I/(G) and pejl, +°°[, the
statement of the theorem is immediate from the reflexivity of the spaces
I/(G).-

In the special case when G = T is the one-dimensional torus group,
a proof of Theorem 3 based on the convergence theorem for Fejer means
may be found in the monograph by P. L. Butzer-R. J. Nessel [10],
Chapter 10.

4. The Heat-Diffusion Approximation Process. Let us agree to re-
tain the notations and conventions introduced in the preceding sections;
in particular R\ denotes the open positive real half-line, equipped with
the induced Lebesgue measure at.

We first define by means of Spec (G, g) the family of functions

(7) fc:Λϊ3t

Let now the value te R* be fixed and consider, following E. M. Stein
[44, 45], the continuous endomorphism exp {At) of the complex Banach
space L2(G). Since the positivity of the resolvent of A on Rl implies that
the restricted operator

exp (At):
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is a positive linear mapping, there exists exactly one (positive) Radon
measure μt e ^*C(G) such that μt{G) = 1 and

exp {At): &\G) 9/—/* μt e &\G)

holds. By an extension to L2(G), we infer the identities

uλ * exp {At)f = exp (At)(uλ * /) (λe Λ(G))

for any function fe L2(G). The spectral decomposition (1) then shows that

holds in the complete Hubert algebra L2(G). Consequently, the kernel
function

λeΛ(G)

is an element of the complex Frechet space L2

0C (R* x G).
As usual, let &(R* x G) be the complex vector space of all infinitely

differentiable complex-valued functions on the manifold Rt x G whose
support is compact. Provide the space 3$(R% x G) with the canonical
^fj^ topology and let £&'(R+ x G) be its strong topological dual which
consists of all complex distributions on R* x G. Then we have

Sf\R% xG) = &'(R%) ® gf'(G)

and we may identify the Frechet space Lfoc {R% x G) with its image under
the continuous injection

h -> h (at (x) v) .

Let the heat-diffusion operator d/3ί — J be operating from the space
£&'{R% x G) into itself as a continuous linear mapping. We observe that
for an arbitrary finite subset Λo of Λ(G) the function KQ — X ^ t f ; (x)^
which belongs to g"(Λ* x G) satisfies the heat-diffusion equation (d/dt —
A)K0 = 0. We obtain therefore the identity

(— - A)K = 0 in ^ ' ( Λ ϊ x G).

On the other hand it is a well known fact that the parabolic differential
operator d/dt — A is hypoelliptic: see, for instance, F. Treves [46], Chapter
7. It follows that the singular support of K in R* x G is empty, i.e.

Ke &(R* x G) = gf (/?ΐ) (§)

Therefore we have

μt = K(t, )v (teJB?)
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i.e. the Radon measure μt admits the central function K(t, •) as its
Lebesgue-Nikodym density with respect to the base v.
From the fact that (exp (Δt))teR+ forms a strongly continuous one-parame-
ter Markovian semigroup in Ssf{G) which admits Δ as its infinitesimal
generator (see too N. Dunford-J. T. Schwartz [20], Chapter XIV), we
infer that the generating family (μt)ίe«j is a central approximate unit for

G Moreover we have the following result.

THEOREM 4. The heat-diffusion approximation process (exp (Δt))teR*
on Stf(G) is central. It has the saturation structure (φ; S*f(G); Tf{J*f{G)))
where the mappings φ, ψ are defined in the following way:

φ: R% 31 ~> t ψ: Λ(G) B λ ~> - ζλ .

PROOF. For the character c ; e I ( Z ^ ( G ) ) defined in Theorem 1 we
obtain in the present case obviously

cχ(μt) = Qχ{t)

for any pair (λ, t)eΛ(G) x R*. It follows that (μt)teR* forms a central
pro-saturation measure of type (φ; ψ) where the functions φ and ψ are
defined as indicated above. Let V denote the Favard space of (exv(Δt))teR*
with respect to Jϊf(G). By virtue of Theorem 2 which ensures the va-
lidity of conditions (I) and (II) in Definition 1, and in view of Theorem
3 it suffices to prove that the inclusion

holds.
(Ill) Let any function fe [ W~ψ(Sf{G)), J^(G)]0 be given. Choose

sequences (/n)n*i and {gn)n^ in Ssf(G) such that

tti Λ = tt2*0. (n ^ 1, λ e Λ(G))

sup | |Λ |U = sup (||/. || + || ff. ||) = Λf < + oo

A direct computation shows that the identity

exp (Δt)fn - fn= ['exp (Δτ)gndτ
Jo

obtains for any n ^ 1 and teR\. It follows

for te R*. Thus we have

|| exp (Δt)f - f\\ = O(φ(t)) (t - 0 + ) ,
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i.e. feV and the proof is complete.—

Let Dom (A) denote the domain of the infinitesimal generator A of
the heat-diffusion semigroup (exp (At))teR+ in J^f(G). Taking into account
a general theorem due to H. Berens [4], we obtain furthermore the fol-
lowing result.

COROLLARY. The approximation process (exp (At))teR* on Szf{G) has
the relative completion

V = [Dom (A), J^(G)]Q

as its Favard space.

5. The Poisson Approximation Process. We continue to follow the
treatises of E. M. Stein [44, 45] in replacing the family (qχ)λeΛ(G) in (7)
by the functions

p2: Rtst~> exp {-V~ζ~it) (λ e Λ(G)) .

Then the Poisson kernel

P= Σ
XeΛ(G)

associated with the compact Lie group G belongs to the space ~L2

loe (R% x
G). Denote by

the Laplace-Beltrami operator of the Riemannian manifold i?ΐ x G and
assume that A acts on the space 2r\R\ x G) of distributions. Then P
is a harmonic distribution on R% x G, i.e.

AP = 0 in &r'(Rl x G) .

Therefore an application of WeyΓs regularity lemma shows that P is a
harmonic function on R* x G. In particular, we have P e ί?(R* x G).
Define the Radon measures

on G. Then the family (πt)teR* forms a central approximate unit for
J^(G). The associated strongly continuous one-parameter Markovian
semigroup (exp(—V— A t))teR+ has —V—A as its infinitesimal generator.

THEOREM 5. The Poisson approximation process (exp(—λ/—A t))teR*
on Szf{G) is central. Define the mappings

φ:R*+3t~*t ψ:Λ(G)3X~> - l/ζΓ

Then (exp (— V — At))teR* has the saturation structure (φ;
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and the identity

TΨ{J^{G)) = [Dom(-l/=Z), J^(G)]0

obtains for the associated Favard space.

The proof is based on Theorems 2 and 3 supra and follows by an
application of the method outlined in Section 4. We omit the details.

REMARK 5. Let α e ] 0 , 1[. Needless to say, there are analogous
results concerning the saturation behaviour of the central approximation
processes (exp (—(—Λ)at))teR* on Jϊf(G). A discussion of this case, of
course, depends upon the concepts of fractional differentiation and in-
tegration. See, for instance, P. L. Butzer-H. Berens [8], Chapter II, and
the recent paper by H. Bavinck [3]. We shall return to these problems
within our general framework in a forthcoming paper.

6. Applications I. (i) Let G be an ^-dimensional abelian compact
connected Lie group. Then G is isomorphic with the Euclidean torus
Tn = Rn/Zn = (R/Z)n of dimension n. We shall identify the integral lat-
tice Zn with its dual one, i.e. with the lattice of all vectors x e Rn such
that the scalar product (λ | x) belongs to Z for all λ e Zn. Then we have

Λ(Tn) = fn = Zn .

If Rn 3 x ~> x e Tn denotes the canonical epimorphism, we obtain for any
wave number Xe Zn in the present case

nλ = 1

uλ = χ ; : Tn 3 x —> e x p ( 2 7 r ί ( λ \ x ) ) e C

cλ: ^ί(Tn) 3μ~> J^>(λ) e C

where &*\ ^/έ(Tn)—> (g\Zn) stands for the classical Fourier transforma-
tion.

Let the manifold Rn be endowed with its canonical orientation and
with its canonical Riemannian structure such that the corresponding
metric g0 induces the Euclidean norm | |. Denote by gQ/Zn the unique flat
Riemannian metric on Tn such that (Rn, g0) is the universal Riemannian
covering manifold of {Tn, go/Zn). Then we obtain

Spec (T\ go/Zn) = {4ττ2| λ |2 j λ e Zn}

and the heat-diffusion kernel K admits in the present case the following
expansion in a theta series:

K: (Λ; x Tn) 9 (ί, x) -> Σ exp (2ττi((λ | x) + 2πit(X | λ))) = ΘQ(τtf x) .
λ z n
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Here Θ0(τt, •) denotes the classical theta function of characteristic 0 and
of modulus

τt = Aπit ln (te R*)

where ln stands for the (n, n) identity matrix. Therefore τt belongs to
the Siegel upper-half space of degree n: see, for instance, J. Igusa [24],
Chapter I.

An application of Theorems 4 and 5 in the present situation fur-
nishes results due to R. J. Nessel-A. Pawelke [34]. If we assume n = 1,
the Cauchy problem which is solved by the heat-diffusion semigroup
(exp {At))t£R+ in J^(T) is known as the "Fourier torus problem" (A.
Sommerfeld [43], Kapitel III). Detailed treatments of this problem and
of the corresponding Dirichlet problem from the saturation theoretic point
of view may be found in the monographs by P. L. Butzer-H. Berens [8]
and P. L. Butzer-R. J. Nessel [10]. Also see [17] for a study of satura-
tion on abelian quotient groups.

(ii) Now suppose that the compact connected Lie group G is dif-
feomorphic with the standard sphere Sn^ of an Euclidean space Rn(n ^ 1).
Since So is not connected and S1 is diffeomorphic with the torus T as
treated in Example (i) supra, we may suppose n Ξ> 3. Then, according
to a well-known result due to H. Samelson [41], only the choice n = 4 is
possible. Indeed, the Lie group SU(2), the group of unit quaternions, is
diffeomorphic with the sphere S3 and SU(2) acts as a subgroup of the
special orthogonal group SO(4) in a natural way transitively by rotations
on S3. As usual, let

be the family of weights, where N = Z+.
Let the compact manifold S3 be oriented to the exterior and let it

be endowed with the Riemannian structure induced by the canonical
structure of i?4. Denote by g the Riemannian metric of S3. A direct
computation (cf. M. Berger-P. Gauduchon-E. Mazet [6]) shows that

nλ = 2λ + 1 ίχe—N)

Spec (SU(2), g) = U\(\ + 1) j λ e — N

In order to obtain explicitly the units v,χ and the characters χλ

(λ G (l/2)iV) of the spectral decomposition of L2(SU(2)), fix the North pole
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1 = (0, 0, 0,1) e R4 of Sz. Then we may consider SO(3) as the stabilizer of 1
in the rotation group SO(4) and identify S3 with the compact homogeneous
manifold SO(4)/SO(3). Since (SO(4), SO(3)) is a Riemannian symmetric
pair, we obtain for the unit u2 the identity

where Zϊλ denotes the zonal surface spherical harmonic of degree 2λ
with pole 1 on S3. See, for instance, R. R. Coifman-G. Weiss [11, 12].
Thus, for any λ e (1/2)JV, the character χλ takes the following form:

Here IEV2 '1 '2^) £ R[X] denotes the ultraspherical polynomial (Gegenbauer
polynomial) in the indeterminate X of degree 2λ with exponent 1/2 i.e.
the Cebysev polynomial of the second kind

osmsc;] m!(2λ — 2 m ) !

The heat-diίfusion kernel K and the Poisson kernel P admit therefore the
following expansions in Laplace series:

K: B%xSs3 (t, (XJUJ^)- Σ exp (-4λ(λ + l)ί) . (2λ
λe(H2)N

P: R*+ x S3 B (t, (Xi\Λi*ύ -* Σ exp (-2l/λ(λ + l)ί) (2λ + 1) Πίf'^ί^
J ( l / 2 ) Λ Γ

Equip the sphere 53 with the normalized Lebesgue surface measure
which may be identified with the Haar measure v of SU(2). Then an
application of Theorems 4 and 5 to the special unitary group SU(2) yields
results which are concerned with the saturation behaviour of the ap-
proximation of functions fe J^(S3) performed by Laplace expansions in
Cebysev polynomials of the second kind.

At this juncture, bearing in mind the notion of zonal approximation
process [19] as outlined in Remark 3 supra and the fact that the com-
mutative complex Banach algebras ^T(SO(3)\SO(4)/SO(3)) and ^ ^ ( S U ( 2 ) )
may be identified, we shall summarize the preceding considerations in the
following

THEOREM 6. On the compact unit sphere S3 in R\ the zonal ap-
proximation processes with respect to the compact homogeneous manifold
SO(4)/SO(3) and the central approximation processes with respect to the
special unitary group SU(2) coalesce.
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For further results concerning saturation theory on spheres we refer
to S. Pawelke [35] and H. Berens-P. L. Butzer-S. Pawelke [5]. Also see
S. Pawelke [36]. Details for saturation on general compact homogeneous
spaces may be found in [15, 16].

7. Applications II. In this section we shall continue to study central
approximation processes on the Lie group SU(2). In order to adopt the
conventions of R. A. Mayer [29, 30], let us now parametrize the spectral
decomposition of L2(SU(2)) by the set

Λ(SU(2)) - iV* .

Henceforth we will write

2

for the weights of SU(2). Let us identify SU(2) and S3 as in Section 6.
Then we have

(k e N*) .

(iii) In the algebra ^L^(SU(2)) define the sequence (μn)n>0 by letting

Obviously μ»(SU(2)) = 1. Since μn^0 (R. A. Mayer [30]) it follows

| |AJ| = 1 (neN).

Consequently, the continuous linear mappings

V%: 1/(811(2)) 9/~> μn *fe 1/(811(2)) (n e N)

are contractions. Therefore (Vn)n>0 forms an equicontinuous family which
converges pointwise on the socle @L2(su(2)) towards the identity automor-
phism of L1(SU(2)). Since @L2(su(2)) is everywhere norm dense in L1(SU(2)),
it follows from Remark 1 supra that (μn)n>ι is a central approximate unit
for J^(SU(2)) which generates the approximation process (FΛ)Λ^i of the
de La Vallee Poussin type on j^(SU(2)). In the present case we obtain

whence
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I ί m cΛ(μn) - 1 = 1 _ ¥

for any keN*. Therefore (μn)n^ι forms a central pro-saturation measure
of type {n~*lln, k~» 1 - k2) with respect to

THEOREM 7. The approximation process (Vn)n^ on j^(SU(2)) of the
de La Vallee Poussin type is central and has the saturation structure
(φ; J^(SU(2)); 3^(SU(2))) where

φ: iV* 9 n ~> — ψ: N* 3 k -> 1 - Λ2 .

PROOF. Let F denote the Favard space of (Vn)n^ with respect to
J^(SU(2)). In view of Theorems 2 and 3 it suffices to prove that the
inclusion

), J/(SU(2))] 0 cF

holds.
(Ill) Let the function / e [ ̂ (SU(2)), J^(SU(2))]0 be given. There

are sequences (fn)n^ and {gn)n^ in the space J^(SU(2)) such that

f(k)uk */„ = uk*gn (n ̂  1, A; ̂  1)

| + ||srπ | |) = M < +00 .

Since the identity

f(k)ck(μj) = -j(j + 2)(ck(μj) -

holds for any pair (k, j) e iV* x N*, we obtain for all integers r ^ m ̂  1:

Fm(Λ) - Vr(fn) = Σ v . i o , Vά{gn) (n e N*) .
m + l^i^r ^ ( ^ + 2)

Thus the estimate

/.ll^itf Σ - — ^ )
2)

obtains. Hence feV and the proof is complete,

(iv) Finally, let

j".-i = ( Σ A;2)" ( Σ kχk)\ (n e N*) .

As in the preceding section it can be shown that the sequence (μn-ι
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forms a central approximate unit for J3/(SU(2)). Since the identity

- 6(2n +

8kn(n + ΐ)(2n +

obtains (R. A. Mayer [30]), it follows

lim c*fr*»-i> " * = - A
— . l/(n - 1) 2 k

for A eiV*.

THEOREM 8. The central approximation process (i^_i)%2>i on J^(SU(2))
o/ ί/te Fejer type which is generated by the approximate unit (μn-i)n*i
for J^(SU(2)) has the saturation structure (φ\ J^(SU(2)));
where

φ : N s n , ψ : N s k l
n 2 k

Since the proof of Theorem 8 is similar to the preceding one, we may-
omit the details. For further results concerning summation processes on
the special unitary group SU(2) we refer to R. A. Mayer [31-33].

8. Conclusion. Let us briefly review Sections 4, 5 and 6. As it
was pointed out by E. M. Stein [45], his construction of the heat-diffusion
semigroup (exp {Δt))teR+ and of the Poisson semigroup (exp (-V — Δ t))teR+

which is based on the celebrated paper by G. A. Hunt [23], can be ex-
tended to non-compact connected Lie groups. In this connection also see
R. Azencott [2].

On the other hand, it is a well known fact that the expansions in
series of special functions require in general the study of non-compact
Lie groups. For these reasons we shall return to saturation theory on
Lie groups in a forthcoming paper. In particular we shall draw upon
the theory of nuclear topological vector spaces.
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