ON SOME 3-DIMENSIONAL COMPLETE RIEMANNIAN MANIFOLDS SATISFYING $R(X, Y) \cdot R=0$

Kouei Sekigawa

(Received July 29, 1974)

1. Introduction. Let (M, g) be a Riemannian manifold. By R we denote the Riemannian curvature tensor. By $T_{x}(M)$ and Exp_{x} we denote the tangent space to M at x and the exponential mapping of (M, g) at x. For $X, Y \in T_{x}(M), R(X, Y)$ operates on the tensor algebra as a derivation at each point $x \in M$. In a locally symmetric space ($\nabla R=0$), we have
(*) $\quad R(X, Y) \cdot R=0$ for any point $x \in M$ and $X, Y \in T_{x}(M)$.
We consider the converse under some additional conditions.
Theorem A (S. Tanno [8]). Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold. If (M,g) satisfies (*) and the scalar curvature S is positive and bounded away from 0 on M, then (M, g) is of constant curvature.

Other results concerning this problem may be found in references. In this paper, we shall prove

Theorem B. Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold satisfying (*). If the volume of (M, g) is finite, then (M, g) is of constant curvature, and hence, $\nabla R=0$.

Corollary B. Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold satisfying (*). Then (M,g) is of constant curvature.

It may be noticed that (*) implies in particular

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \tag{**}
\end{equation*}
$$

where R_{1} denotes the Ricci tensor of (M, g).
In this paper, (M, g) is assumed to be connected, complete and of class C^{∞} unless otherwise specified.
2. Preliminaries. Let (M, g) be a 3-dimensional Riemannian manifold. Assume (*). $\operatorname{dim} M=3$ implies

$$
\begin{equation*}
R(X, Y)=R^{1} X \wedge Y+X \wedge R^{1} Y-(S / 2) X \wedge Y \tag{2.1}
\end{equation*}
$$

where

$$
g\left(R^{1} X, Y\right)=R_{1}(X, Y) \quad \text { and } \quad(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y
$$

Let $\left(K_{1}, K_{2}, K_{3}\right)$ be eigenvalues of the Ricci transformation R^{1} at a point x. Then (*) is equivalent to

$$
\begin{equation*}
\left(K_{i}-K_{j}\right)\left(2\left(K_{i}+K_{j}\right)-S\right)=0 \tag{2.2}
\end{equation*}
$$

Therefore we may have only three cases:

$$
(K, K, K), \quad(K, K, 0), \quad(0,0,0) \text { at each point. }
$$

First, if $(K, K, K), K \neq 0$, holds at some point x, then it holds on some open neighborhood U of x. Hence U is an Einstein space, and K is constant on U and on M. Therefore (M, g) is of constant curvature (cf. H. Takagi and K. Sekigawa [6]). From now, we assume that rank $R^{1} \leqq 2$ on M. Let $W=\left\{x \in M\right.$; rank $R^{1}=2$ at $\left.x\right\}$. By W_{0} we denote one component of W. On W_{0}, we have two C^{∞}-distributions T_{1} and T_{0} such that

$$
\begin{aligned}
T_{1} & =\left\{X ; R^{1} X=K X\right\}, \\
T_{0} & =\left\{Z ; R^{1} Z=0\right\}
\end{aligned}
$$

For $X, Y \in T_{1}$ and $Z \in T_{0}$, by (2.1), we have

$$
\begin{align*}
R(X, Y) & =K X \wedge Y \tag{2.3}\\
R(X, Z) & =0
\end{align*}
$$

This shows that T_{0} is the nullity distribution. Since the index of nullity at each point of M is 1 or 3 , the nullity index of (M, g) is 1 . Thus integral curves of T_{0} are geodesics (and complete if (M, g) is complete) (cf. Y. H. Clifton and R. Maltz [2], etc.). Let (E_{1}, E_{2}, E_{3}) $=(E)$ be a local field of orthonormal frame such that $E_{3} \in T_{0}$ (consequently, $E_{1}, E_{2} \in T_{1}$) and

$$
\nabla_{E_{3}} E_{i}=0, \quad i=1,2,3 .
$$

We call this (E) an adapted frame field. If we put $\nabla_{E_{i}} E_{j}=\sum_{k=1}^{3} B_{i j k} E_{k}$, then we get $B_{i j k}=-B_{i k j}$ and

$$
\begin{equation*}
B_{3 i j}=0, \quad i, j=1,2,3 . \tag{2.4}
\end{equation*}
$$

The second Bianchi identity and (2.3) give

$$
\begin{align*}
& E_{3} K+K\left(B_{131}+B_{232}\right)=0, \quad \text { or } \tag{2.5}\\
& \quad \operatorname{div} E_{3}=-E_{3} K / K .
\end{align*}
$$

By (2.4) and $R\left(E_{i}, E_{3}\right) E_{3}=\nabla_{E_{i}} \nabla_{E_{3}} E_{3}-\nabla_{E_{3}} \nabla_{E_{i}} E_{3}-\nabla_{\left[E_{i}, E_{3}\right]} E_{3}=0$, we get

$$
\begin{align*}
& E_{3} B_{131}+\left(B_{131}\right)^{2}+B_{132} B_{231}=0, \tag{2.6}\\
& E_{3} B_{132}+B_{131} B_{132}+B_{132} B_{232}=0, \\
& E_{3} B_{231}+B_{231} B_{131}+B_{232} B_{231}=0, \\
& E_{3} B_{232}+\left(B_{232}\right)^{2}+B_{231} B_{132}=0
\end{align*}
$$

(2.5) and (2.6) $)_{2}$, (2.5) and (2.6) $)_{3}$ (2.5) and (2.6) $)_{1,4}$ imply

$$
\begin{equation*}
B_{132}=C_{1}(E) K, \quad B_{231}=C_{2}(E) K \tag{2.7}
\end{equation*}
$$

where $C_{1}(E), C_{2}(E)$ and $D(E)$ are functions defined on the same domain as (E) such that $E_{3} C_{1}(E)=E_{3} C_{2}(E)=E_{3} D(E)=0$.

By (2.5) and (2.8), we get

$$
\begin{equation*}
2 B_{131}=D(E) K-E_{3} K / K \tag{2.9}
\end{equation*}
$$

Now, let $\gamma_{x}(s)$ be an integral curve of T_{0} through $x=\gamma_{x}(0) \in W_{0}$ with arclength parameter s, i.e., $\gamma_{x}(s)=\operatorname{Exp}_{x} s\left(E_{3}\right)_{x}$. Then (2.6), (2.7) and (2.9) give

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d s}\left(\frac{1}{K} \frac{d K}{d s}\right)=H K^{2}+\frac{1}{4}\left(\frac{1}{K} \frac{d K}{d s}\right)^{2}, \quad \text { along } \quad \gamma_{x}(s) \tag{2.10}
\end{equation*}
$$

where

$$
H=H(E)=D(E)^{2} / 4+C_{1}(E) C_{2}(E)
$$

(2.10) implies that H is independent of the choice of the adapted frame fields (E). Solving (2.10), we get

$$
\begin{gather*}
K=\gamma, \quad(\text { for } H=0), \quad \text { or } \tag{2.11}\\
K= \pm 1 /\left((\alpha s-\beta)^{2}-H / \alpha^{2}\right), \quad(\text { for } H \neq 0) \tag{2.12}
\end{gather*}
$$

where α, β and γ are constant along $\gamma_{x}(s), \alpha \neq 0$.
With respect to our arguments, without loss of essentiality, we may assume that M is orientable. Let (E) be any adapted frame field which is compatible with the orientation. We call it an oriented adapted frame field. Then we see that $f=\left(C_{1}(E)-C_{2}(E)\right) K$ is independent of the choice of oriented adapted frame fields, and hence f is a function of class C^{∞} on $W_{0} . f=0$ holds on an open set $U \subset W_{0}$, if and only if T_{1} is integrable on U. This is a geometric meaning of f. In the sequel, we assume that the volume of (M, g) is finite. We can see that $H=H(E)=D(E)^{2} / 4+$ $C_{1}(E) C_{2}(E)$ is a function of class C^{∞} on W_{0}. Let $W(H)=\left\{x \in W_{0} ; H \neq 0\right.$ at $x\}$. We assume that $W(H) \neq \varnothing$. Let $W(H)_{0}$ be one component of $W(H)$. By (2.12) and completeness of (M, g), H must be negative on $W(H)_{0}$. For each point $x \in W(H)_{0}$, consider $\gamma_{x}(s)$. Then $\gamma_{x}(s) \in W(H)_{0}$,
for all s. Let $x_{0}=\gamma_{x}(\beta / \alpha)$. For $\left(E_{1}\right)_{x_{0}},\left(E_{2}\right)_{x_{0}} \in T_{1}\left(x_{0}\right)$, there exists a 2 dimensional submanifold, $\left\{\varphi\left(u_{1}, u_{2}\right) \in W(H)_{0} ;\left(u_{1}, u_{2}\right) \in(-\varepsilon, \varepsilon)^{2}, \varepsilon>0\right\}$, such that $\varphi(0,0)=x_{0}$ and $\left(\partial \varphi / \partial u_{1}\right)(0,0)=\left(E_{1}\right)_{x_{0}},\left(\partial \varphi / \partial u_{2}\right)(0,0)=\left(E_{2}\right)_{x_{0}}$. Now, we define a mapping

$$
\begin{gather*}
\Phi:(-\varepsilon, \varepsilon)^{2} \times(-\delta, \delta) \rightarrow W(H)_{0} \text { by } \\
\Phi\left(u_{1}, u_{2}, w_{3}\right)=\operatorname{Exp}_{\varphi\left(u_{1}, u_{2}\right)} w_{3} E_{3}, \text { for some } \delta>0 \tag{2.13}
\end{gather*}
$$

Then Φ is of class C^{∞} and furthermore, for small $\varepsilon, \delta, V(\varepsilon, \delta)=$ $\left\{\Phi\left(u_{1}, u_{2}, w_{3}\right) \in W(H)_{0} ;\left(u_{1}, u_{2}, w_{3}\right) \in(-\varepsilon, \varepsilon)^{2} \times(-\delta, \delta)\right\}$ is a local coordinate neighborhood with origin at x_{0}. In $V(\varepsilon, \delta)$, by (2.12), we get

$$
\begin{equation*}
K= \pm 1 /\left(\left(A w_{3}-B\right)^{2}-H / A^{2}\right) \tag{2.14}
\end{equation*}
$$

where A and B are functions of class C^{∞} on $V(\varepsilon, \delta)$ such that $\partial A / \partial w_{3}=$ $\partial B / \partial w_{3}=0$ on $V(\varepsilon, \delta)$ and $A=\alpha, B=0$ at x_{0}.

By continuity of A and B in (2.14), there is $\varepsilon_{0}, 0<\varepsilon_{0}<\varepsilon$ such that $-\delta / 4<B / A<\delta / 4$, for $\left(u_{1}, u_{2}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2}$.

Now, we define a mapping $\psi:\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2} \rightarrow V(\varepsilon, \delta)$ by

$$
\begin{equation*}
\psi\left(u_{1}, u_{2}\right)=\operatorname{Exp}_{\varphi\left(u_{1}, u_{2}\right)}\left(B\left(u_{1}, u_{2}\right) / A\left(u_{1}, u_{2}\right)\right) E_{3} . \tag{2.15}
\end{equation*}
$$

And furthermore, we define a mapping $\Psi:\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2} \times\left(-\delta_{0}, \delta_{0}\right) \rightarrow V(\varepsilon, \delta)$ by

$$
\begin{equation*}
\Psi\left(u_{1}, u_{2}, u_{3}\right)=\operatorname{Exp}_{\psi\left(u_{1}, u_{2}\right)} u_{3} E_{3}, \quad \delta_{0}=\delta / 4 \tag{2.16}
\end{equation*}
$$

Then Ψ is of class C^{∞} and

$$
U\left(\varepsilon_{0}, \delta_{0}\right)=\left\{\Psi\left(u_{1}, u_{2}, u_{3}\right) \in V(\varepsilon, \delta) ;\left(u_{1}, u_{2}, u_{3}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2} \times\left(-\delta_{0}, \delta_{0}\right)\right\}
$$

is a local coordinate neighborhood with origin at x_{0}.
Between w_{3} in $V(\varepsilon, \delta)$ and u_{3} in $U\left(\varepsilon_{0}, \delta_{0}\right)$, the following relation holds:

$$
\begin{equation*}
w_{3}=u_{3}+B / A, \quad \text { in } U\left(\varepsilon_{0}, \delta_{0}\right) \tag{2.17}
\end{equation*}
$$

Thus (2.14) and (2.17) imply

$$
\begin{equation*}
K= \pm 1 /\left(\left(A u_{3}\right)^{2}-H / A^{2}\right), \quad \text { on } U\left(\varepsilon_{0}, \delta_{0}\right) \tag{2.18}
\end{equation*}
$$

Let $\gamma\left(u_{1}, u_{2}\right)$ be the integral curve of T_{0} starting from $\psi\left(u_{1}, u_{2}\right)$, $\left(u_{1}, u_{2}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2}$, i.e., $\gamma\left(u_{1}, u_{2}\right)(s)=\operatorname{Exp}_{\psi\left(u_{1}, u_{2}\right)} s E_{3}$. Then, in $U\left(\varepsilon_{0}, \delta_{0}\right), u_{3}$ can be considered as the arc-length parameter of $\gamma\left(u_{1}, u_{2}\right)$. We put $L\left(u_{1}, u_{2}\right)=\left\{\gamma\left(u_{1}, u_{2}\right)(s) \in M ;-\infty<s<\infty\right\}$. Since $\operatorname{dim} T_{0}=1$, taking account of (2.12) and (2.18), we can see that $\gamma\left(u_{1}, u_{2}\right)\left(s_{1}\right) \neq \gamma\left(u_{1}, u_{2}\right)\left(s_{2}\right)$ for $s_{1} \neq s_{2}$. From (2.12) and (2.18), $d K / d s=0$ for $s=0$ and otherwise $d K / d s \neq 0$ along $L\left(u_{1}, u_{2}\right)$, for any $\left(u_{1}, u_{2}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2}$. Thus, we can see that if $\left(u_{1}, u_{2}\right) \neq\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2}$, then $L\left(u_{1}, u_{2}\right) \cap L\left(v_{1}, v_{2}\right)=\varnothing$.

Now, we put

$$
U\left(\varepsilon_{0}\right)=\left\{\hat{\Psi}\left(u_{1}, u_{2}, u_{3}\right) \in M ;\left(u_{1}, u_{2}\right) \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2},-\infty<u_{3}<\infty\right\}
$$

where $\hat{\Psi}$ denotes an extension of Ψ defined by

$$
\hat{\Psi}\left(u_{1}, u_{2}, u_{3}\right)=\operatorname{Exp}_{\psi\left(u_{1}, u_{2}\right)} u_{3} E_{3}, \quad \text { on }\left(-\varepsilon_{0}, \varepsilon_{0}\right)^{2} \times(-\infty, \infty)
$$

Then, from the above arguments, we have the following
Lemma 2.1. $U\left(\varepsilon_{0}\right)$ is a local coordinate neighborhood with origin at x_{0}.

For any $G>0$, we put

$$
V_{G}=\left\{\hat{\Psi}\left(u_{1}, u_{2}, u_{3}\right) \in U\left(\varepsilon_{0}\right) ;\left(u_{1}, u_{2}\right) \in\left(-\varepsilon_{0} / 2, \varepsilon_{0} / 2\right)^{2}, 0<u_{3}<G\right\}
$$

Then $\bar{V}_{G} \subset U\left(\varepsilon_{0}\right)$. Let $\operatorname{vol}(M, g)$ and $\operatorname{vol}\left(V_{G}\right)$ denote the volumes of (M, g) and the open subspace V_{G} of (M, g), respectively. Then, by the assumption, we have

$$
\begin{equation*}
\operatorname{vol}\left(V_{G}\right)<\operatorname{vol}(M, g)<\infty, \text { for any } G>0 \tag{2.19}
\end{equation*}
$$

On the other hand, since $E_{3}=\partial / \partial u_{3}$ on $U\left(\varepsilon_{0}\right)$, we have

$$
\operatorname{div} E_{3}=\left(1 / \sqrt{g_{0}}\right)\left(\partial \sqrt{g_{0}} / \partial u_{3}\right) \quad \text { on } \quad U\left(\varepsilon_{0}\right),
$$

where

$$
g_{0}=\operatorname{det}\left(g_{i j}\right), \quad g_{i j}=g\left(\partial / \partial u_{i}, \partial / \partial u_{j}\right), \quad i, j=1,2,3
$$

Thus, by (2.5), we get

$$
\begin{equation*}
\left(1 / \sqrt{g_{0}}\right)\left(\partial \sqrt{g_{0}} / \partial u_{3}\right)+(1 / K)\left(\partial K / \partial u_{3}\right)=0 \quad \text { on } \quad U\left(\varepsilon_{0}\right) . \tag{2.20}
\end{equation*}
$$

Solving (2.20), we get

$$
\begin{equation*}
\sqrt{g_{0}}=C / K \tag{2.21}
\end{equation*}
$$

where $C=C\left(u_{1}, u_{2}\right)$ is a function of class C^{∞} on $U\left(\varepsilon_{0}\right)$.
Thus, from (2.18) and (2.21), we get

$$
\begin{aligned}
\operatorname{vol}\left(V_{G}\right) & =\int_{V_{G}} d M=\int_{-\varepsilon_{0} / 2}^{\varepsilon_{0} / 2} \int_{-\varepsilon_{0} / 2}^{\varepsilon_{0} / 2} \int_{0}^{G}(C / K) d u_{1} d u_{2} d u_{3} \\
& \geqq a\left(\varepsilon_{0}\right)^{2} G, \text { for any } G>0,
\end{aligned}
$$

where

$$
a=\operatorname{Min}_{\substack{-\varepsilon_{0} / 2 \leq \leq u_{1}, u_{2} \leq \varepsilon_{0} / 2 \\ u_{3}=0}} C / K>0
$$

But, this contradicts (2.19). Thus we have the following
Lemma 2.2. If $\operatorname{vol}(M, g)$ is finite, then, for each point $x \in W$, $S=2 K$ is constant along $\gamma_{x}(s),-\infty<s<\infty$.
3. Proof of Theorem B. In the sequel, we shall assume that $\operatorname{vol}(M, g)$ is finite and rank R^{1} is at most 2 on M and $\operatorname{rank} R^{1}=2$ at some point of M. From Lemma 2.2, $H=0$ on W_{0}. Let $V=\left\{x \in W_{0}\right.$; $f(x) \neq 0\}$. Now, we assume that $V \neq \varnothing$. Let V_{0} be one component of V. $H=H(E)=0$ implies $D(E)^{2}=-4 C_{1}(E) C_{2}(E)$. Put $\cos 2 \theta(E)=K\left(C_{1}(E)+\right.$ $\left.C_{2}(E)\right) / f$ and $\sin 2 \theta(E)=K D(E) / f$. Define $\left(E^{*}\right)$ by $E_{3}^{*}=E_{3}$ and

$$
\begin{aligned}
& E_{1}^{*}=\cos \theta(E) E_{1}-\sin \theta(E) E_{2} \\
& E_{2}^{*}=\sin \theta(E) E_{1}+\cos \theta(E) E_{2}
\end{aligned}
$$

Then we have $D\left(E^{*}\right)=0$. Furthermore, for (E) and (E^{\prime}), we have $E_{1}^{*}(E)= \pm E_{1}^{*}\left(E^{\prime \prime}\right)$ and $E_{2}^{*}(E)= \pm E_{2}^{*}\left(E^{\prime}\right) . \quad H=0$ and $D\left(E^{*}\right)=0$ imply $C_{1}\left(E^{*}\right) C_{2}\left(E^{*}\right)=0$. So we can assume that $C_{2}\left(E^{*}\right)=0$ (otherwise, change $\left.\left(E_{1}^{*}, E_{2}^{*}, E_{3}^{*}\right) \rightarrow\left(E_{2}^{*},-E_{1}^{*}, E_{3}^{*}\right)\right)$. Then we get

$$
\begin{equation*}
B_{132}^{*} \neq 0, \quad B_{131}^{*}=B_{21}^{*}=B_{23}^{*}=0, \tag{3.1}
\end{equation*}
$$

where

$$
\nabla_{E_{1}} * E_{j}^{*}=\sum_{k=1}^{3} B_{i j k}^{*} E_{k}^{*}
$$

$R\left(E_{1}^{*}, E_{3}^{*}\right) E_{2}^{*}=0$ implies

$$
\begin{equation*}
E_{3}^{*} B_{1}^{*}{ }_{21}=0 \tag{3.2}
\end{equation*}
$$

$R\left(E_{1}^{*}, E_{2}^{*}\right) E_{3}^{*}=0$ implies $B_{22}^{*}=0$ and

$$
\begin{equation*}
E_{2}^{*} B_{132}^{*}+B_{121}^{*} B_{132}^{*}=0 \tag{3.3}
\end{equation*}
$$

$R\left(E_{1}^{*}, E_{2}^{*}\right) E_{1}^{*}=-K E_{2}^{*}$ implies

$$
\begin{equation*}
E_{2}^{*} B_{121}^{*}+\left(B_{121}^{*}\right)^{2}=-K \tag{3.4}
\end{equation*}
$$

By $B_{2}^{*}{ }_{i j}=0$, each trajectory of E_{2}^{*} is a geodesic. Put $h=B_{121}^{*}$ and $F=\left(E_{1}^{*} f\right)^{2}$. Then F is a function of class C^{∞} on V_{0}. From Lemma 2.2, and (3.3), we get

$$
\begin{align*}
E_{3}^{*}\left(E_{1}^{*} f\right) & =E_{1}^{*}\left(E_{3}^{*} f\right)+\left[E_{3}^{*}, E_{1}^{*}\right] f \\
& =-B_{1}^{*}{ }_{32}\left(E_{2}^{*} f\right)=f^{2} h, \quad \text { i.e. } \\
d\left(E_{1}^{*} f\right) / d s & =f^{2} h, \quad \text { along } \quad \gamma_{x}(s), \quad x \in V_{0} \tag{3.5}
\end{align*}
$$

From Lemma 2.2, for each point $x \in V_{0}, \gamma_{x}(s) \in V_{0},-\infty!<s<\infty$. Taking account of (3.2) and solving (3.5), we get

$$
\begin{equation*}
F=\left(f(x)^{2} h(x) s+c\right)^{2}, \quad \text { along } \quad \gamma_{x}(s), \quad-\infty<s<\infty \tag{3.6}
\end{equation*}
$$

where c is constant along $\gamma_{x}(s)$.

Let $V^{*}=\left\{x \in V_{0} ; h(x) \neq 0\right\}$. From (3.4), we see that $V^{*} \neq \varnothing$. Let V_{0}^{*} be one component of V^{*}. Then, by (3.2), we see that, for each point $x \in V_{0}^{*}, \gamma_{x}(s) \in V_{0}^{*},-\infty<s<\infty$. For each point $x \in V_{0}^{*}$, consider $\gamma_{x}(s)$. Let $x_{0}=\gamma_{x}\left(-c / f(x)^{2} h(x)\right)$ in (3.6).

Then we have

$$
\begin{equation*}
F=\left(\left(f^{2} h\right) w_{3}+k\right)^{2}, \quad \text { on } \quad V(\varepsilon, \delta) \cap V_{0}^{*} \tag{3.7}
\end{equation*}
$$

where $k=k\left(u_{1}, u_{2}\right)$ is a function of class C^{∞} on $V(\varepsilon, \delta) \cap V_{0}^{*}$ such that $k(0,0)=0$, and $V(\varepsilon, \delta)$ is a local coordinate neighborhood with origin at x_{0} constructed by the similar fashion as in § 2 . From (3.7), by applying the similar arguments as in the proof of Lemma 2.1, to the function F instead of K, we can construct a local coordinate neighborhood

$$
U\left(\varepsilon^{*}\right)=\left\{\Psi^{*}\left(u_{1}, u_{2}, u_{3}\right) \in V_{0}^{*} ;\left(u_{1}, u_{2}\right) \in\left(-\varepsilon^{*}, \varepsilon^{*}\right)^{2},-\infty<u_{3}<\infty\right\}
$$

with origin at x_{0} such that $F=\left(\left(f^{2} h\right) u_{3}\right)^{2}$ on $U\left(\varepsilon^{*}\right)$, where $\varepsilon^{*}>0$, and Ψ^{*} is a mapping of class C^{∞} defined by the similar way as $\hat{\Psi}$ in §2. For any $G>0$, let $V_{G}^{*}=\left\{\Psi^{*}\left(u_{1}, u_{2}, u_{3}\right) \in U\left(\varepsilon^{*}\right) ;\left(u_{1}, u_{2}\right) \in\left(-\varepsilon^{*} / 2, \varepsilon^{*} / 2\right)^{2}, 0<u_{3}<G\right\}$. From Lemma 2.2, and (2.5), we have $\operatorname{div} E_{3}^{*}=0$. Thus, we can see that if $G \rightarrow \infty$, then $\operatorname{vol}\left(V_{G}^{*}\right) \rightarrow \infty$. But, this is a contradiction. Thus, we can conclude that $f=0$ on W_{0} and hence T_{1} is integrable on W_{0}. Thus, T_{1} and T_{0} are parallel on W_{0} (cf. S. Tanno [7]). If W is dense in M, the restricted homogeneous holonomy group of (M, g) is reducible. If W is not dense in M, then the interior of the complement of W in M is flat. Hence, also in this case, the restricted homogeneous holonomy group of (M, g) is reducible. Lastly, if $\operatorname{rank} R^{1}=0$ on M, then (M, g) is flat. Therefore, this completes a proof of Theorem B.

From our arguments in this paper, we can also show the following
Theorem C. Let (M, g) be a complete and simply connected 3-dimensional Riemannian manifold satisfying (*). If the volume of (M, g) is finite, then (M, g) is isometric to a 3-dimensional sphere.

References

[1] K. Abe, A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tôhoku Math. J., 23 (1971), 219-244.
[2] Y. H. Clifton and R. Maltz, The K-nullity spaces of the curvature operator, Michigan Math. J., 17 (1970), 85-89.
[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, WileyInterscience, New York, 1963.
[4] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480.
[5] K. Serigawa, On some 3-dimensional Riemannian manifolds, Hokkaido Math. J., 2(1973), 259-270.
[6] H. Takagi and K. Sekigawa, On some 3-dimensional Riemannian manifolds satisfying a certain condition on the curvature tensor, Sci. Rep. Niigata Univ., 7 (1969), 23-27.
[7] S. Tanno, A theorem on totally geodesic foliations and its applications, Tensor N. S., 24 (1972), 116-122.
[8] S. Tanno, 3-dimensional Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, to appear.
Faculty of Science
Niggata University
Niggata, Japan

