ON SOME 3-DIMENSIONAL COMPLETE RIEMANNIAN MANIFOLDS SATISFYING $R(X, Y) \cdot R = 0$

Kouei Sekigawa

(Received July 29, 1974)

1. Introduction. Let (M, g) be a Riemannian manifold. By R we denote the Riemannian curvature tensor. By $T_x(M)$ and Exp_x we denote the tangent space to M at x and the exponential mapping of (M, g) at x. For $X, Y \in T_x(M)$, R(X, Y) operates on the tensor algebra as a derivation at each point $x \in M$. In a locally symmetric space $(\nabla R = 0)$, we have

(*)
$$R(X, Y) \cdot R = 0$$
 for any point $x \in M$ and X , $Y \in T_x(M)$.

We consider the converse under some additional conditions.

THEOREM A (S. Tanno [8]). Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold. If (M, g) satisfies (*) and the scalar curvature S is positive and bounded away from 0 on M, then (M, g) is of constant curvature.

Other results concerning this problem may be found in references. In this paper, we shall prove

THEOREM B. Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold satisfying (*). If the volume of (M, g) is finite, then (M, g) is of constant curvature, and hence, $\nabla R = 0$.

COROLLARY B. Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold satisfying (*). Then (M, g) is of constant curvature.

It may be noticed that (*) implies in particular

$$R(X, Y) \cdot R_1 = 0,$$

where R_1 denotes the Ricci tensor of (M, g).

In this paper, (M, g) is assumed to be connected, complete and of class C^{∞} unless otherwise specified.

2. Preliminaries. Let (M, g) be a 3-dimensional Riemannian manifold. Assume (*). dim M=3 implies

$$(2.1) R(X, Y) = R^{1}X \wedge Y + X \wedge R^{1}Y - (S/2)X \wedge Y,$$

where

$$g(R^{1}X, Y) = R_{1}(X, Y)$$
 and $(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y$.

Let (K_1, K_2, K_3) be eigenvalues of the Ricci transformation R^1 at a point x. Then (*) is equivalent to

$$(2.2) (K_i - K_i)(2(K_i + K_i) - S) = 0.$$

Therefore we may have only three cases:

$$(K, K, K)$$
, $(K, K, 0)$, $(0, 0, 0)$ at each point.

First, if (K, K, K), $K \neq 0$, holds at some point x, then it holds on some open neighborhood U of x. Hence U is an Einstein space, and K is constant on U and on M. Therefore (M, g) is of constant curvature (cf. H. Takagi and K. Sekigawa [6]). From now, we assume that rank $R^1 \leq 2$ on M. Let $W = \{x \in M; \operatorname{rank} R^1 = 2 \text{ at } x\}$. By W_0 we denote one component of W. On W_0 , we have two C^{∞} -distributions T_1 and T_0 such that

$$T_1 = \{X; R^1X = KX\}$$
, $T_0 = \{Z; R^1Z = 0\}$.

For X, $Y \in T_1$ and $Z \in T_0$, by (2.1), we have

(2.3)
$$R(X, Y) = KX \wedge Y,$$
$$R(X, Z) = 0.$$

This shows that T_0 is the nullity distribution. Since the index of nullity at each point of M is 1 or 3, the nullity index of (M, g) is 1. Thus integral curves of T_0 are geodesics (and complete if (M, g) is complete) (cf. Y. H. Clifton and R. Maltz [2], etc.). Let $(E_1, E_2, E_3) = (E)$ be a local field of orthonormal frame such that $E_3 \in T_0$ (consequently, $E_1, E_2 \in T_1$) and

$$abla_{E_i}E_i=0$$
 , $i=1,2,3$.

We call this (E) an adapted frame field. If we put $\nabla_{E_i} E_j = \sum_{k=1}^3 B_{ijk} E_k$, then we get $B_{ijk} = -B_{ikj}$ and

$$(2.4) B_{3ij} = 0, i, j = 1, 2, 3.$$

The second Bianchi identity and (2.3) give

(2.5)
$$E_3K + K(B_{131} + B_{232}) = 0 , \text{ or }$$
 div $E_3 = -E_3K/K$.

By (2.4) and
$$R(E_i, E_s)E_s = \nabla_{E_i}\nabla_{E_3}E_s - \nabla_{E_3}\nabla_{E_i}E_s - \nabla_{[E_i, E_3]}E_s = 0$$
, we get

$$egin{align*} E_3 B_{1\,31} + (B_{1\,31})^2 + B_{1\,32} B_{2\,31} &= 0 \; , \ & E_3 B_{1\,32} + B_{1\,31} B_{1\,32} + B_{1\,32} B_{2\,32} &= 0 \; , \ & E_3 B_{2\,31} + B_{2\,31} B_{1\,31} + B_{2\,32} B_{2\,31} &= 0 \; , \ & E_3 B_{2\,32} + (B_{2\,32})^2 + B_{2\,31} B_{1\,32} &= 0 \; . \end{split}$$

(2.5) and $(2.6)_2$, (2.5) and $(2.6)_3$, (2.5) and $(2.6)_{1,4}$ imply

$$(2.7) B_{132} = C_1(E)K, B_{231} = C_2(E)K,$$

$$(2.8) B_{131} - B_{232} = D(E)K,$$

where $C_1(E)$, $C_2(E)$ and D(E) are functions defined on the same domain as (E) such that $E_3C_1(E)=E_3C_2(E)=E_3D(E)=0$.

By (2.5) and (2.8), we get

$$(2.9) 2B_{131} = D(E)K - E_3K/K.$$

Now, let $\gamma_x(s)$ be an integral curve of T_0 through $x = \gamma_x(0) \in W_0$ with arclength parameter s, i.e., $\gamma_x(s) = \operatorname{Exp}_x s(E_3)_x$. Then (2.6), (2.7) and (2.9) give

$$(2.10) \qquad \frac{1}{2} \frac{d}{ds} \left(\frac{1}{K} \frac{dK}{ds} \right) = HK^2 + \frac{1}{4} \left(\frac{1}{K} \frac{dK}{ds} \right)^2, \quad \text{along} \quad \gamma_x(s) ,$$

where

$$H = H(E) = D(E)^2/4 + C_1(E)C_2(E)$$
.

(2.10) implies that H is independent of the choice of the adapted frame fields (E). Solving (2.10), we get

$$(2.11) K = \gamma , (for H = 0) , or$$

(2.12)
$$K = \pm 1/((\alpha s - \beta)^2 - H/\alpha^2)$$
, (for $H \neq 0$),

where α , β and γ are constant along $\gamma_x(s)$, $\alpha \neq 0$.

With respect to our arguments, without loss of essentiality, we may assume that M is orientable. Let (E) be any adapted frame field which is compatible with the orientation. We call it an oriented adapted frame field. Then we see that $f=(C_1(E)-C_2(E))K$ is independent of the choice of oriented adapted frame fields, and hence f is a function of class C^{∞} on W_0 . f=0 holds on an open set $U \subset W_0$, if and only if T_1 is integrable on U. This is a geometric meaning of f. In the sequel, we assume that the volume of (M, g) is finite. We can see that $H=H(E)=D(E)^2/4+C_1(E)C_2(E)$ is a function of class C^{∞} on W_0 . Let $W(H)=\{x\in W_0; H\neq 0 \text{ at } x\}$. We assume that $W(H)\neq\varnothing$. Let $W(H)_0$ be one component of W(H). By (2.12) and completeness of (M, g), H must be negative on $W(H)_0$. For each point $x\in W(H)_0$, consider $\gamma_x(s)$. Then $\gamma_x(s)\in W(H)_0$,

for all s. Let $x_0 = \gamma_x(\beta/\alpha)$. For $(E_1)_{x_0}$, $(E_2)_{x_0} \in T_1(x_0)$, there exists a 2-dimensional submanifold, $\{\varphi(u_1, u_2) \in W(H)_0; (u_1, u_2) \in (-\varepsilon, \varepsilon)^2, \varepsilon > 0\}$, such that $\varphi(0, 0) = x_0$ and $(\partial \varphi/\partial u_1)(0, 0) = (E_1)_{x_0}$, $(\partial \varphi/\partial u_2)(0, 0) = (E_2)_{x_0}$. Now, we define a mapping

$$\Phi: (-\varepsilon, \varepsilon)^2 \times (-\delta, \delta) \to W(H)_0$$
 by

(2.13)
$$\Phi(u_1, u_2, w_3) = \operatorname{Exp}_{\varphi(u_1, u_2)} w_3 E_3$$
, for some $\delta > 0$.

Then Φ is of class C^{∞} and furthermore, for small ε , δ , $V(\varepsilon, \delta) = \{\Phi(u_1, u_2, w_3) \in W(H)_0; (u_1, u_2, w_3) \in (-\varepsilon, \varepsilon)^2 \times (-\delta, \delta)\}$ is a local coordinate neighborhood with origin at x_0 . In $V(\varepsilon, \delta)$, by (2.12), we get

$$(2.14) K = \pm 1/((Aw_3 - B)^2 - H/A^2),$$

where A and B are functions of class C^{∞} on $V(\varepsilon, \delta)$ such that $\partial A/\partial w_3 = \partial B/\partial w_3 = 0$ on $V(\varepsilon, \delta)$ and $A = \alpha$, B = 0 at x_0 .

By continuity of A and B in (2.14), there is ε_0 , $0 < \varepsilon_0 < \varepsilon$ such that $-\delta/4 < B/A < \delta/4$, for $(u_1, u_2) \in (-\varepsilon_0, \varepsilon_0)^2$.

Now, we define a mapping $\psi: (-\varepsilon_0, \varepsilon_0)^2 \longrightarrow V(\varepsilon, \delta)$ by

(2.15)
$$\psi(u_1, u_2) = \operatorname{Exp}_{\varphi(u_1, u_2)} (B(u_1, u_2)/A(u_1, u_2)) E_3.$$

And furthermore, we define a mapping $\Psi: (-\varepsilon_0, \varepsilon_0)^2 \times (-\delta_0, \delta_0) \longrightarrow V(\varepsilon, \delta)$ by

(2.16)
$$\Psi(u_1, u_2, u_3) = \operatorname{Exp}_{\Psi(u_1, u_2)} u_3 E_3, \quad \delta_0 = \delta/4.$$

Then Ψ is of class C^{∞} and

$$U(\varepsilon_0, \delta_0) = \{ \Psi(u_1, u_2, u_3) \in V(\varepsilon, \delta); (u_1, u_2, u_3) \in (-\varepsilon_0, \varepsilon_0)^2 \times (-\delta_0, \delta_0) \}$$

is a local coordinate neighborhood with origin at x_0 .

Between w_3 in $V(\varepsilon, \delta)$ and u_3 in $U(\varepsilon_0, \delta_0)$, the following relation holds:

$$(2.17) w_3 = u_3 + B/A , \text{in } U(\varepsilon_0, \delta_0) .$$

Thus (2.14) and (2.17) imply

$$(2.18) K = \pm 1/((Au_3)^2 - H/A^2), on U(\varepsilon_0, \delta_0).$$

Let $\gamma(u_1, u_2)$ be the integral curve of T_0 starting from $\psi(u_1, u_2)$, $(u_1, u_2) \in (-\varepsilon_0, \varepsilon_0)^2$, i.e., $\gamma(u_1, u_2)(s) = \operatorname{Exp}_{\psi(u_1, u_2)} sE_3$. Then, in $U(\varepsilon_0, \delta_0)$, u_3 can be considered as the arc-length parameter of $\gamma(u_1, u_2)$. We put $L(u_1, u_2) = \{\gamma(u_1, u_2)(s) \in M; -\infty < s < \infty\}$. Since dim $T_0 = 1$, taking account of (2.12) and (2.18), we can see that $\gamma(u_1, u_2)(s_1) \neq \gamma(u_1, u_2)(s_2)$ for $s_1 \neq s_2$. From (2.12) and (2.18), dK/ds = 0 for s = 0 and otherwise $dK/ds \neq 0$ along $L(u_1, u_2)$, for any $(u_1, u_2) \in (-\varepsilon_0, \varepsilon_0)^2$. Thus, we can see that if $(u_1, u_2) \neq (v_1, v_2)$, (u_1, u_2) , $(v_1, v_2) \in (-\varepsilon_0, \varepsilon_0)^2$, then $L(u_1, u_2) \cap L(v_1, v_2) = \emptyset$.

Now, we put

$$U(\varepsilon_0) = {\{\widehat{\Psi}(u_1, u_2, u_3) \in M; (u_1, u_2) \in (-\varepsilon_0, \varepsilon_0)^2, -\infty < u_3 < \infty\}}$$

where $\widehat{\Psi}$ denotes an extension of Ψ defined by

$$\widehat{\varPsi}(u_{\scriptscriptstyle 1},\,u_{\scriptscriptstyle 2},\,u_{\scriptscriptstyle 3})=\operatorname{Exp}_{\varPsi(u_{\scriptscriptstyle 1},\,u_{\scriptscriptstyle 2})}u_{\scriptscriptstyle 3}E_{\scriptscriptstyle 3}$$
 , on $(-arepsilon_{\scriptscriptstyle 0},\,arepsilon_{\scriptscriptstyle 0})^{\scriptscriptstyle 2} imes(-\infty,\,\infty)$.

Then, from the above arguments, we have the following

LEMMA 2.1. $U(\varepsilon_0)$ is a local coordinate neighborhood with origin at x_0 .

For any G > 0, we put

$$V_G = \{\widehat{\Psi}(u_1, u_2, u_3) \in U(\varepsilon_0); (u_1, u_2) \in (-\varepsilon_0/2, \varepsilon_0/2)^2, 0 < u_3 < G\}$$
.

Then $\overline{V}_{g} \subset U(\varepsilon_{0})$. Let vol (M, g) and vol (V_{g}) denote the volumes of (M, g) and the open subspace V_{g} of (M, g), respectively. Then, by the assumption, we have

(2.19)
$$\operatorname{vol}(V_{\sigma}) < \operatorname{vol}(M, g) < \infty$$
, for any $G > 0$.

On the other hand, since $E_3 = \partial/\partial u_3$ on $U(\varepsilon_0)$, we have

$$\operatorname{div} E_3 = (1/\sqrt{g_0})(\partial \sqrt{g_0}/\partial u_3)$$
 on $U(\varepsilon_0)$,

where

$$g_0 = \det(g_{ij})$$
, $g_{ij} = g(\partial/\partial u_i, \partial/\partial u_j)$, $i, j = 1, 2, 3$.

Thus, by (2.5), we get

$$(2.20) (1/\sqrt{g_0})(\partial\sqrt{g_0}/\partial u_3) + (1/K)(\partial K/\partial u_3) = 0 on U(\varepsilon_0).$$

Solving (2.20), we get

$$\sqrt{g_{\scriptscriptstyle 0}} = C/K ,$$

where $C = C(u_1, u_2)$ is a function of class C^{∞} on $U(\varepsilon_0)$. Thus, from (2.18) and (2.21), we get

$$egin{align} \operatorname{vol}\left(V_{G}
ight) &= \int_{r_{G}} dM = \int_{-arepsilon_{0}/2}^{arepsilon_{0}/2} \int_{-arepsilon_{0}/2}^{\sigma} \left(C/K
ight) du_{1} du_{2} du_{3} \ &\geq a(arepsilon_{0})^{2}G, \quad ext{for any} \quad G > 0 \;, \end{aligned}$$

where

$$a=\mathop{\min}\limits_{\stackrel{-arepsilon_0/2\leq u_1,\ u_2\leq arepsilon_0/2}{u_q=0}}\mathit{C}/\mathit{K}>0$$
 .

But, this contradicts (2.19). Thus we have the following

LEMMA 2.2. If vol (M, g) is finite, then, for each point $x \in W$, S = 2K is constant along $\gamma_x(s)$, $-\infty < s < \infty$.

3. Proof of Theorem B. In the sequel, we shall assume that $\operatorname{vol}(M,g)$ is finite and $\operatorname{rank} R^1$ is at most 2 on M and $\operatorname{rank} R^1=2$ at some point of M. From Lemma 2.2, H=0 on W_0 . Let $V=\{x\in W_0; f(x)\neq 0\}$. Now, we assume that $V\neq\varnothing$. Let V_0 be one component of V. H=H(E)=0 implies $D(E)^2=-4C_1(E)C_2(E)$. Put $\cos 2\theta(E)=K(C_1(E)+C_2(E))/f$ and $\sin 2\theta(E)=KD(E)/f$. Define (E^*) by $E_3^*=E_3$ and

$$E_1^*=\cos heta(E)E_1-\sin heta(E)E_2$$
 , $E_2^*=\sin heta(E)E_1+\cos heta(E)E_2$.

Then we have $D(E^*) = 0$. Furthermore, for (E) and (E'), we have $E_1^*(E) = \pm E_1^*(E')$ and $E_2^*(E) = \pm E_2^*(E')$. H = 0 and $D(E^*) = 0$ imply $C_1(E^*)C_2(E^*) = 0$. So we can assume that $C_2(E^*) = 0$ (otherwise, change $(E_1^*, E_2^*, E_3^*) \rightarrow (E_2^*, -E_1^*, E_3^*)$). Then we get

$$(3.1) \hspace{1cm} B_{\scriptscriptstyle 1}^{\star}{}_{\scriptscriptstyle 32} \neq 0 \; , \hspace{0.5cm} B_{\scriptscriptstyle 1}^{\star}{}_{\scriptscriptstyle 31} = B_{\scriptscriptstyle 2}^{\star}{}_{\scriptscriptstyle 31} = B_{\scriptscriptstyle 2}^{\star}{}_{\scriptscriptstyle 32} = 0 \; ,$$

where

$$abla_{E_i} * E_i^* = \sum\limits_{k=1}^3 B_{i \; jk}^* \, E_k^*$$
 .

 $R(E_1^*, E_3^*)E_2^* = 0$ implies

$$(3.2) E_3^* B_{1 21}^* = 0.$$

 $R(E_1^*, E_2^*)E_3^* = 0$ implies $B_{221}^* = 0$ and

$$(3.3) E_2^* B_{1 32}^* + B_{1 21}^* B_{1 32}^* = 0.$$

 $R(E_1^*, E_2^*)E_1^* = -KE_2^*$ implies

$$(3.4) E_2^* B_{121}^* + (B_{121}^*)^2 = -K.$$

By $B_{2ij}^* = 0$, each trajectory of E_2^* is a geodesic. Put $h = B_{12i}^*$ and $F = (E_1^*f)^2$. Then F is a function of class C^{∞} on V_0 . From Lemma 2.2, and (3.3), we get

$$E_3^*(E_1^*f) = E_1^*(E_3^*f) + [E_3^*, E_1^*]f$$

= $-B_{1,3}^*(E_2^*f) = f^2h$, i.e.,

(3.5)
$$d(E_1^*f)/ds = f^2h \text{ , along } \gamma_x(s) \text{ , } x \in V_0 \text{ .}$$

From Lemma 2.2, for each point $x \in V_0$, $\gamma_x(s) \in V_0$, $-\infty$, $< s < \infty$. Taking account of (3.2) and solving (3.5), we get

(3.6)
$$F = (f(x)^2h(x)s + c)^2$$
, along $\gamma_x(s)$, $-\infty < s < \infty$, where c is constant along $\gamma_x(s)$.

Let $V^* = \{x \in V_0; h(x) \neq 0\}$. From (3.4), we see that $V^* \neq \emptyset$. Let V_0^* be one component of V^* . Then, by (3.2), we see that, for each point $x \in V_0^*$, $\gamma_x(s) \in V_0^*$, $-\infty < s < \infty$. For each point $x \in V_0^*$, consider $\gamma_x(s)$. Let $x_0 = \gamma_x(-c/f(x)^2h(x))$ in (3.6).

Then we have

$$(3.7) F = ((f^2h)w_3 + k)^2, on V(\varepsilon, \delta) \cap V_0^*,$$

where $k = k(u_1, u_2)$ is a function of class C^{∞} on $V(\varepsilon, \delta) \cap V_0^*$ such that k(0, 0) = 0, and $V(\varepsilon, \delta)$ is a local coordinate neighborhood with origin at x_0 constructed by the similar fashion as in § 2. From (3.7), by applying the similar arguments as in the proof of Lemma 2.1, to the function F instead of K, we can construct a local coordinate neighborhood

$$U(\varepsilon^*) = \{ \Psi^*(u_1, u_2, u_3) \in V_0^*; (u_1, u_2) \in (-\varepsilon^*, \varepsilon^*)^2, -\infty < u_3 < \infty \}$$

with origin at x_0 such that $F=((f^2h)u_3)^2$ on $U(\varepsilon^*)$, where $\varepsilon^*>0$, and Ψ^* is a mapping of class C^{∞} defined by the similar way as $\widehat{\Psi}$ in § 2. For any G>0, let $V_G^*=\{\Psi^*(u_1,u_2,u_3)\in U(\varepsilon^*); (u_1,u_2)\in (-\varepsilon^*/2,\varepsilon^*/2)^2, 0< u_3< G\}$. From Lemma 2.2, and (2.5), we have div $E_3^*=0$. Thus, we can see that if $G\to\infty$, then vol $(V_G^*)\to\infty$. But, this is a contradiction. Thus, we can conclude that f=0 on W_0 and hence T_1 is integrable on W_0 . Thus, T_1 and T_0 are parallel on W_0 (cf. S. Tanno [7]). If W is dense in M, the restricted homogeneous holonomy group of (M,g) is reducible. If W is not dense in M, then the interior of the complement of W in M is flat. Hence, also in this case, the restricted homogeneous holonomy group of (M,g) is reducible. Lastly, if rank $R^1=0$ on M, then (M,g) is flat. Therefore, this completes a proof of Theorem B.

From our arguments in this paper, we can also show the following

THEOREM C. Let (M, g) be a complete and simply connected 3-dimensional Riemannian manifold satisfying (*). If the volume of (M, g) is finite, then (M, g) is isometric to a 3-dimensional sphere.

REFERENCES

- [1] K. Abe, A characterization of totally geodesic submanifolds in S^N and CP^N by an inequality, Tôhoku Math. J., 23 (1971), 219-244.
- [2] Y. H. CLIFTON AND R. MALTZ, The K-nullity spaces of the curvature operator, Michigan Math. J., 17 (1970), 85-89.
- [3] S. KOBAYASHI AND K. Nomizu, Foundations of differential geometry, Vol. I, Wiley-Interscience, New York, 1963.
- [4] A. ROSENTHAL, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480.
- [5] K. Sekigawa, On some 3-dimensional Riemannian manifolds, Hokkaido Math. J., 2(1973), 259-270.

K. SEKIGAWA

- [6] H. TAKAGI AND K. SEKIGAWA, On some 3-dimensional Riemannian manifolds satisfying a certain condition on the curvature tensor, Sci. Rep. Niigata Univ., 7 (1969), 23-27.
- [7] S. TANNO, A theorem on totally geodesic foliations and its applications, Tensor N. S., 24 (1972), 116-122.
- [8] S. Tanno, 3-dimensional Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$, to appear.

FACULTY OF SCIENCE NIIGATA UNIVERSITY NIIGATA, JAPAN