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1. Introduction. A Brieskorn manifold is by definition a (2n — 1)-
dimensional submanifold 3**~(a,, @,, - -+, @,) in a complex space C*** with
complex coordinates z,, z,, + -, 2, which is defined by equations

(1.1) 200 4+ 2 4 e 4 20 = ()
and
(1.2) 2020 + 22 + 0 +2,2,=1,

where «,, a,, --+, @, are positive integers.

Recently, K. Abe [1] introduced an almost contact structure for every
Brieskorn manifold, i.e. a triple (¢, & %) of a (1, 1)-tensor field ¢, a vector
field & and a 1-form 7 such that

(1.3) PX=—-X+nX), 7)=1.

He studied the structure with special emphasis of the non-regularity of
the 1-dimensional foliation generated by the vector field £ in general.

A (differentiable manifold M*~' is said to be a contact manifold if
there exists a 1-form { on M*™* such that

(1.4) EA@O)+#0

and { is called a contact form. A contact manifold admits an almost
contact structure closely related with the contact form.
The main result of this paper is the following

MAIN THEOREM. Ewvery Brieskorn manifold is a contact manifold.

It is well known that the set of all Brieskorn manifolds of dimension
2n — 1 (n = 2) contains all homotopy (27 — 1)-spheres which are boundaries
of compact orientable parallelizable manifolds. [2] [3]

In §2, we shall find a candidate of a contact form on 3** Y a,, a,,
«++,a,). In §3, we shall prove the main theorem by showing that the
candidate is really a contact form.

Besides the almost contact structure (g, &, 7) defined by K. Abe on
2" Yay, @y, +*+, &,), We can naturally define an almost contact structure
(¢, &, ') on the same Brieskorn manifold as the latter is a hypersurface
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of a Kahlerian manifold. In § 4, we give necessary and sufficient condition

for the coincidence of two 1-dimensional foliations generated by the vector
fields & and ¢&'.

2. To find a candidate of a contact form. We denote the hyper-
surface in C"*' defined by (1.1) by V. If al ¢, =22 (¢ =0,1, ---, m),
then V has an isolated singularity at the origin O. We call V — {0} a
Brieskorn variety and denote it by B*(a, @, --+, @,) or simply by B™.
The Brieskorn manifold 3*Y(a,, a,, + -+, @,) is the intersection of B* with
the unit hypersphere S**+!. We denote it simply by X** too.

Let us consider the C-action on C**' defined by

(2.1) 2 = "z, ,

where m is the least common multiple of the integers a,, a,, -, @, and
w is a complex variable. We can easily see that the C-action fixes the
origin O and transforms B? onto itself. Therefore, restricting w to its
real part s and differentiating z,(s) at s = 0 we see that

(2.2) U, = (ﬁ z,,) zeB™

@y
is a tangent vector of B* at z. In the same way, restricting w to its
purely imaginary part it (¢: real), we see that

2.3) Uy = U, = (ﬂ iza> zecB"

is a tangent vector of B* at z orthogonal to #,. When we restrict w to
it, (2.1) gives a S'-action on C"*' and the S'-action leaves B*, S**' and
so their intersection X**~!. Therefore, if z<€ 2%, the orbit of the point
z under this action lies on 3™~ and so u, is a tangent vector of 3™,

Now, denoting the differential at a point z on B* by dz, we get by
(1.1)

(2.4) s g =0,

0%,
where f(z, 2, +--, 2,) means the polynomial on the left hand side of
(1.1). (2.4) is equivalent with {(0f/0z, dz) = 0, where the bracket means

the inner product of two vectors df/oz (the complex conjugate of 0f/0z)
and dz in C**'. So, we have

E}%e<%, dz> =0, ERe<1J%Z—, dz> =0.
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These equations tell us that

(2.5) v = (

f
Za

L) = @z,

v, = (7, gf ) = (i@ 3% = iv,
are normal vectors of B* at the point 2. We can easily show that u,,
Uy v, and v, are mutually orthogonal.

Let us restrict the point z to the one on 3**~'. Then the unit normal
vector n of S**! has z, as its components. v,, v, and n are normals to
22'»—1 in Cn+l.

They are linearly independent. For if there is a relation of the form
n = pv, + 0v,, then we have

2. = (0 + 0DaZet,
which shows us that

3 2 — (o + oINS 7) = 0

a

and so z, = 0, contradictory to the fact that ze3* ', We define )\, ¢
by

(2.6) = —ReFaezer) o, I anzi)
(vyy v (Vg vy

Then, we can easily verify that v,, v, and

(2.7) v=mn+, + 1o,

are normal vectors of 3**~! in C"*' orthogonal with each other. Hence,
v is a normal vector of 3*' which lies in the tangent space of B> at
each point z € X*™,

B* inherits the complex structure from that of C"*'. If we denote
the Kahlerian inner product by (, ), we have

(v, dz) = Reliv, dz) .
On account of (2.4) and (2.5), this reduces to

(iv, dz) =+ 33 (a7, — Z.d2.)
a=0
The real 1-form £ on 3™ a, @, *--, a,) defined by

(2.8) ¢

_;'. S (2,47, — Z.d2,)
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i.e. the restriction of the real 1-form on C"*' defined by the right hand
side of (2.8) to 2** is a candidate of a contact form for the Brieskorn
manifold in consideration. The geometrical meaning of { is given as

(2.9) € = (iv, d2) = (in, d2)) .

3. A proof of the main theorem. We shall show that the 1-form
¢ on 2*Ya, a, *++, a,) defined by (2.8) is a contact form.
From (2.8) we have

(3.1) d¢ = i3 dz, A dZ, .
a=0
So, we get

(2 A = {3 dn ez A (S dundn)

- (n_—él)i H:Z:‘o(zadia — Eadza)}

_ — T~
ISIACYN VRN IR A
T
/\_ _
A Adz AdE) A .../\(dz,,/\dz,,)}],

where roofs mean factors which should be omitted.

To show (1.4), we may first restrict ourselves on the domain D, on
3™~ where z, = 0.

On D, we have by (1.1)

n—1

(3.3) dz, = — Z_, l,dz?,
where we have put
(3.4) l, = i— ) te = @uRee"t .

n

We denote the equation complex conjugate to (3.3) by (3.3). On the other
hand, we have by (1.2)

S (27, + Zod2s) = 0
a=0

on B!, Putting (3.3) and (3.3) into the last equation, we have
n—1

(3.5) ZO (m,dz, + m,dz,) =0,
p=

where we have put
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(3.6) My =2, — Zulp My = 2, — 2,0, .

The functions m,, m,, -+, m,_, defined on D, can not vanish simultaneously
at any point of D,. For, if m, m, -+, m,_, vanish simultaneously at a
point z on D,, we have

(3.7) bbb
Ze 2z Zn
which tells us that
g _ &b _ ... _ e _ S
2R 2.2, 2.2, Zzaéa
123 a, a, Ay

by (1.1). This implies that z is the origin of C**!, contrary to our
assumption that ze D,. Hence we may consider the subdomain D, ,_, in
D, such that

(3.8) MWop_y # 0 .

Then, we see that

(3.9) 7, , = ——t (2 m,dz, + ”fm,,dz,,)
m,_., \p=0 k=0

holds good on D,,,_,.
Now, if we pay attention to the domain D, ,_, on 3™, (8.2) can be
written as

(3.10) EA (D) = (_n—z_l)'z_ (A+ B+0C)

where A, B and C are (2n — 1)-forms defined as follows:

A: the sum of monomials each of which contains z,dz, — z,dz, (k =
0,1, ---, n — 2) as its factor,

B: the sum of monomials each of which contains z,_,dz,_, —%,_,dz,_,
as its factor, and

C:. the sum of monomials each of which contains z,dz, — z,.dz, as its
factor.

We shall calculate A, B and C on D,,_,. For the convenience of
printing, we put

(3.11) W, = dz, A dZ, .

(i) Calculation of A. If we fix the value of %, any non-zero
monomial in (3.2) which contains z,dz, — 7,dz, does not contain dz, A dz*
as its factor. So A can be written as
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(3.12) A=A+ A+ 4,

where A, A, and A; are (2n — 1)-forms with the following additional
properties:

A;: the sum of monomials each of which contains dz,_, A dzZ,_, as
its factor, but does not contain dz, A dz, as its factor,

A,: the sum of monomials each of which contains dz, A dz, as its
factor, but does not contain dz,_, A dz,_, as its factor,

A;: the sum of monomials each of which contains both of dz,_, A dz,_,
and dz, A dz, as its factors.

First, we see easily that

n—2
A = kE_]o WA+ AWy N\ (242, — Zd2) N Wiy A 2o A @,y

Substituting (3.9) into the last equation, we get

n—2

(3.13) A = kE_lo (zem, + 7,m)R2 ,

My
where we have put
(3.14) Q=W NON " NWp_ ;3 \NAZp_, .

Next, we see that
n—2

A, = kizlowo A s A @y A\ (2,07, — 2,d2,) N\ Wy,

/\ --./\0)“_2/\0)” .
Substituting (3.3) and (3.3) into the last equation we get

n—2 —_
A2 = kz_lo{_zklkln—1wo VANRRRIVAN ®,_, N\ di,,_l

+ zkln—-lln-—lwo /\ s /\ wk—l /\ dzk /\ wk+1 /\ e /\ wn—l

+ _z-kln—xln—-1wo N NWy_ s N\ dz,,_l
- Ekln—lzn—lwo N ANWpy A dzk A\ Wity VANEERIVAN wn—l} .
By virtue of (3.9) this is transformed to

(3.15) 4, =2 50T, (e, — L,_my)

n—1 k=0
+ Eklln—1(qu;ﬁ‘n—1 - z-n—lmk)}g .
Thirdly, A, can be written as
(3.16) A, = A+ AY,

where we have put
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n—2 n—2

Ay =3 3 WA - AWy, A (2dZ, — Z,d2))
=0 i5F+
AN@py A s ANO;N - AWy y NWu i N @,
n—2 k—1

”

3 =kZ=“Z=‘.O @, /\ "'/\(Dh/\ "'/\wk—l
ARz, — 2, d2) N Dpiy A 2o AWy s AN Wy y N\ @, «
Substituting (3.3) and (3.3) into A; we get

n—2 n—2 —
4 = kz“o 'Zk+1{_z"l"ljw° N s NONAZEN O N\ e AN @,y
e
+ 2 LW A - AO NGB A Oy A - N O,y
+ Zdi LWy A AO AN A2 A B A s A By
- -z_klj.l_iwo AN NGy ANBZG N\ Dy A\ o0 N @y}
By virtue of (3.9), the last equation is transformed to

-2 n—=2

(3.17) A=

- lim,) + _z-ilj(zimj - mizj)}g

k 0 j=k+1

In the same way A) is transformed to

2 k— —_ — —
Al = g {zeLalemy, — Limy) + Z(Lm,, — 1,m,))2 .

||[}43

n—l
However, this can be written also as

1 n—2 n—2

] {zkzh(lkmh — lymy) + Eklh(zk'mh - thk)}g .

n
A3:_.

3.18) Ay = L

n—1

So, by (8.15) ~ (38.17), we get

> > {zi—l_k(limk = bmj) + Ejlk(fj"'—ﬁfk - Z—k”ﬁi)}g

J=k+1

=
o

—2 —2

(3.19) 4,= L5 5 (m; — tm)el; — 20

n
My k=0 5F+1

+ (L — Ml )El; — ZL)2 .

(ii) Calculation of B. Clearly B can be written as
(3.20) B=B +B,,

where B, and B, are (2n — 1)-forms with the following additional proper-
ties:
B,: the monomial which contains z,_,dz,_, — Z,_,dz,_, as its factor,
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but does not contain dz, A dz, as its factor,

B,: the sum of monomials each of which contains both of z,_,dz,_, —
Z,_.d2,_, and dz, A dZ, as its factors.

First, we see that

B, = W, ANON +++ NWy_y \ (zn—-1d§n—-1 - Eﬂ—ldz'n—l) .
Substituting (3.9) in it, we get

(3.21) B = =L (2, + Zy_sin_ )R .

n—1

Next, we see that

n—2

Bz = kE_OCOo VANEERIVAN (Dk VANRRIVANI ) PN (zn-—ldz.ﬂ—l - En—ldzn—l) Na@, .
Substituting (3.3) and (3.3) into the last equation we have

n—2 _
B, = kz_.o (Zacilk L@ A o+ AW, N dZ,_,

- zn—1lklnv1wo VANRRIVANI () JWAN dzk NOp N\ s NW,_,

— Zaill Ll NW, AN d2,,

+ Eu—leln—xwo VANRREIVANI ) WAN dzk AYOITSWANRER: A a)n—l} .

By virtue of (3.9), this is transformed to

n—2 -
(3.22) B, = 1S Tl my — Lm, )
n—1 "

S

+ En—xlk(zﬂ,-—lmk - lkmn—L)}Q .
(iii) Calculation of C. Clearly, C can be written as
(3.23) C=0C+¢G,,
where C, and C, are (2n — 1)-forms with the following additional proper-
ties:
C,: the monomial which contains z,dz, — Z,dz, as its factor, but does
not contain dz,_, A dz,_, as its factor:
C,: the sum of monomials each of which contains both of z,dz, —
z.dz, and dz,_, A dZ,_, as its factors.
First, we see that
C.= WA -+ ANW,_; A\ (2,dZ, — Z,d2,) .
Substituting (3.3) and (3.3) into the last equation, we have
C!. = _—zn-l_n—lwo /\ e /\ wn—z /\ dzn—l
+ Enl'n—1a)0 VANEREIVA W,y /\ dz,,__l .
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By virtue of (3.9), this reduces to

(3.24) C = ml Ty My + Bl )@

Next, we see that

C, = 22;“’"/\'” A@LA -+ AW,
A @y A (2007, — Fod2,) .
Substituting (3.3) and (3.3) into the last equation, we have

n—2

C = kzo(znl_kwo AEERWAN O RWAN 7P AN TR AN AN )
- Enlkwo/\ cee /\wk—l/\dzk/\wk+l/\ °° /\wn—l) .
By virtue of (3.9), this is transformed to

(3.25) c, =1
Mop—y

:z‘;:(zn-l_kmk + Z L) Q2 .
Now, we define a function ¥ on D, ,_, by
— D)
(3.26) EA (O = ("_21)_'(7')_17'.9 .

Then, by (3.10), (3.12), (3.20) and (3.23) we have

(3.27) FQ=A+B+C
= (A, + B) + (C, + C) + {4; + (4; + By} .

To show (1.4) on D, ,._,, it is sufficient to show that F = 0.

(8.21), (3.24) and (3.25), we have

(8.28) A4 +B=-L% (zym, + Z,Mm,)2 ,
m,_, »=0

(3.29) 01 + Cz = _1 (znni z-pmp + -z-n ﬂi lpml’> Q.
n—1 p=0 p=0

Similarly, we have by (3.15) and (3.22)
1

n—1

=+ (Z-kmn—x - —[n—1mk)(5kln—1 - En—llk)}g .
So, we get by (3.19)

n—2 - -
A2 + Bz = = kgo{(lkmn—l - l'n—lmk)(zkl‘n—l - zn-—llk)

75

By (3.13),
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(3.30) A, + (4, + B) = ;n:L

n—1

3 {ms — Lm)(ls — 270
+ (Luim; — Ml )El; — ZL)R .

Putting (3.28) ~ (8.30) into (8.27) and substituting m,, m, by (3.6), we
get

k=0

n—1 n—1 n—1 — n—1 —
'lF = '—Z zpzp + zplpzn + Z —z.plpzn - Z l,,l,,z,ﬁ“
2 p=0 p=0 p=0 p=0
n—2 m—1 — - _ _
-2 .Z (2l — 2;0)(Rl; — Z5l) -
k=0 j=Fk+1
By virtue of (8.4), this is transformed to
Lt F = =S 165 =S Gl + 23 Re((67,) - (F,2.)
2 p=0 p=0 »=0
n—2 m—1 _ _
= >zt — zit [
k=0 j=k+1
n—1 - n—1 _
= — ’)Z.o {Re(t,z,) — Re(t,2,)} — ng {[Im(t.z,)

_ n—2 n—1 _ _
+ Im(t,z)) — X 3 (2t — 2t
k=0 j=k+1

Thus, we see that F <0 on D, ,_,.

We want to show that F does not vanish at any point on D, .., by
reduction ad absurdum. For the purpose we assume that F = 0. Then,
we have

Re(?,2,) = gRe(z—ﬂzn) y Smtz,) = —Sm(—t-pzn)
for p=0,1,.--,n —1 and

Zit; = 23ty
for k=0,1,---,n—2and j=k+1,---,n —1. As we can easily see,
these relations are equivalent with the conjugate of (3.7). So, in the
same way as the proof that m,, m,, ---, m,_, do not vanish simultaneously,

we arrive at a contradiction. Therefore, FF < 0 and so (1.4) holds on
D, ...
Quite the same argument can be performed for other domains
D, k=01, ..+, n — 2) similarly defined as D, ,_,. So, (1.4) holds on D,.
In the same way, we can show that (1.4) holds for domains D, D,,
<+, D,_, on 3™ similary defined as D,. Consequently, we can conclude
that (1.4) holds over the whole 3**~!, This completes the proof.

N.B. It will be an interesting problem to study whether odd dimen-
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sional homotopy spheres which are not boundaries of compact orientable
parallelisable manifolds are contact manifolds or not.

4. A characterization of Brieskorn manifolds witha,=a,= -+ =a,.
The almost contact structure (4, & %) on 2*** (a,, a,, - -+, @,) introduced by
K. Abe has the property that & = u,. Making use of the fact that the
vector field u, generates a 1-dimensional foliation each of whose orbits
is a closed curve, he proved that his almost contact structure (the
foliation) is in general non-regular.

On the other hand, we can introduce naturally an almost contact
structure (¢, &, 7') on the same Brieskorn manifold as follows:

§'X =JX — (JX, non,,
¢ =dJn,, 7'(X) =<, X),
where J is the complex structure of the Brieskorn variety B*, X is an
arbitrary tangent vector of X*' and %, = v/{w, ). Thus, we have

interest to study the condition under which two foliations generated by
the vector fields & and & coincide.

THEOREM. The two vector fields & and & generate the same 1-dimen-
stonal foliation in ™7 (@, @y, +*+, a,) tf and only if @y =a, = --- = a,.

ProoF. The two foliations coincide if and only if the vector fields
v and 4, on X* ' are linearly dependent at each point of 3**~! and so
they coincide if and only if the vector field u, is normal to ¥**~*. Thus,
the condition for the coincidence is that

Redu,, X> =10

is satisfied for any X which satisfies
<?I,X>=o, Re(z, X> = 0.
0z

Considering a special point 2’ = (2, 2, 0, ---, 0), and X such that X, 0,
we can easily deduce from these equations that a, = @,. In the same way,
we geta,=a; 1#7)1=0,1, -+, n. g.e.d.

N.B. 1. As a corollary of the last theorem, we can see that the
two almost contact structures (g, & %) and (¢', &, ') defined on the same

Brieskorn manifold 3* Y(a,, a,, - -, @,) coincide if and only if @, = a, =
=,
N.B. 2. Brieskorn manifold 3*** with @, =a, = --+ = @, iS a princi-

pal circle bundle over the (2n — 2)-dimensional manifold (1.1) in CP* and
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(¢, &, ') with the induced Riemannian metric ¢’ from C**' is a normal
contact metric structure.
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