ON A PROPERTY OF BRIESKORN MANIFOLDS

SHIGEO SASAKI AND CHEN-JUNG HSU

(Received December 5, 1974)

1. Introduction. A Brieskorn manifold is by definition a (2n-1)-dimensional submanifold $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ in a complex space C^{n+1} with complex coordinates z_0, z_1, \dots, z_n which is defined by equations

$$(1.1) z_0^{a_0} + z_1^{a_1} + \cdots + z_n^{a_n} = 0$$

and

$$(1.2) z_0\overline{z}_0 + z_1\overline{z}_1 + \cdots + z_n\overline{z}_n = 1,$$

where a_0, a_1, \dots, a_n are positive integers.

Recently, K. Abe [1] introduced an almost contact structure for every Brieskorn manifold, i.e. a triple (ϕ, ξ, η) of a (1, 1)-tensor field ϕ , a vector field ξ and a 1-form η such that

(1.3)
$$\phi^2 X = -X + \eta(X) \xi$$
, $\eta(\xi) = 1$.

He studied the structure with special emphasis of the non-regularity of the 1-dimensional foliation generated by the vector field ξ in general.

A differentiable manifold M^{2n-1} is said to be a contact manifold if there exists a 1-form ζ on M^{2n-1} such that

$$(1.4) \zeta \wedge (d\zeta)^{n-1} \neq 0$$

and ζ is called a contact form. A contact manifold admits an almost contact structure closely related with the contact form.

The main result of this paper is the following

MAIN THEOREM. Every Brieskorn manifold is a contact manifold.

It is well known that the set of all Brieskorn manifolds of dimension 2n-1 $(n \ge 2)$ contains all homotopy (2n-1)-spheres which are boundaries of compact orientable parallelizable manifolds. [2] [3]

In § 2, we shall find a candidate of a contact form on $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$. In § 3, we shall prove the main theorem by showing that the candidate is really a contact form.

Besides the almost contact structure (ϕ, ξ, η) defined by K. Abe on $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$, we can naturally define an almost contact structure (ϕ', ξ', η') on the same Brieskorn manifold as the latter is a hypersurface

of a Kählerian manifold. In § 4, we give necessary and sufficient condition for the coincidence of two 1-dimensional foliations generated by the vector fields ξ and ξ' .

2. To find a candidate of a contact form. We denote the hypersurface in C^{n+1} defined by (1.1) by V. If all $a_{\alpha} \geq 2$ ($\alpha = 0, 1, \dots, n$), then V has an isolated singularity at the origin O. We call $V - \{0\}$ a Brieskorn variety and denote it by $B^{2n}(a_0, a_1, \dots, a_n)$ or simply by B^{2n} . The Brieskorn manifold $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ is the intersection of B^{2n} with the unit hypersphere S^{2n+1} . We denote it simply by Σ^{2n-1} too.

Let us consider the C-action on C^{n+1} defined by

$$z'_{\alpha}=e^{mw/\alpha}\alpha z_{\alpha},$$

where m is the least common multiple of the integers a_0, a_1, \dots, a_n and w is a complex variable. We can easily see that the C-action fixes the origin O and transforms B^{2n} onto itself. Therefore, restricting w to its real part s and differentiating $z'_{\alpha}(s)$ at s=0 we see that

$$(2.2) u_1 = \left(\frac{m}{a_\alpha} z_\alpha\right) z \in B^{2n}$$

is a tangent vector of B^{2n} at z. In the same way, restricting w to its purely imaginary part it (t: real), we see that

$$(2.3) u_2 = iu_1 = \left(\frac{m}{a_\alpha}iz_\alpha\right) z \in B^{2n}$$

is a tangent vector of B^{2n} at z orthogonal to u_1 . When we restrict w to it, (2.1) gives a S^1 -action on C^{n+1} and the S^1 -action leaves B^{2n} , S^{2n+1} and so their intersection Σ^{2n-1} . Therefore, if $z \in \Sigma^{2n-1}$, the orbit of the point z under this action lies on Σ^{2n-1} and so u_2 is a tangent vector of Σ^{2n-1} .

Now, denoting the differential at a point z on B^{2n} by dz, we get by (1.1)

$$\sum \frac{\partial f}{\partial z_{\alpha}} dz_{\alpha} = 0 ,$$

where $f(z_0, z_1, \dots, z_n)$ means the polynomial on the left hand side of (1.1). (2.4) is equivalent with $\langle \overline{\partial f/\partial z}, dz \rangle = 0$, where the bracket means the inner product of two vectors $\overline{\partial f/\partial z}$ (the complex conjugate of $\partial f/\partial z$) and dz in C^{n+1} . So, we have

$$\Re e \Big<rac{\overline{\partial f}}{\partial z},\, dz\Big>=0$$
 , $\Re e \Big=0$.

These equations tell us that

$$egin{align} v_{_1} &\equiv \left(rac{\overline{\partial f}}{\partial z_lpha}
ight) = (a_lpha \overline{z}_lpha^{a_lpha^{-1}}) \;, \ &v_{_2} &\equiv \left(irac{\overline{\partial f}}{\partial z_lpha}
ight) = (ia_lpha \overline{z}^{a_lpha^{-1}}) = iv_{_1} \end{split}$$

are normal vectors of B^{2n} at the point z. We can easily show that u_1 , u_2 , v_1 and v_2 are mutually orthogonal.

Let us restrict the point z to the one on Σ^{2n-1} . Then the unit normal vector n of S^{2n+1} has z_{α} as its components. v_1, v_2 and n are normals to Σ^{2n-1} in C^{n+1} .

They are linearly independent. For if there is a relation of the form $n = \rho v_1 + \sigma v_2$, then we have

$$z_{lpha}=(
ho\,+\,\sigma i)a_{lpha}ar{z}_{lpha}^{\scriptscriptstylelpha_{lpha}-1}$$
 ,

which shows us that

$$\sum rac{z_{lpha} \overline{z}_{lpha}}{a_{lpha}} = (
ho \, + \, \sigma i) (\sum \overline{z}_{lpha}^{a_{lpha}}) = 0$$

and so $z_{\alpha}=0$, contradictory to the fact that $z\in \Sigma^{2n-1}$. We define λ , μ by

(2.6)
$$\lambda = -\frac{\Re(\sum a_{\alpha}z_{\alpha}^{a_{\alpha}})}{\langle v_{1}, v_{1}\rangle}, \quad \mu = \frac{\Im(\sum a_{\alpha}z_{\alpha}^{a_{\alpha}})}{\langle v_{2}, v_{2}\rangle}.$$

Then, we can easily verify that v_1 , v_2 and

$$(2.7) v = n + \lambda v_1 + \mu v_2$$

are normal vectors of Σ^{2n-1} in C^{n+1} orthogonal with each other. Hence, v is a normal vector of Σ^{2n-1} which lies in the tangent space of B^{2n} at each point $z \in \Sigma^{2n-1}$.

 B^{2n} inherits the complex structure from that of C^{n+1} . If we denote the Kählerian inner product by \langle , \rangle , we have

$$\langle\langle iv, dz\rangle\rangle = \Re \epsilon \langle iv, dz\rangle$$
.

On account of (2.4) and (2.5), this reduces to

$$\langle\!\langle iv,\,dz
angle\!\rangle=rac{i}{2}\sum_{lpha=0}^n(z_lpha d\overline{z}_lpha-\overline{z}_lpha dz_lpha)$$
 .

The real 1-form ζ on $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ defined by

(2.8)
$$\zeta = \frac{i}{2} \sum (z_{\alpha} d\bar{z}_{\alpha} - \bar{z}_{\alpha} dz_{\alpha})$$

i.e. the restriction of the real 1-form on C^{n+1} defined by the right hand side of (2.8) to Σ^{2n-1} is a candidate of a contact form for the Brieskorn manifold in consideration. The geometrical meaning of ζ is given as

(2.9)
$$\zeta = \langle\langle iv, dz\rangle\rangle = \langle\langle in, dz\rangle\rangle.$$

3. A proof of the main theorem. We shall show that the 1-form ζ on $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ defined by (2.8) is a contact form.

From (2.8) we have

$$d\zeta = i \sum_{\alpha=0}^n dz_\alpha \wedge d\overline{z}_\alpha \ .$$

So, we get

$$egin{aligned} \zeta \wedge (d\zeta)^{n-1} &= rac{i^n}{2} \Big\{ \sum_{lpha=0}^n (z_lpha d\overline{z}_lpha - \overline{z}_lpha dz_lpha) \Big\} \wedge \Big(\sum_{eta=0}^n dz_eta \wedge d\overline{z}_eta \Big)^{n-1} \ &= rac{(n-1)! \, i^n}{2} \Big[\left\{ \sum_{lpha=0}^n (z_lpha d\overline{z}_lpha - \overline{z}_lpha dz_lpha)
ight\} \ &\wedge \Big\{ \sum_{eta < \gamma} (dz_0 \wedge d\overline{z}_0) \wedge \cdots \wedge \widehat{(dz_eta \wedge d\overline{z}_eta)} \ &\wedge \cdots \wedge \widehat{(dz_\gamma \wedge d\overline{z}_\gamma)} \wedge \cdots \wedge \widehat{(dz_n \wedge d\overline{z}_n)} \Big\} \Big] \, , \end{aligned}$$

where roofs mean factors which should be omitted.

To show (1.4), we may first restrict ourselves on the domain D_n on Σ^{2n-1} where $z_n \neq 0$.

On D_n we have by (1.1)

(3.3)
$$dz_n = -\sum_{p=0}^{n-1} l_p dz^p ,$$

where we have put

$$l_p = \frac{t_p}{t_n} , \qquad t_\alpha = a_\alpha z_\alpha^{a_{\alpha^{-1}}} .$$

We denote the equation complex conjugate to (3.3) by $(\overline{3.3})$. On the other hand, we have by (1.2)

$$\sum_{\alpha=0}^{n} (z_{\alpha} d\overline{z}_{\alpha} + \overline{z}_{\alpha} dz_{\alpha}) = 0$$

on B^{2n-1} . Putting (3.3) and (3.3) into the last equation, we have

(3.5)
$$\sum_{p=0}^{n-1} (m_p dz_p + \bar{m}_p d\bar{z}_p) = 0$$
 ,

where we have put

$$(3.6) m_p = \overline{z}_p - \overline{z}_n l_p , \overline{m}_p = z_p - z_n \overline{l}_p .$$

The functions m_0, m_1, \dots, m_{n-1} defined on D_n can not vanish simultaneously at any point of D_n . For, if m_0, m_1, \dots, m_{n-1} vanish simultaneously at a point z on D_n , we have

$$\frac{t_0}{\overline{z}_0} = \frac{t_1}{\overline{z}_1} = \cdots = \frac{t_n}{\overline{z}_n},$$

which tells us that

$$\frac{z_0^{a_0}}{z_0\overline{z}_0} = \frac{z_1^{a_1}}{z_1\overline{z}_1} = \cdots = \frac{z_n^{a_n}}{z_n\overline{z}_n} = \frac{\sum z_\alpha^{a_\alpha}}{\sum z_\alpha\overline{z}_\alpha} = 0$$

by (1.1). This implies that z is the origin of C^{n+1} , contrary to our assumption that $z \in D_n$. Hence we may consider the subdomain $D_{n,n-1}$ in D_n such that

$$\bar{m}_{n-1} \neq 0$$
.

Then, we see that

(3.9)
$$d\bar{z}_{n-1} = -\frac{1}{\bar{m}_{n-1}} \left(\sum_{p=0}^{n-1} m_p dz_p + \sum_{k=0}^{n-2} \bar{m}_k d\bar{z}_k \right)$$

holds good on $D_{n,n-1}$.

Now, if we pay attention to the domain $D_{n,n-1}$ on Σ^{2n-1} , (3.2) can be written as

(3.10)
$$\zeta \wedge (d\zeta)^{n-1} = \frac{(n-1)! i^n}{2} (A + B + C)$$

where A, B and C are (2n-1)-forms defined as follows:

A: the sum of monomials each of which contains $z_k d\bar{z}_k - \bar{z}_k dz_k$ $(k = 0, 1, \dots, n-2)$ as its factor,

B: the sum of monomials each of which contains $z_{n-1}d\bar{z}_{n-1} - \bar{z}_{n-1}dz_{n-1}$ as its factor, and

C: the sum of monomials each of which contains $z_n d\bar{z}_n - \bar{z}_n dz_n$ as its factor.

We shall calculate A, B and C on $D_{n,n-1}$. For the convenience of printing, we put

$$(3.11) \omega_{\alpha} = dz_{\alpha} \wedge d\overline{z}_{\alpha}.$$

(i) Calculation of A. If we fix the value of k, any non-zero monomial in (3.2) which contains $z_k d\overline{z}_k - \overline{z}_k dz_k$ does not contain $dz_k \wedge d\overline{z}^k$ as its factor. So A can be written as

$$(3.12) A = A_1 + A_2 + A_3,$$

where A_1 , A_2 and A_3 are (2n-1)-forms with the following additional properties:

 A_i : the sum of monomials each of which contains $dz_{n-1} \wedge d\overline{z}_{n-1}$ as its factor, but does not contain $dz_n \wedge d\overline{z}_n$ as its factor,

 A_2 : the sum of monomials each of which contains $dz_n \wedge d\overline{z}_n$ as its factor, but does not contain $dz_{n-1} \wedge d\overline{z}_{n-1}$ as its factor,

 A_3 : the sum of monomials each of which contains both of $dz_{n-1} \wedge d\overline{z}_{n-1}$ and $dz_n \wedge d\overline{z}_n$ as its factors.

First, we see easily that

$$A_1 = \sum_{k=0}^{n-2} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge (z_k d\overline{z}_k - \overline{z}_k dz_k) \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}$$
 .

Substituting (3.9) into the last equation, we get

(3.13)
$$A_1 = \frac{-1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} (z_k m_k + \bar{z}_k \bar{m}_k) \Omega,$$

where we have put

(3.14)
$$\Omega = \omega_{\scriptscriptstyle 0} \wedge \omega_{\scriptscriptstyle 1} \wedge \cdots \wedge \omega_{\scriptscriptstyle n-2} \wedge dz_{\scriptscriptstyle n-1}.$$

Next, we see that

$$egin{aligned} A_2 &= \sum\limits_{k=0}^{n-2} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge (z_k dar{z}_k - ar{z}_k dz_k) \wedge \omega_{k+1} \ & \wedge \cdots \wedge \omega_{n-2} \wedge \omega_n \;. \end{aligned}$$

Substituting (3.3) and $(\overline{3.3})$ into the last equation we get

$$egin{aligned} A_2 &= \sum_{k=0}^{n-2} \{-z_k l_k \overline{l}_{n-1} \omega_0 \wedge \cdots \wedge \omega_{n-2} \wedge d\overline{z}_{n-1} \ &+ z_k l_{n-1} \overline{l}_{n-1} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge d\overline{z}_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \ &+ \overline{z}_k l_{n-1} \overline{l}_{n-1} \omega_0 \wedge \cdots \wedge \omega_{n-2} \wedge dz_{n-1} \ &- \overline{z}_k l_{n-1} \overline{l}_{n-1} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge dz_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \} \ . \end{aligned}$$

By virtue of (3.9) this is transformed to

$$\begin{array}{ll} (3.15) & A_2 = \frac{1}{\overline{m}_{n-1}} \sum\limits_{k=0}^{n-2} \{z_k \overline{l}_{n-1} (l_k m_{n-1} - l_{n-1} m_k) \\ & + \overline{z}_k l_{n-1} (\overline{l}_k \overline{m}_{n-1} - \overline{l}_{n-1} \overline{m}_k) \} \varOmega \; . \end{array}$$

Thirdly, A_3 can be written as

$$(3.16) A_3 = A_3' + A_3'',$$

where we have put

$$A_3' = \sum\limits_{k=0}^{n-2}\sum\limits_{j=k+1}^{n-2} oldsymbol{\omega}_0 \wedge \cdots \wedge oldsymbol{\omega}_{k-1} \wedge (z_k d\overline{z}_k - \overline{z}_k dz_k) \ \wedge oldsymbol{\omega}_{k+1} \wedge \cdots \wedge \hat{oldsymbol{\omega}}_j \wedge \cdots \wedge oldsymbol{\omega}_{n-2} \wedge oldsymbol{\omega}_{n-1} \wedge oldsymbol{\omega}_n \; , \ A_3'' = \sum\limits_{k=0}^{n-2}\sum\limits_{k=0}^{k-1} oldsymbol{\omega}_0 \wedge \cdots \wedge \hat{oldsymbol{\omega}}_k \wedge \cdots \wedge oldsymbol{\omega}_{k-1} \ \wedge (z_k d\overline{z}_k - \overline{z}_k dz_k) \wedge oldsymbol{\omega}_{k+1} \wedge \cdots \wedge oldsymbol{\omega}_{n-2} \wedge oldsymbol{\omega}_{n-1} \wedge oldsymbol{\omega}_n \; .$$

Substituting (3.3) and $(\overline{3.3})$ into A_3' we get

$$A_3' = \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2} \{ -z_k l_k \overline{l}_j \omega_0 \wedge \cdots \wedge \omega_{j-1} \wedge d\overline{z}_j \wedge \omega_{j+1} \wedge \cdots \wedge \omega_{n-1} \ + z_k l_j \overline{l}_j \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge d\overline{z}_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \ + \overline{z}_k l_j \overline{l}_k \omega_0 \wedge \cdots \wedge \omega_{j-1} \wedge dz_j \wedge \omega_{j+1} \wedge \cdots \wedge \omega_{n-1} \ - \overline{z}_k l_j \overline{l}_j \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge dz_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \} \ .$$

By virtue of (3.9), the last equation is transformed to

$$(3.17) \quad A_3' = rac{1}{ar{m}_{n-1}} \sum\limits_{k=0}^{n-2} \sum\limits_{j=k+1}^{n-2} \{ z_i ar{l}_j (l_i m_j - l_j m_i) + ar{z}_i l_j (ar{l}_i ar{m}_j - ar{m}_i ar{l}_j) \} {\it \Omega} \; .$$

In the same way A_3'' is transformed to

$$A_3^{\prime\prime} = rac{1}{ar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{h=0}^{k-1} \{ z_k \overline{l}_h (l_k m_h - l_h m_k) + \overline{z}_k l_h (\overline{l}_k \overline{m}_h - \overline{l}_h \overline{m}_k) \} arOmega$$
 .

However, this can be written also as

$$A_3^{\prime\prime} = rac{1}{ar{m}_{n-1}} \sum_{h=0}^{n-2} \sum_{k=h+1}^{n-2} \{ z_k ar{l}_h (l_k m_h - l_h m_k) + ar{z}_k l_h (ar{l}_k ar{m}_h - ar{l}_h ar{m}_k) \} \Omega$$
 .

Changing indices h and k to k and j respectively we have

$$(3.18) \quad A_3'' = \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2} \{ z_j \bar{l}_k (l_j m_k - l_k m_j) + \bar{z}_j l_k (\bar{l}_j \bar{m}_k - \bar{l}_k \bar{m}_j) \} \Omega .$$

So, by $(3.15) \sim (3.17)$, we get

$$egin{align} (3.19) \qquad A_3 &= rac{1}{ar{m}_{n-1}} \sum\limits_{k=0}^{n-2} \sum\limits_{j=k+1}^{n-2} \{(l_k m_j - l_j m_k) (z_k \overline{l}_j - z_j \overline{l}_k) \ &+ (\overline{l}_k \overline{m}_j - \overline{m}_k \overline{l}_j) (\overline{z}_k l_j - \overline{z}_j l_k) \} \varOmega \;. \end{split}$$

(ii) Calculation of B. Clearly B can be written as

$$(3.20) B = B_{\scriptscriptstyle 1} + B_{\scriptscriptstyle 2} ,$$

where B_1 and B_2 are (2n-1)-forms with the following additional properties:

 B_i : the monomial which contains $z_{n-1}d\overline{z}_{n-1}-\overline{z}_{n-1}dz_{n-1}$ as its factor,

but does not contain $dz_n \wedge d\overline{z}_n$ as its factor,

 B_2 : the sum of monomials each of which contains both of $z_{n-1}d\bar{z}_{n-1}-\bar{z}_{n-1}dz_{n-1}$ and $dz_n\wedge d\bar{z}_n$ as its factors.

First, we see that

$$B_1 = \omega_0 \wedge \omega_1 \wedge \cdots \wedge \omega_{n-2} \wedge (z_{n-1}d\bar{z}_{n-1} - \bar{z}_{n-1}dz_{n-1}).$$

Substituting (3.9) in it, we get

$$(3.21) B_1 = \frac{-1}{\overline{m}_{n-1}} (z_{n-1} m_{n-1} + \overline{z}_{n-1} \overline{m}_{n-1}) \Omega.$$

Next, we see that

$$B_2 = \sum_{k=0}^{n-2} \omega_0 \wedge \cdots \wedge \hat{\omega}_k \wedge \cdots \wedge \omega_{n-2} \wedge (z_{n-1} d\overline{z}_{n-1} - \overline{z}_{n-1} dz_{n-1}) \wedge \omega_n$$
 .

Substituting (3.3) and $(\overline{3.3})$ into the last equation we have

$$B_2 = \sum_{k=0}^{n-2} \{ z_{n-1} l_k \overline{l}_k \omega_0 \wedge \cdots \wedge \omega_{n-2} \wedge d\overline{z}_{n-1} \ - z_{n-1} \overline{l}_k l_{n-1} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge d\overline{z}_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \ - \overline{z}_{n-1} l_k \overline{l}_k \omega_0 \wedge \cdots \wedge \omega_{n-2} \wedge dz_{n-1} \ + \overline{z}_{n-1} l_k \overline{l}_{n-1} \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge dz_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \} \ .$$

By virtue of (3.9), this is transformed to

$$(3.22) B_2 = \frac{1}{\overline{m}_{n-1}} \sum_{k=0}^{n-2} \{ z_{n-1} \overline{l}_k (l_{n-1} m_k - l_k m_{n-1}) + \overline{z}_{n-1} l_k (\overline{l}_{n-1} \overline{m}_k - \overline{l}_k \overline{m}_{n-1}) \} \Omega.$$

(iii) Calculation of C. Clearly, C can be written as

$$(3.23) C = C_1 + C_2,$$

where C_1 and C_2 are (2n-1)-forms with the following additional properties:

 C_1 : the monomial which contains $z_n d\bar{z}_n - \bar{z}_n dz_n$ as its factor, but does not contain $dz_{n-1} \wedge d\bar{z}_{n-1}$ as its factor:

 C_2 : the sum of monomials each of which contains both of $z_n d\bar{z}_n - \bar{z}_n dz_n$ and $dz_{n-1} \wedge d\bar{z}_{n-1}$ as its factors.

First, we see that

$$C_1 = \omega_0 \wedge \cdots \wedge \omega_{n-2} \wedge (z_n d\overline{z}_n - \overline{z}_n dz_n)$$
.

Substituting (3.3) and $(\overline{3.3})$ into the last equation, we have

$$egin{aligned} C_{\scriptscriptstyle 1} &= -z_{\scriptscriptstyle n} \overline{l}_{\scriptscriptstyle n-1} \omega_{\scriptscriptstyle 0} \wedge \cdots \wedge \omega_{\scriptscriptstyle n-2} \wedge d \overline{z}_{\scriptscriptstyle n-1} \ &+ \overline{z}_{\scriptscriptstyle n} l_{\scriptscriptstyle n-1} \omega_{\scriptscriptstyle 0} \wedge \cdots \wedge \omega_{\scriptscriptstyle n-2} \wedge d z_{\scriptscriptstyle n-1} \ . \end{aligned}$$

By virtue of (3.9), this reduces to

$$(3.24) C_1 = \frac{1}{\overline{m}_{n-1}} (z_n \overline{l}_{n-1} m_{n-1} + \overline{z}_n l_{n-1} \overline{m}_{n-1}) \Omega.$$

Next, we see that

$$egin{aligned} C_2 &= \sum_{k=1}^{n-2} oldsymbol{\omega}_0 \wedge \cdots \wedge \hat{oldsymbol{\omega}}_k \wedge \cdots \wedge oldsymbol{\omega}_{n-2} \ & \wedge oldsymbol{\omega}_{n-1} \wedge (oldsymbol{z}_n dar{oldsymbol{z}}_n - ar{oldsymbol{z}}_n doldsymbol{z}_n) \;. \end{aligned}$$

Substituting (3.3) and $(\overline{3.3})$ into the last equation, we have

$$C_2 = \sum_{k=0}^{n-2} (z_n \overline{l}_k \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge d\overline{z}_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \ - \overline{z}_n \overline{l}_k \omega_0 \wedge \cdots \wedge \omega_{k-1} \wedge dz_k \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}) \ .$$

By virtue of (3.9), this is transformed to

(3.25)
$$C_{2} = \frac{1}{\overline{m}_{n-1}} \sum_{k=0}^{n-2} (z_{n} \overline{l}_{k} m_{k} + \overline{z}_{n} l_{k} \overline{m}_{k}) \Omega.$$

Now, we define a function F on $D_{n,n-1}$ by

(3.26)
$$\zeta \wedge (d\zeta)^{n-1} = \frac{(n-1)!(i)^n}{2} FQ.$$

Then, by (3.10), (3.12), (3.20) and (3.23) we have

(3.27)
$$F\Omega = A + B + C$$
$$= (A_1 + B_1) + (C_1 + C_2) + \{A_3 + (A_2 + B_2)\}.$$

To show (1.4) on $D_{n,n-1}$, it is sufficient to show that $F \neq 0$. By (3.13) (3.21), (3.24) and (3.25), we have

(3.28)
$$A_1 + B_1 = -\frac{1}{\overline{m}_{n-1}} \sum_{p=0}^{n-1} (z_p m_p + \overline{z}_p \overline{m}_p) \Omega,$$

$$(3.29) C_1 + C_2 = \frac{1}{\overline{m}_{n-1}} \left(z_n \sum_{p=0}^{n-1} \overline{l}_p m_p + \overline{z}_n \sum_{p=0}^{n-1} l_p \overline{m}_p \right) \Omega.$$

Similarly, we have by (3.15) and (3.22)

$$egin{aligned} A_2 \, + \, B_2 &= rac{1}{ar{m}_{n-1}} \sum_{k=0}^{n-2} \{ (l_k m_{n-1} - \, l_{n-1} m_k) (z_k ar{l}_{n-1} - z_{n-1} ar{l}_k) \ &+ (ar{l}_k ar{m}_{n-1} - ar{l}_{n-1} ar{m}_k) (ar{z}_k l_{n-1} - ar{z}_{n-1} l_k) \} \varOmega \, . \end{aligned}$$

So, we get by (3.19)

$$\begin{array}{ll} (3.30) \qquad A_3 + (A_2 + B_2) = \frac{1}{\overline{m}_{n-1}} \sum\limits_{k=0}^{n-2} \sum\limits_{j=k+1}^{n-1} \{(l_k m_j - l_j m_k) (z_k \overline{l}_j - z_j \overline{i}_k) \\ & + (\overline{l}_k \overline{m}_j - \overline{m}_k \overline{l}_j) (\overline{z}_k l_j - \overline{z}_j l_k) \} \varOmega \; . \end{array}$$

Putting (3.28) \sim (3.30) into (3.27) and substituting m_p , \bar{m}_p by (3.6), we get

$$egin{aligned} rac{1}{2}F &= -\sum\limits_{p=0}^{n-1} z_p ar{z}_p + \sum\limits_{p=0}^{n-1} z_p l_p ar{z}_n + \sum\limits_{p=0}^{n-1} ar{z}_p ar{l}_p z_n - \sum\limits_{p=0}^{n-1} l_p ar{l}_p z_n ar{z}_n \ &- \sum\limits_{k=0}^{n-2} \sum\limits_{j=k+1}^{n-1} (z_k ar{l}_j - z_j ar{l}_k) (ar{z}_k l_j - ar{z}_j l_k) \;. \end{aligned}$$

By virtue of (3.4), this is transformed to

$$\begin{split} \frac{1}{2}t_{n}\overline{t}_{n}F &= -\sum_{p=0}^{n-1}|t_{n}\overline{z}_{p}|^{2} - \sum_{p=0}^{n-1}|\overline{t}_{p}z_{n}|^{2} + 2\sum_{p=0}^{n-1}\Re((t_{n}\overline{z}_{p})\cdot(\overline{t}_{p}z_{n})) \\ &- \sum_{k=0}^{n-2}\sum_{j=k+1}^{n-1}|z_{k}\overline{t}_{j} - z_{j}\overline{t}_{k}|^{2} \\ &= -\sum_{p=0}^{n-1}\{\Re(t_{n}\overline{z}_{p}) - \Re((\overline{t}_{p}z_{n}))\} - \sum_{p=0}^{n-1}\{\Im(t_{n}\overline{z}_{p}) \\ &+ \Im((\overline{t}_{p}z_{n}))\}^{2} - \sum_{k=0}^{n-2}\sum_{j=k+1}^{n-1}|z_{k}\overline{t}_{j} - z_{j}\overline{t}_{k}|^{2} \;. \end{split}$$

Thus, we see that $F \leq 0$ on $D_{n,n-1}$.

We want to show that F does not vanish at any point on $D_{n,n-1}$ by reduction ad absurdum. For the purpose we assume that F=0. Then, we have

$$\Re \mathrm{e}(t_n\overline{z}_p) = \Re \mathrm{e}(\overline{t}_p z_n) \;, \quad \Im \mathrm{m}(t_n\overline{z}_p) = -\Im \mathrm{m}(\overline{t}_p z_n)$$

for $p = 0, 1, \dots, n-1$ and

$$z_k \overline{t}_i = z_i \overline{t}_k$$

for $k=0, 1, \dots, n-2$ and $j=k+1, \dots, n-1$. As we can easily see, these relations are equivalent with the conjugate of (3.7). So, in the same way as the proof that m_0, m_1, \dots, m_{n-1} do not vanish simultaneously, we arrive at a contradiction. Therefore, F<0 and so (1.4) holds on $D_{n,n-1}$.

Quite the same argument can be performed for other domains $D_{n,k}(k=0,1,\cdots,n-2)$ similarly defined as $D_{n,n-1}$. So, (1.4) holds on D_n . In the same way, we can show that (1.4) holds for domains D_0 , D_1 , \cdots , D_{n-1} on Σ^{2n-1} similarly defined as D_n . Consequently, we can conclude that (1.4) holds over the whole Σ^{2n-1} . This completes the proof.

N.B. It will be an interesting problem to study whether odd dimen-

sional homotopy spheres which are not boundaries of compact orientable parallelisable manifolds are contact manifolds or not.

4. A characterization of Brieskorn manifolds with $a_0 = a_1 = \cdots = a_n$. The almost contact structure (ϕ, ξ, η) on $\Sigma^{2n-1}(a_0, a_1, \cdots, a_n)$ introduced by K. Abe has the property that $\xi = u_2$. Making use of the fact that the vector field u_2 generates a 1-dimensional foliation each of whose orbits is a closed curve, he proved that his almost contact structure (the foliation) is in general non-regular.

On the other hand, we can introduce naturally an almost contact structure (ϕ', ξ', η') on the same Brieskorn manifold as follows:

$$\phi'X=JX-\langle JX,\,n_{\scriptscriptstyle 1}
angle n_{\scriptscriptstyle 1}\;, \ \ \xi'=Jn_{\scriptscriptstyle 1}\;, \ \ \ \eta'(X)=\langle \xi',\,X
angle \;,$$

where J is the complex structure of the Brieskorn variety B^{2n} , X is an arbitrary tangent vector of Σ^{2n-1} and $n_1 = v/\langle v, v \rangle$. Thus, we have interest to study the condition under which two foliations generated by the vector fields ξ and ξ' coincide.

THEOREM. The two vector fields ξ and ξ' generate the same 1-dimensional foliation in Σ^{2n-1} (a_0, a_1, \dots, a_n) if and only if $a_0 = a_1 = \dots = a_n$.

PROOF. The two foliations coincide if and only if the vector fields iv and u_2 on Σ^{2n-1} are linearly dependent at each point of Σ^{2n-1} and so they coincide if and only if the vector field u_1 is normal to Σ^{2n-1} . Thus, the condition for the coincidence is that

$$\Re e\langle u_1, X \rangle = 0$$

is satisfied for any X which satisfies

$$\left\langle \overline{rac{\partial f}{\partial z}},\,X
ight
angle =0$$
 , $\mathfrak{Re}\langle z,\,X
angle =0$.

Considering a special point $z'=(z_0,\,z_1,\,0,\,\cdots,\,0)$, and X such that $X_0\neq 0$, we can easily deduce from these equations that $a_0=a_1$. In the same way, we get $a_i=a_j \ (i\neq j) \ i=0,\,1,\,\cdots,\,n$.

- N.B. 1. As a corollary of the last theorem, we can see that the two almost contact structures (ϕ, ξ, η) and (ϕ', ξ', η') defined on the same Brieskorn manifold $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ coincide if and only if $a_0 = a_1 = \dots = a_n$.
- N.B. 2. Brieskorn manifold Σ^{2n-1} with $a_0 = a_1 = \cdots = a_n$ is a principal circle bundle over the (2n-2)-dimensional manifold (1.1) in $\mathbb{C}P^n$ and

 (ϕ', ξ', η') with the induced Riemannian metric g' from C^{n+1} is a normal contact metric structure.

REFERENCES

- [1] K. Abe, Some examples of non-regular almost contact structure on exotic spheres, (to appear.)
- [2] E. Brieskorn, Beispiele zur Differential-geometrie von Singularitäten, Inventiones Math. 2 (1966), 1-14.
- [3] E. Brieskorn and A. Van de Ven, Some complex structures on product of homotopy spheres, Topology 7 (1968), 389-393.

MATHEMATICAL INSTITUTE
TÔHOKU UNIVERSITY
SENDAI, JAPAN
AND
DEPARTMENT OF MATHEMATICS
KANSAS STATE UNIVERSITY
MANHATTAN, KANSAS 66502
U.S.A