ON THE CONSTRUCTION OF A PROBABILITY MEASURE ON THE SPACE OF BOREL-RADON MEASURES

SHIGERU TSURUMI

(Received June 30, 1976)

1. THEOREM. The purpose of this paper is to give a simple proof of a fundamental theorem for the existence of a probability measure on the space of all Borel-Radon measures on a locally compact separable metric space.

In this paper, let S be a locally compact separable metric space. Let \mathscr{D} be a countable basis for the topology of S and let $\{K_j: j = 1, 2, \cdots\}$ be a class of compact subsets satisfying that $K_j \subset K_{j+1}^\circ$ (the interior of K_{j+1}) and $\bigcup_j K_j = S$. Let \mathscr{A} be the algebra generated by $\mathscr{D} \cup \{K_j\}$, and let $\mathscr{B}(S)$ be the Borel class, i.e., the σ -algebra generated by the topology. Let M(S) be the set of all measures μ on $\mathscr{B}(S)$ such that $\mu(A) < \infty$ for any bounded set $A \in \mathscr{B}(S)$. Such a measure μ is called a *Borel-Radon measure* on S. We consider the vague topology of M(S) generated by the class of all sets

$$\Big\{ \mu \in M(S) \colon \Big| \int_s f_j d\mu - \int_s f_j d
u \Big| < arepsilon \ (1 \leq j \leq n) \Big\}$$

where $\nu \in M(S)$, $n \in \mathbb{Z}_{+}^{(1)}$, $f_j \in C_c(S)^{(2)}$ $(1 \leq j \leq n)$ and $\varepsilon > 0$. Let $\mathscr{B}(M(S))$ be the Borel class in M(S) with the vague topology. Let $\Omega = \Omega(A)$ be the product space $[0, \infty]^4$ with the product topology. Then the product σ -algebra $\mathscr{B}([0, \infty])^4$ coincides with the Borel class $\mathscr{B}(\Omega)$ generated by the product topology, because the topology of $[0, \infty]$ has a countable basis and \mathscr{A} is countable by Lemma 2.2 below.

Any projective system $\{P_{\{A_1,\ldots,A_n\}}: n \in \mathbb{Z}_+, \{A_1, \cdots, A_n\} \in \mathscr{M}\}$ of finite dimensional probability measures which is consistent in usual sense determines a probability measure P_0 on $\mathscr{B}(\Omega)$, and so we shall state the existence theorem in terms of P_0 .

THEOREM. Let P_0 be a probability measure on $\mathscr{B}(\Omega)$ satisfying that (a) if $A_1, A_2 \in \mathscr{M}$ and $A_1 \cap A_2 = \emptyset$,

$$P_{0} \{ \omega \colon \omega(A_{\scriptscriptstyle 1} \cup A_{\scriptscriptstyle 2}) = \omega(A_{\scriptscriptstyle 1}) + \omega(A_{\scriptscriptstyle 2}) \} = 1 \; ;$$

¹⁾ Z_+ denotes the set of all positive integers.

²⁾ $C_c(S)$ denotes the space of all continuous functions on S with compact support.

(b) if
$$A_n \in \mathscr{N}(n = 1, 2, \dots)$$
, A_1 is bounded and $A_n \searrow \emptyset$,
 $P_0\{\omega: \omega(A_n) \leq \varepsilon\} \rightarrow 1$ for any $\varepsilon > 0$;

(c) if $A \in \mathscr{M}$ is bounded,

$$P_{\scriptscriptstyle 0}\!\{\omega\!:\omega\!(A)<\infty\}=1$$
 .

Then there exists a unique probability measure
$$P$$
 on $\mathscr{B}(M(S))$ such that
(d) if $A_1, \dots, A_n \in \mathscr{N}$ are bounded and $E \in \mathscr{B}([0, \infty]^n)$,

$$P\{\mu: (\mu(A_1), \dots, \mu(A_n)) \in E\}$$

= $P_0\{\omega: (\omega(A_1), \dots, \omega(A_n)) \in E\}.$

The theorem is due to P. Jagers (Theorem 1 in [2]). Since the proof depends on making use of the corresponding result in compact case and is rather complicated, so we shall give a simple direct proof.

2. LEMMA. A non-negative finitely additive set function ω on \mathscr{A} is called a *content* if $\omega(A) < \infty$ for any bounded $A \in \mathscr{A}$. A content ω on \mathscr{A} is called σ -additive [boundedly σ -additive] if $\omega(\bigcup_j A_j) = \sum_j \omega(A_j)$ whenever $A_j \in \mathscr{M}(j = 1, 2, \cdots)$ are mutually disjoint and $\bigcup_j A_j \in \mathscr{M}$ [and moreover $\bigcup_j A_j$ is bounded].

LEMMA 2.1. Let ω be a boundedly σ -additive content on \mathcal{A} . Then there exists a unique $\mu_{\omega} \in M(S)$ such that

(1)
$$\mu_{\omega}(A) = \omega(A)$$
 for any bounded $A \in \mathscr{A}$.

PROOF. Let \mathscr{M}_j and \mathscr{M}_j be, respectively, the restriction of \mathscr{A} and of $\mathscr{M}(S)$ to K_j , and let ω_j be the restriction of ω to \mathscr{M}_j . Note that \mathscr{M}_j is generated by \mathscr{M}_j and coincides with the Borel class $\mathscr{M}(K_j)$ in K_j . Since ω_j is a σ -additive content on \mathscr{M}_j , there exists a unique measure μ_j on $\mathscr{M}(K_j)$ such that

$$\mu_j(A) = \omega_j(A)$$
 for all $A \in \mathscr{M}_j$.

Then a measure $\mu_{\omega} \in M(S)$ is well-defined as

$$\mu_{\omega}(A) = \lim_{i}\,\mu_{j}(A\cap K_{j}) \quad ext{for} \quad A\in \mathscr{B}(S)$$
 ,

and satisfies (1).

Now, let $\mu, \mu' \in M(S)$ satisfy (1). Then, for any $A \in \mathcal{M}$,

 $\mu(A) = \lim_j \mu(A \cap K_j) = \lim_j \omega(A \cap K_j) = \lim_j \mu'(A \cap K_j) = \mu'(A) \; ,$

which implies $\mu = \mu'$.

LEMMA 2.2. Let \mathscr{D}_* be $\mathscr{D} \cup \{K_j\}, \mathscr{D}_s$ the class of all finite unions of sets in $\mathscr{D}_*, \mathscr{D}_{sd}$ the class of all finite intersections of sets in \mathscr{D}_*

602

and \mathscr{A}_* the class of all finite unions of proper differences of sets in \mathscr{D}_{sd} . Then \mathscr{A}_* is countable and coincides with \mathscr{A} .

The proof is easy and omitted.

LEMMA 2.3. 1°. For any bounded $A \in \mathcal{A}$,

(2) there exists $\{A(n)\}_{1}^{\infty}$ such that each A(n) is a closed set in \mathscr{A} and $A(n) \nearrow A$.

2°. Let ω be a content on \mathcal{A} . Then the following properties (i), (ii), (iii) are mutually equivalent:

- (i) ω is boundedly σ -additive on \mathcal{A} .
 - (ii) if $A_j \in \mathcal{M}(j = 1, 2, \dots)$, A_1 is bounded and $A_j \setminus \emptyset$, then $\omega(A_j) \to 0$.
 - (iii) if $A \in \mathscr{A}$ is bounded, $\omega(A \setminus A(n)) \to 0$, where A(n)'s are the sets in (2).

The lemma is a slight generalization of a part seen in the proof of Proposition 1.3 in [2] to the case S is locally compact, and is contained substantially in Lemma 6.1 in [1].

PROOF. 1°. Since \mathscr{N} is an algebra, for the proof of (2) it is sufficient to show that

(2') there exist $\{A(n)\}_{1}^{\infty}$ and $\{A'(n)\}_{1}^{\infty}$ such that each A(n) is a closed set in \mathcal{A} , each A'(n) is an open set in \mathcal{A} and $\bigcup_{n} A(n) = A$, $\bigcap_{n} A'(n) = A$.

We shall first show that

(3) any bounded open set $A \in \mathscr{M}$ satisfies (2').

Since A is bounded, we can choose $K_{j_0} \supset A$. Since $K_{j_0} \setminus A$ is compact, for any $x \in A$ there exist two open sets U_x , $V_x \in \mathscr{D}_s$ (in Lemma 2.2) such that $x \in U_x$, $K_{j_0} \setminus A \subset V_x$ and $U_x \cap V_x = \emptyset$. Then

$$\bigcup_{x \in A} (K_{j_0} \backslash V_x) \subset A = \bigcup_{x \in A} (A \cap U_x) \subset \bigcup_{x \in A} (A \cap V_x^\circ) \subset \bigcup_{x \in A} (K_{j_0} \backslash V_x) ,$$

which implies $A = \bigcup_{x \in A} (K_{j_0} \setminus V_x)$. Since \mathscr{H} is countable, the number of sets $K_{j_0} \setminus V_x$'s appearing in the union above is countable. We denote the sets by A(n) $(n=1, 2, \cdots)$. On the other hand, let A'(n) = A $(n=1, 2, \cdots)$. Then $\{A(n)\}$ and $\{A'(n)\}$ are the desired.

(4) Each K_i satisfies (2').

Let $G_n = \{x: d(x, K_j) < 1/n\}$ $(n = 1, 2, \dots)$, where d stands for the metric of S. Since $K_j \subset G_n = \bigcup_{D \in \mathscr{D}, D \subset G_n} D$ and K_j is compact, there exist finitely many $D_{n1}, \dots, D_{nk_n} \in \mathscr{D}$ such that $D_{n1}, \dots, D_{nk_n} \subset G_n, K_j \subset \bigcup_{i=1}^{k_n} D_{ni}$. Let $A'(n) = \bigcup_{i=1}^{k_n} D_{ni}$ and $A(n) = K_j$ $(n = 1, 2, \dots)$. Then $\{A(n)\}$ and $\{A'(n)\}$ are the desired. We shall next prove that

(5) if $A_1, \dots, A_k \in \mathscr{A}$ satisfy (2'), so do $\bigcup_{i=1}^k A_i$, $\bigcap_{i=1}^k A_i$ and $A_1 \setminus A_2$. For A_i , let $A_i(n)$ and $A'_i(n)$ be the sets in (2'). Then $\bigcup_{i=1}^k A_i = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^k A_i(n)$ and $\bigcup_{i=1}^k A_i(n)$ is a closed set in \mathscr{A} . Also, $\bigcup_{i=1}^k A_i = \bigcap_{(n_1,\dots,n_k)\in Z_+^k} \bigcup_{i=1}^k A'_i(n_i)$ and $\bigcup_{i=1}^k A'_i(n_i)$ is an open set in \mathscr{A} . Hence $\bigcup_{i=1}^k A_i$ satisfies (2'). Similarly it follows that $\bigcap_{i=1}^k A_i$ satisfies (2'). Further, $A_1 \setminus A_2 = \bigcup_{(n,m)\in Z_+^2} (A_1(n) \setminus A'_2(m))$ and $A_1(n) \setminus A'_2(m)$ is a closed set in \mathscr{A} . Also, $A_1 \setminus A_2 = \bigcap_{(n,m)\in Z_+^2} (A'_1(n) \setminus A_2(m))$ and $A'_1(n) \setminus A_2(m)$ is an open set in \mathscr{A} . Hence $A_1 \setminus A_2$ satisfies (2').

Now we can easily see, by virtue of Lemma 2.2, that (3), (4) and (5) imply (2') for any bounded $A \in \mathcal{M}$.

2°: The implications (i) \Leftrightarrow (ii) \Rightarrow (iii) are obvious. The proof of the implication (iii) \Rightarrow (ii) is the same as that in the proof of Proposition 1.3 in [2], because each F_j appearing in the proof in [2] is compact also by the boundedness of A_1 .

LEMMA 2.4. Let \mathscr{A}_0 be a class of Borel sets being closed under finite unions and including a countable basis for the topology of S. Then $\mathscr{B}(M(S))$ coincides with the σ -algebra generated by the class of all sets $\{\mu: \mu(A) \in E\}$ with $A \in \mathscr{A}_0, E \in \mathscr{B}([0, \infty])$.

The lemma is just Proposition 1.2 in [2].

3. PROOF OF THEOREM. Let Ω_0 be the set of all boundedly σ -additive contents on \mathcal{M} . Then

(6) $\Omega_0 \in \mathscr{B}(\Omega)$ and $P_0(\Omega_0) = 1$.

Because, by 2° of Lemma 2.3 and by the fact that \mathcal{M} is countable,

$$\begin{split} \varOmega_0 &= \{ \omega \colon \omega(A_1 \cup A_2) = \omega(A_1) + \omega(A_2) \ & ext{ for any } A_1, A_2 \in \mathscr{N} \quad ext{with } A_1 \cap A_2 = \varnothing \} \ &\cap \{ \omega \colon \lim_n \omega(A ackslash A(n)) = 0 \quad ext{ for any bounded } A \in \mathscr{N} \} \ &\cap \{ \omega \colon \omega(A) < \infty \quad ext{ for any bounded } A \in \mathscr{N} \} \in \mathscr{M}(\Omega) \ , \end{split}$$

and, further, (a), (b) and (c) imply $P_0(\Omega_0) = 1$.

Consider a mapping T from Ω_0 to M(S) defined by $\omega \mapsto \mu_{\omega}$, where μ_{ω} is the measure corresponding uniquely to ω by Lemma 2.1. Then T maps Ω_0 onto M(S), even though it may not be one-to-one. we shall prove that

(7) if $B \in \mathscr{B}(M(S))$, $T^{-1}B \in \mathscr{B}(\Omega)$.

Consider a class $\mathscr{B} = \{B \in \mathscr{B}(M(S)): T^{-1}B \in \mathscr{B}(\Omega)\}$. Then \mathscr{B} is a σ -algebra in M(S). We denote the class of all bounded sets in \mathscr{A} by \mathscr{A}_0 . Then \mathscr{A}_0 is closed under finite unions and includes a countable

604

basis for the topology consisting of all bounded sets in \mathscr{D} . For $A \in \mathscr{M}_0$ and $E \in \mathscr{B}([0, \infty])$, set $B = \{\mu: \mu(A) \in E\}$. Then, by (6),

 $T^{-1}B = \{ \omega \colon \omega \in arOmega_{0}, \ \omega(A) \in E \} \in \mathscr{B}(arOmega)$.

Hence $B \in \mathscr{B}$. Therefore, by Lemma 2.4, $\mathscr{B} = \mathscr{B}(M(S))$, which proves (7). Now, considering (6) and (7), we define

$$P(B) = P_0(T^{-1}B)$$
 for $B \in \mathscr{B}(M(S))$.

Then P is a probability measure on $\mathscr{B}(M(S))$.

We shall show that P satisfies (d). Let $A_1, \dots, A_n \in \mathscr{M}_0$ and $E \in \mathscr{B}([0, \infty]^n)$. Then, by Lemma 2.4,

$$\{\mu: (\mu(A_1), \cdots, \mu(A_n)) \in E\} \in \mathscr{B}(M(S))$$
,

and

$$P\{\mu: (\mu(A_1), \dots, \mu(A_n)) \in E\}$$

= $P_0\{\omega: \omega \in \Omega_0, (\omega(A_1), \dots, \omega(A_n)) \in E\}$
= $P_0\{\omega: (\omega(A_1), \dots, \omega(A_n)) \in E\}$.

Finally we shall prove the uniqueness of such a probability measure P. Suppose that P and P' are two probability measures on $\mathscr{B}(M(S))$ satisfying (d). Consider a class $\mathscr{B} = \{B \in \mathscr{B}(M(S)): P(B) = P'(B)\}$. Then \mathscr{B} is a σ -algebra in M(S). Further, if $A \in \mathscr{M}_0$ and $E \in \mathscr{B}([0, \infty])$, then (d) implies

$$P\{\mu: \mu(A) \in E\} = P'\{\mu: \mu(A) \in E\}$$
,

so that $\{\mu: \mu(A) \in E\} \in \mathscr{B}$. Hence, by Lemma 2.4, $\mathscr{B} = \mathscr{B}(M(S))$ which means P = P'.

References

- T. E. HARRIS, Counting measures, monotone random set functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 10 (1968), 102-119.
- P. JAGERS, Aspects of random measures and point processes, Advances in Probability, 3 (1974), 179-239.

DEPARTMENT OF MATHEMATICS Tokyo Metropolitan University Setagayaku, Tokyo