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1. THEOREM. The purpose of this paper is to give a simple proof
of a fundamental theorem for the existence of a probability measure
on the space of all Borel-Radon measures on a locally compact separable
metric space.

In this paper, let S be a locally compact separable metric space.
Let = be a countable basis for the topology of S and let {K;: 5 =1, 2, ---}
be a class of compact subsets satisfying that K; c K2, (the interior of
K;,) and U;K; = S. Let .& be the algebra generated by = U {K;},
and let <#(S) be the Borel class, i.e., the o-algebra generated by the
topology. Let M(S) be the set of all measures g on <& (S) such that
#(A) < o for any bounded set A€ .<Z(S). Such a measure p is called
a Borel-Radon measure on S. We consider the vague topology of M(S)
generated by the class of all sets

{memesy | fap - | fiav| <s @ =4 =w)

where ve M(S), ne Z', f;€6C,(S»A £j=n) and ¢ > 0. Let & (M(S))
be the Borel class in M(S) with the vague topology. Let 2 = 2(A) be
the product space [0, «]* with the product topology. Then the product
o-algebra <# ([0, «])* coincides with the Borel class <#(Q) generated by
the product topology, because the topology of [0, =] has a countable
basis and .&7 is countable by Lemma 2.2 below.

Any projective system {P,....:n€Z,, {4, -+, A,} €.} of finite
dimensional probability measures which is consistent in usual sense deter-
mines a probability measure P, on .<Z(2), and so we shall state the
existence theorem in terms of P,

THEOREM. Let P, be a probability measure on & (2) satisfying that
(@) 1f A, A, e .7 and A NA, = O,

Po{a): a)(Ax U Az) = a)<A1) + a)(Az)} =1;

YV Z, denotes the set of all positive integers.
2 C,(S) denotes the space of all continuous functions on S with compact support.
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(b) if A, e . (n=1,2, --+), A is bounded and A, \,O,
Pjw: w(4,) < e}—1 for any > 0;
(¢) +f Ae .7 is bounded,
Pw: w(A) < o} =1.
Then there exists a untque probabdility measure P on B (M(S)) such that
(d) f A, ---, A, €. are bounded and E e Z ([0, «|*),
Py (A, -+, 11(A,)) € B}
= P{w: (w(4,), «+-, (4,)) e E}.

The theorem is due to P. Jagers (Theorem 1 in [2]). Since the proof
depends on making use of the corresponding result in compact case and
is rather complicated, so we shall give a simple direct proof.

2. LEMMA. A non-negative finitely additive set function @ on .
is called a content if w(4A)<~ for any bounded Ae . A content ® on
&7 is called o-additive [boundedly o-additive] if w(U; 4;) = 3,; ©(4;)
whenever 4;¢.97(j =1, 2, --+) are mutually disjoint and UJ; 4; € .o [and
moreover |J; 4; is bounded].

LEMMA 2.1. Let @ be a boundedly o-additive content on & Then
there exists a unique pt, € M(S) such that

(1) - t(A) = w(A)  for any bounded Ac.¥.

Proor. Let .o and <Z; be, respectively, the restriction of .o and
of #(S) to K;, and let w; be the restriction of w to .9%4. Note that <Z;
is generated by .o and coincides with the Borel class “Z(K;) in K;.

Since w; is a c-additive content on .97, there exists a unique measure
Ui on < (K;) such that

pi(A) = w;(A) for all Ae. ;.
Then a measure p, € M(S) is well-defined as
Po(A) = 1ijm (AN K;) for Ac<Z(S),
and satisfies (1).
Now, let y, ¢ € M(S) satisfy (1). Then, for any Aec .
MA) = lim #(A 0 K;) = lim o(4 N K;) = lim (AN K;) = p/(4)
which implies ¢ = p'.

LEMMA 2.2. Let &, be = U {K;}, 2, the class of all finite unions
of sets in ,, D, the class of all finite intersections of sets in Z,
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and 7, the class of all finitte unions of proper differences of sets in
D,y Then 7, is countable and coincides with

The proof is easy and omitted.

LEMMA 2.3. 1°. For any bounded A€ .%
(2) there exists {A(n)}y such that each A(n) is a closed set in .7
and A(n) /' A.

2°. Let w be a content on % Then the following properties (i),
(ii), (iil) are mutually equivalent:
(i) o is boundedly o-additive on .7
(ii) of A;e 7 (=12, --+), A, s bounded and A;\, @, then
w(4;) — 0.
(iii) of Ae.sr is bounded, ®w(A\A(n))— 0, where A(n)'s are the
sets in (2).

The lemma is a slight generalization of a part seen in the proof of
Proposition 1.8 in [2] to the case S is locally compact, and is contained
substantially in Lemma 6.1 in [1].

Proor. 1°. Since .%7 is an algebra, for the proof of (2) it is sufficient
to show that
(2" there exist {A(n)} and {A'(n)}7 such that each A(n) is a closed
set in .97 each A'(n) is an open set in .o and U, A(n) = A4,
N.A'(n) = A.
We shall first show that
(8) any bounded open set A €. satisfies (2').
Since A is bounded, we can choose K; DA. Since K;\A is compact, for
any x € A there exist two open sets U,, V,€ &, (in Lemma 2.2) such that
veU, K;\AcV, and U,NV, = @. Then

UE\V)cd=U@AnT)cU@UnV)cUE\V.,

which implies 4 = U...(K;\V,). Since .o is countable, the number of
sets K;\V,’s appearing in the union above is countable. We denote the
sets by A(n) (n=1,2,:--). On the other hand, let A'(n)=4 (n=1,2,:--).
Then {A(n)} and{4’(n)} are the desired.
(4) Each K; satisfies (2').

Let G, = {z: d(%, K;)<1/n} (n =1, 2, --+), where d stands for the metric
of S. Since K;CG, = Upe-,pcq, D and K; is compact, there exist finitely
many D,, +++, D,, €< such that D,, +++, D, CG,, K;cUi" D,.. Let
A'(n) = U™ D,; and A(n) = K; (n=1,2, ---). Then {A(n)} and {4'(n)}
are the desired.
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We shall next prove that

(5) if 4, ---, A, €. satisfy (2'), so do Ui, 4, Nk, A; and A)\4,.
For A, let A,n) and Aj(n) be the sets in (2). Then U., A4, =
Ue, Uk, A(n) and U, A;(n) is a closed set in .4 Also, Ui, A4, =
Neopooempezt Uk Ai(n) and Ui, Ai(n,) is an open set in %% Hence
UL, A, satisfies (2). Similarly it follows that M., A, satisfies (2).
Further, 4\4, = U, m- 7~ (A, (n)\A;(m)) and A,(n)\Ay(m) is a closed set
in o2 Also, A\A; = Numezz (Ai(m)\Ay(m)) and Ai(n)\Ay(m) is an open
set in .94 Hence A)\A, satisfies (2').

Now we can easily see, by virtue of Lemma 2.2, that (8), (4) and
(56) imply (2) for any bounded A e .o~

2°: The implications (i) < (ii) = (iii) are obvious. The proof of the
implication (iii) = (ii) is the same as that in the proof of Proposition 1.3
in [2], because each F'; appearing in the proof in [2] is compact also by
the boundedness of A,.

LEMMA 2.4. Let .57 be a class of Borel sets being closed under finite
unions and including a countadble basis for the topology of S. Then
B (M(S)) coincides with the o-algebra generated by the class of all sets
{pe: (A) e B} with Ae .o, Ee Z ([0, ]).

The lemma is just Proposition 1.2 in [2].

3. PROOF OF THEOREM. Let 2, be the set of all boundedly o-
additive contents on .% Then

(6) 2,eZ(2) and P2, = 1.
Because, by 2° of Lemma 2.3 and by the fact that .o is countable,

2, ={w: w(4, U A4,) = w(4,) + @w(4,)
for any A, A, . with A NA,= @}
N {w: li:n w(A\A(n)) = 0 for any bounded Aec.%}
N {w: w(4) < = for any bounded Ae.&}e.Z#(Q),

and, further, (a), (b) and (¢) imply P2, = 1.

Consider a mapping 7 from 2, to M(S) defined by w i+ f,, where
Mo is the measure corresponding uniquely to @w by Lemma 2.1. Then T
maps 2, onto M(S), even though it may not be one-to-one. we shall
prove that

(7) if Be#(M(S)), T'Be & (2).
Consider a class <% = {Be ZF(M(S)): T'Be % (2)}. Then <% is a o-
algebra in M(S). We denote the class of all bounded sets in .& by
. Then .97 is closed under finite unions and includes a countable
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basis for the topology consisting of all bounded sets in &, For Ae .
and EFeZ ([0, «]), set B = {y: p(A)e E}. Then, by (6),
T'B={w:we, w(A)e E}c Z(Q) .
Hence Be «#. Therefore, by Lemma 2.4, <& = .<Z (M(S)), which proves (7).
Now, considering (6) and (7), we define
P(B) = P(T'B) for Be Z(M(S)).

Then P is a probability measure on <Z(M(S)).
We shall show that P satisfies (d). Let A4, ---,4,€.9 and K¢
([0, «]*). Then, by Lemma 2.4,

{e: (pe(Ay), -+, (A,)) e By e Z(M(S)) ,
and

P{F‘: ({"(Al), Ct #(An)) € E}
= Plw: w e 2, (w(4,), - -+, ®(4,)) € E}
= o{w: (CO(AI), M) w(An)) € E} .
Finally we shall prove the uniqueness of such a probability measure

P. Suppose that P and P’ are two probability measures on <& (M(S))
satisfying (d). Consider a class <& = {Be <Z (M(S)): P(B) = P'(B)}. Then
' is a o-algebra in M(S). Further, if Ac .o and Ee ([0, «<]), then
(d) implies

Plye: (A) e B} = P{p: i(A) e E}

so that {y: u(A)e E}e £ Hence, by Lemma 2.4, <% = <& (M(S)) which
means P = P’.
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