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1. Introduction. As is well known, Nehari [5] proved the following
theorem.

If f 1s a univalent meromorphic function defined in the unit disc,
then

(1) sup |[£1@)| (L - 21 <6,

where [f] is the Schwarzian derivative of f.

In this note, we are concerned with the case where the equality in
(1) holds.

It is also well known that the Schwarzian derivatives of conformal
mappings of the unit disc onto circular polygons are certain rational
functions (see, for example, Goluzin [2]). First, by using such conformal
mappings, we show that there exists a univalent meromorphic function
for which the equality in (1) holds and whose Schwarzian derivative lies
on the boundary of the Teichmiiller space for a cyclic Fuchsian group.
We also give a necessary condition in order that the equality in (1) holds

and give an application of it.
The author is indebted to the referee for pointing out some errors

in the original version of this note.

2. Notations and definitions. Let D be a simply connected domain
in the extended complex plane C with more than one boundary point
and let o, be the Poincaré density of D, for example, p,(z) = (1 — |2]|)*
if D is the unit disc. For a function ¢ holomorphic in D we introduce

the norm
li¢ll> = sup [g(z)] op(2) " .

We denote by B,(D, 1) the Banach space consisting of all the holomorphic

functions ¢ in D which satisfy ||¢]|, < oo.
For a locally univalent meromorphic function f in D, let [f] be the
Schwarzian derivative of f, that is,
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It is well known that [|[f]|l, < 12 for functions f univalent meromorphic
in D and, in particular, ||[f]||, < 6 for functions f univalent meromorphic
in the unit dise 4 (Lehto [4] and Nehari [5]).

Let A be an open dise in C. We define the subset T(A, 1) of B,(4, 1)
as the set of functions ¢e B,(4,1), each of which is the Schwarzian
derivative of some univalent meromorphic function f in A with the
image domain f(A4) bordered by a quasi-circle. It is well known that
T(A, 1) is a bounded domain in B,(A4, 1).

Let I' be a Fuchsian group keeping a disc A4 invariant. We denote
by B,(A, I') the closed subspace of B,(4, 1) consisting of those ¢ € B,(4, 1)
which satisfy ¢(7(2))(7'(2))* = ¢(z) for every veI and every zc A. We
define the subset T(A4, ") of B,(A,I') as the connected component of
T(A, 1) N By(4, I') containing the origin of B,(4,I'). For a Fuchsian
group I' with dim T(A4, I') > 0, we set

o(4, 1) = sup [I8l.

eT(4,I")

and call it the outradius of T(4, I').

Let g be a Mobius transformation. The mapping X which takes ¢ €
B,(9(A), gI'g™) into (po9)(9")*e By(4, I') is a norm-preserving linear iso-
morphism and the image X(T(g9(A), gI'9™)) of T(g9(A), gI'g™") under X
coincides with T(A4, I'). In particular, we have o(g9(A), gl'g™") = o(4, I).

In the special case where A is the unit disc 4, we write briefly o,
[| I, By1), T(1), B(I'), T(I") and o(I") without indicating the disc 4 and
we call T(1), T(I") and o(I") the universal Teichmiiller space, the Teichmiiller
space for I and the outradius of T(I"), respectively.

3. Domains bounded by circular polygons.

3.1. Let P be a simply connected polygonal domain in C with its
boundary consisting of n circular arcs or straight line segments. Straight
line segments are regarded as arcs on circles with infinite radius. We
denote by A4,, ---, A, the endpoints of these n arcs which are the vertices
of the polygonal domain P, and we denote by zwa; the interior angle
(with respect to P) at the vertex 4; (1 =1, ---, n).

There exists a function f which maps the unit disc 4 onto P con-
formally and maps 4 onto P homeomorphically. We denote by a; the
point on the unit circle 04 corresponding to the vertex 4, (j =1, ---, n).

As is seen in Goluzin [2], it is known that
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z 1—at C;

2 = J J ,
(2) 716) = 34 (55— e a,->
where C; (j =1, ---, n) are constants satisfying

i CJ‘ =0,
=1
(3) S —a) +23Ca; =0,

-

I
-

(1 — ada; + 3,Cia3 = 0.

J
It should be noted that three of the points a; (=1, ---,n) can be
chosen arbitrarily on 04. In the case of a circular triangle, all the
constants C; (j = 1, 2, 3) are determined by (3) for arbitrarily given points
a; (3 =1,2,8). Furthermore, if P, , is the interior of an n-sided circular
polygon with vertices at 4; = e¢®*/ (5 =1, ---, n) and with the interior
angles a;n = qrn (3 =1, -+, n; 0=<q=2), then the mapping function f,,
of 4 onto P, , with £, ,(0) =0 and f, ,(0) > 0 satisfies

(4) [fa.d(®) = n*(1 — ¢)=z"7*/2(z" — 1)°

(see Goluzin [2], p. 83).
Using (2), (3) and (4), we obtain the following proposition easily.

PROPOSITION. Under the above motations, the following hold:

(1) IIfNll = 2max,<;<.|1 — ajl.

(ii) If a; = 2 for some j, then ||[f]|| = 6.

(iii) If P is a circular triangle with a; = 0 or 2 for some j (Jj =
1, 2, 3), then [f] lies on 0T(1).

iv) Lfaddll = 2|1 — ¢*|.

(V) [faq] lies on 0TQ) if ¢ =0 or 2.

From (iv) we have ||[f.,,]I|<2 for 0=¢=<V'2. We also see that P, ,
is not convex for 0 <q¢<1—2/n or ¢ > 1. This shows that the converse
to the following theorem of Lehto [4] is mot true: If f is a conformal
mapping of 4 onto a convex domain, then ||[f]|| < 2.

3.2. Well known results of Nehari, Earle and Hille yield that 2 <
o(I') £ 6 for an arbitrary Fuchsian group I” and o(1) = 6, where 1 denotes
the group consisting of only the identity transformation. We also see
o(I") < 6 for a finitely generated Fuchsian group I" of the first kind (see
[6]). Here we prove the following theorem.

THEOREM 1. If I' is a cyclic Fuchsian group acting on the unit disc
4, then o(I') = 6.
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PrROOF. Assume that I" is a hyperbolic cyclic group. Let U be the
upper half plane. Since o(l") = o4, I') = o(U, gI'g™") for a Mobius trans-
formation ¢ which maps 4 onto U, we have only to show that o(U, [") =
6, where I is the hyperbolic cyclic group generated by v() = a2 (A >
0,x%1). We set 9,() =2 (0 <m < 2). The function g,, is univalent
holomorphic in U and the boundary of ¢,(U) is a quasi-circle. Hence [g..]
is in T(U, 1). On the other hand, [g,] is in By(U, I"") and ||[9n,] — [9n,]llz =
2|m; — mi| for m, m,€ (0, 2). Hence we see that the mapping m + [g.]
is continuous so that [g,] is in T(U, I"), the connected component of
T(U, 1)N B,(U, I'") containing the origin of B,(U, I""). Therefore we obtain,
by letting m, =1 and m,— 2, o(U,I") = 6.

Next assume that I" is an elliptic eyclic group of order n. We have
only to show o(I")=6 for the elliptic cyclic group I generated by 7(z) =
ze ™, Let f,, (0 < q<2) be as same as §3.1. Since the boundary of
Su.o(4) is a quasi-circle, we see [f,,]€ T(1). On the other hand, [f,,,] is
in By(I") and [|[fa,qs,] — [fao]ll = 2|05 — @3] for q,, q.€ (0, 2). Hence we see
[fs.de T(I). Therefore we obtain, by letting ¢, = 1 and ¢, — 2, o(”) =6.

Finally assume that I is a parabolic cyclic group. We have only to
show o(U, I'") = 6 for the parabolic cyclic group I” generated by v,(z) =
z + 2. Let P be the set {zeé‘; 0<Rez<1land Imz> 0} and let @, be
the circular triangle with vertices at 0,1 and -« and with the interior
angles ar (0 < a < 1) at 0 and 1 and the interior angle 0 at . We
set

eurz ,i

f<z>=(i+e’i”)z and g<z>=zj;’£.

The function f maps P conformally onto U and the function g maps U
onto 4. Let h, (0 < a < 1) be the conformal mapping of 4 onto @, with
ha(0) = oo, h(i) = 0 and h,(—¢) =1. Then o, =h.ogof maps P conformally
onto @, keeping 0,1 and « fixed. According to the symmetry principle,
the function 4, can be extended to the conformal mapping <, defined
in U such that

(5) FeoY = Yo, for every vel’.

By the construction of 4, and the geometric characterization of quasi-
circles (Ahlfors [1]), it follows that the boundary of +.,(U) is a quasi-
circle. Hence we see [y.]€ T(U,1). By (5) we also have [}.] € B,(U, I").
On the other hand, (2) and (3) give

(6) [el(z) = 1/2(z — 1)* + C/(z — 1) + (1 — a’)/2(z — 9)*
+ Gfz — 1) + A — af)/2(z + )" + Cf(z + 1) ,
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where
(7)) C=-1/2,C,=1/4 +1 —a?)/2 and C,=1/4 —i(1 — a?/2.
By (6) and (7) we have
[Vre,] — [We,] = (@ — @) (rog°f)(gf)) s
where
r@@)=A/2{EF -+ -+ @+ —i(z + )7,
Since ||[¥4,] — [Va,]llc = 12 for all @, and a,€ (0, 1), we have

sup 0y(2)”| [Ve,](2) — [V, ](?)| = M|a; — aif

for all @, and a,c (0, 1), where M is a constant (determined by f and g).
Hence it follows from the construction of +, that [[[V.,] — [V ]llr =
M|a: — at|. Therefore we have [4,] € T(U, I'"). On the other hand, since

f(z) = dime™ (A + %) (1L — ') f(z)
and

lim (A —eé™)jy=—ix (@F=a+1y),

P32-0,(2/y)—-1

we have

lim Lo@)(oge f)(@)(9°f) ) (@) = —8 .

P32z-0,(z/y)~

Hence it holds
8la; — ai| = sup 00(2) 7 [ [Ve,](2) — [Ye,](2) |

é ]|["%02] - ['{\I;\dl]”[] .
Therefore we obtain, by letting a, = 1/2 and a, — 1, o(U, I'") = 6. Thus
the theorem is proved.

REMARK. The proof of Theorem 2 shows the fact that there does
exist a point ¢ on the boundary of T(I") with ||¢|| = 6.

4. A necessary condition for ||[f]|| = 6.
4.1. First we prove the following.

THEOREM 2. Let A be an open disc in C and let f be a univalent
meromorphic function defined im A. Let d(z, 0f(A)) be the distance
between the point z€ C and the boundary 0f(A) of f(A). Assume that
N[f1lla = 6. Then there exists a sequence of points {B,} in f(A) converging
to a point of df(A) and such that
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dxdy

-z — B,

(8) lim d(8., 2/(4)) |

To prove this theorem, we use two lemmas. The following Lemma
1 is well known. (For example, see Kra [3].)

LEMMA 1. Let D be a simply connected domain in C.

(i) If h is univalent meromorphic in D, then 0,,/(h(2))|k'(z)] =
0p(2) at every z€ D with 2z # c and h(z) # .

(ii) pp(2)d(2, 0D) = 1 for every ze€ D with z #* .

LEMMA 2. Let f be a univalent meromorphic function defined in
4* ={zeC; 1 < |2| £ o} and let ae4* — {0} with f(a) # . Set

_(af® = Df'(e)

_az+1 _
Va(2) = w1z’ 7Na(?)

z— fla)
and F, =",0fV,. Then F, has the expansion
(9) F.(2) = 2z + by(@) + by(@)z™ + by(a)z™ + - -
n 4% and
(10) P |[fl@)] = 6]b(a)] .

ProOF. The function F, is univalent meromorphic in 4* and keeps
o fixed. We also see lim,., F,(2) = 1. Hence we have the expansion
(9) in 4*. Noting [f] = [9.of] = [F,o V'] and lim,_, 2'[F,](z) = —6b,(a),
we have (10).

Now we give a proof of Theorem 2. We may assume A = 4*. Assume
ae % — {} and f(a) #  and set K = C— f(4*). Consider V,, 1, and
F, in Lemma 2 and set w = 7,(z) and w = u + 4v. Then the Bieberbach
area theorem shows

1) 7(1 - S by @) = SS v
On the other hand, using Lemmas 1 and 2, we have
(12) SS%(E)dudq; - SSE Pal*ial“z}{o’[gi)lzdxdy
= protr@ ||
= d(f(a), afu*»zggﬂ% .

Hence it follows from (11) and (12) that
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(13) 71 — @) 2 71— 5 nlb. @)

> d(f(@), 3f(4* 2“%.
(@, 2 |

If ps(a)?|[fl(a,)| = 6 for some a,€ 4* (where we may assume «,€
4* — {} and f(a,) # ), then (10) and the Bieberbach area theorem
imply that [f] = [kog], where k(z) = 2/(1 — 2)* is the Koebe extremal
funetion and g is a Mobius transformation keeping 4* invariant. Hence
the 2-dimensional Lebesgue measure of E equals 0. Therefore, (8) holds
for an arbitrary sequence of points {8,} in f(4*) converging to a point
on of(4*).

If p.(@)2|[f]l@)]| < 6 for every a'e 4*, then there exists a sequence
of points {a,} in 4* converging to a boundary point of 4* and satisfying

(19 lim 0,(@,)”* [f](@,)| = lim 6]b,(a)| = 6

(see (10)). On the other hand, the sequence of points {f(a,)} contains a
subsequence {8,} which converges to a boundary point of f(4*). Therefore,
by (18) and (14) we have (8).

4.2. LEMMA 3. Let 2CC be a convex domain and 2" < C a domain.
Let @ be a C-diffeomorphism of 2 onto 2'. Then, for any convex sub-
domain 2; whose closure is contained in 2’ and is compact, there exists
a constant M = M(2;) > 0 such that

(15) Mz, — 2| S |PR) — P(2)| = M2, — 2|
for all 2, z,€ P (£2;).

PROOF. Set z =z + ¢y and ®(z) = u(z) + iw(z). We write as z, =

X, + Yy, % = Xz + 1Ysy X = X, — @, and Y, = Y, — ¥,. Then there exist two
points ¢, and ¢ lying on the open line segment joining 2z, and z, so
that
(16)  [(P(22) — P(21)/(2: — 2))]

= (a + 2B(Yo/%s) + Y(Yo/T))/(L + (Yo/20)") 5 if x+0,

= (a(xo/yo)2 + 2:8(370/?/0) + 7)/((370/?/0)2 + 1) ’ if Yo # 0 ’
where a = (%,({))* + (v.(8)), B = u(L)u, (L) + v.(L)v, (L) and v = (u, (L) +
(v,(&))*. Here a and v do not vanish simultaneously, for ¢ is a diffeo-

morphism. Hence max («, v) > 0. On the other hand, we have an
inequality

(17) (@ + 2bt + ct)/A + t*) = ¢ + ((@ — ¢)* + 4b)',
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where a, b, ¢ and i are real numbers with ¢ > 0. Let K be a compact
subset of 2 and K (c 2) the convex hull of K. Then it follows from
(16) and (17) that
|P(2:) — P(2,)| < M|z, — 2]
for all 2, z,€ K, where M is a positive constant satisfying
M?* = max (max(e, 7) + (@ — v)* + 485" .
I <
Since the closure of @7(2;) is contained in 2 and is compact, we obtain
(15) by considering the inverse mapping @~ *.

Now we prove one more lemma.

LEMMA 4. Let we(0,27) and r,€(0,1). Set A,. ={z€C;|z| =
and 0 =<argz =< w} and A, ={2cC;|z|=r}N{zecClz+i]=1 or
|z —t]|=1orRez =0} and 4;, = Ax,,N{zcC;Imz =0}. Then
(18) lim inf d(a, JA)* SS _dzdy

A3 a—0 4|z — alt

’

where A = A,,,, (we(0,2r]) or A= A;,,.

ProOF. Set 4, = A4,,., A: = A, d.(a) = d(a, 0A,) and d(a) = d.x(@).
First we prove (18) for A=A,,. Let e (0, 1) be sufficiently small and set
V,={2¢eC;|z|<éand 7/2 < arg z < 2n}. For ae V, and r € (2d(a), 7, — 9),
we define 6,(a,r) and bO,(a,r) (—7/2<6b;(a, r)<m, j=1,2) by the
condition

A, N{zeC; |z —al =7} ={a + re’; O,(a, r) < 0 < O,(cx, 7)} .

We also write 6(a, ) = 0y, ) — 6,(a, ). It is not difficult to verify the
existence of a positive constant 6, such that 6(e, ) > 6, for all a and ».

Hence

SS dady - Sro—a Sag(r) drdo

dslz —alt — Juw Jom  9?
= 0,(1/8d(e)* — 1/2(r, — 0)7)

for « € V,. Therefore we have (18).
Next we prove (18) for A = A4, (w € (0, 7)). Consider an affine trans-

formation F, (from the z-plane to the w-plane) given by

(7 —(3)=ly T oo
Y v 0 sinw/\y

where z =« + iy and w = % + 4v. Then F,(4.,) C A, for a sufficiently
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small . By Lemma 3 there exist an open set V in C with Vo 4., and
a constant M = M(V) > 0 such that

| Fo(2) — Fuo(2)| = M|z, — 2|
for z, 2, V and
d.(Fo(@) =2 M™'d(e)
for ¢ ¢ V. Hence we have

dxdy

AP [, e 2 e iy ], e

40| — Fy(a)|* —
for ¢ V — A,,. By the conclusion of the case w = 7/2 we obtain (18).

Next we prove (18) for A = A4, (w € [r, 2w)). Because of the symmetry
of A with respect to the line ycos(w/2) = x sin(w/2) (with z = x + %),
we obtain (18) by the conclusion for 4 = 4, (w € (0, 7)).

Next we prove (18) for A = A.. Since there exists a Mobius trans-
formation g which maps {z€ C; |z — ©| < 1} onto the upper half plane U
with ¢(0) =0 and g(w) = -, we obtain (18), by using the conclusion
for A = A, (and the conclusion for 4 = A_,), in a manner similar to that
for A=A, (we (0, n)).

Finally we prove (18) for A = A,.. Since A,, is symmetric with
respect to the real axis, we obtain (18) by the conclusion for A = A..
The proof of Lemma 4 is hereby complete.

Now we prove the following as a corollary of Theorem 2.

THEOREM 3. Let P be a polygonal domain defined in §3.1. Assume
0=sa;,<2 (=1, -+, n) for the interior angle wa; at the vertex A; of
P. Let V be a meighborhood of 0P and let @ be a C'-diffeomorphism of
VintoC. I f 2 18 the connected component of C— ®(0P) with p(PNV)C 2,
then conformal mappings f of 4 onto 2 satisfy ||[f]l| < 6.

PrROOF. We may assume that P and 2 are bounded domains in
We set V(p,¢) ={2€C; |z — p|<e} for pe Cand ¢ > 0 and also set C(E) =
C — E for a subset E of C. Let n,€oP, q,= ®(p,) and v = @(@P). Let
re(0,1) and @ (€(0,2x]) be the exterior angle of P at p, with respect
to P. Then there exists a Mobius transformation g with g¢(0) = p,,
g(V(0, )V, g(A,) cC(P) and g(0A,) CoP, where A, = A, , if ® = 7w and
A, =A.,.or A,,if o =7r (see Lemma 4). We take V,=V(q, ¢) so that
V. =V(gy 26) cy(V(0, 7)) (c@(V)), where 4 = pog. Then g(4,)C
P {(C(2) NV, for some se (0, ).

For any point g€ V,, there exists a point ¢'ev NV, with d(q, v) =

I
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lg — q’|. Hence, by Lemma 3, there exists a constant M = M(V) >0
such that

[¥(2) — (@) = M|z — af
for z, ¢ e ¥ *(V,) and such that
d(q, 7) = M 'd(e, 04,)

for ge V, and a = +7'(q).
Let qe V,, ¢ = y(a), w = (2), 2 = + 1y and w = u + tw. Then we
have

dudv

c@nvy|w — gl

ag, 007() P> agg, vy ||

oo |w — q|

. 2 | Jy(2) ]
> Md(a, 0A,) SLS(TJTzL:cT])fdMy

> M'd(e, 9A,)" Sgp‘i% :

where Jy is the Jacobian of « and M’ is a positive constant. Hence by
Lemma 4 we have

lim inf d(q, 022)* SS _dady >0.

7-40,9€2 co |z —ql

Therefore, Theorem 2 implies ||[f]]] < 6.
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