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1. Introduction. Let G be a finitely generated Kleinian group and
denote by Ω(G) and by Λ(G) the region of discontinuity and the limit
set of G, respectively. The residual limit set ΛQ(G) of G is a subset of
Λ(G) consisting of all the limit points which do not lie on any boundary
of the component of Ω(G). Let A be a component of G such that Δ Φ
C = Cu {°°}. The boundary of a component of Δc is called a separator
of G. A point p e Λ0(G) is said to be of the first kind, if there is a
sequence of separators {Cn} of G such that Cn converges to p as n tends
to co and that Cn separates C%_t from Cn+1. The set of all the residual
limit points of the first kind of G is denoted by LJ^G), and L2(G) —
/ίo(G)\L1(G) is called the residual limit set of the second kind of G. In
this article we shall investigate the elements of G which have their fixed
points on LX{G). Next we shall show the existence of a finitely generated
Kleinian group G such that Λ0(G) — Lλ(G) Φ 0 . We shall call it a nest
group and give a characterization of nest groups. Finally, for those
groups, we shall investigate the numbers of elliptic and parabolic elements,
respectively.

2. Lemmas. Throughout this section we assume that G is a finitely
generated Kleinian group with Λ0(G) Φ 0 . Let Δ and Δr be distinct
components of G and denote by 4* the component of Δc containing Δ\
The auxiliary domain for A relative to Δf is the complement of Δ* and
is denoted by D(Δ, Δr). First we shall prove the following.

LEMMA 1. Let 7 and Δ be an element and a component of G, respec-
tively, and suppose Ί{Δ) Φ Δ. Put D = D(Δ, Ύ(Δ)). If y(D) ID D, then

i) dy(D) Π 3D consists of at most one point and
ii) 7 is either loxodromic or parabolic and the latter holds if and

only if BΊ{D) Π 3D — {p} and y(p) = p.

PROOF. We shall first show that dy(D) Φ 3D. Assume the contrary.
Then dy(D) = 3D so that Ύ(D) = D. By the properties of auxiliary
domains [7], we have
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0 - DU 7(4)) Γl D(Ί(Δ), 4 ^ ΰ n 7(4) - 7(2)) n 7(4) - 7(4) ,

a contradiction. Hence we have 3y(D) Φ 3D so that 7(2)) =2 2). Put 2)* =
2)(7(4), ^). Since both j and 7(4) lie in 7(2)), we see that 3y(D) Φ 3D*.
Hence both 3Ί{D) and 32)* are boundaries of the distinct components
of 7(4)c. Proposition 5 of [7] asserts that 3j(D) Π 32)* consists of at
most one point. On the other hand, since DP\D* = 0 and since 37(2)) c
37(4) c D*, we see that 3j(D) n 3D c 37(2)) Π 32?*. Thus the first asser-
tion follows.

Next we shall show the second assertion. Since 7(2)) 5 A we have
yn(D) =2 -O for each positive integer n. This implies that 7 is not elliptic.
If 3y(D) Π 32) = 0 , then 7 is a loxodromic element with the attractive
and the repelling fixed points in the exterior of 7(2)) and in the interior
of 2), respectively. If 3j(D) f] 3D = {p} and if 7(3)) Φ p, then 372(2)) Π
3D = 0 so that 7 is loxodromic. If 37(2)) Π 32) = {p} and if y(p) = p,
then 7 is not loxodromic, for otherwise another fixed point of 7 would
lie on 3y(D) Γ) 3D (see [6]), which contradicts i). Thus we have our lemma.

The following two lemmas give us some sufficient conditions for an
element of G to belong to a component subgroup of G.

LEMMA 2. Let 7 be an element of G. If one fixid point p of 7 lies
neither on the residual limit set nor on the set of separators of G, then
there is a component A of G such that 7 6 GΔ.

PROOF. If peΩ(G), then 7 is elliptic and the assertion is clear.
Hence we assume p$Ω(G). Since p does not lie on the residual limit
set of G, there is a component 4 such that pedA. If 7 $ GΔ9 then 7(4)
is a component of G different from Δ. It is known that 3A Π 37(4) is
contained in a separator of G. On the other hand, p lies on 3A Π 37(4).
This contradicts our assumption. Hence we have 7 6 G_.

Let 4 be a component of G and let p be a point not lying on the
closure of 4. Here we shall consider the domain D(4, p) which is of
the same kind as an auxiliary domain, that is, let 4* be the component
of Δc containing p. We then denote the complement of the closure of
4* by D(Af p) and call it the auxiliary domain for A relative to p. We
shall also use the following terminology. Let p and q be distinct points
and let A be a component of G. Then we say that A separates p from
q if they lie in the distinct complementary components of A.

LEMMA 3. Let 7 be an elliptic element of G and let p and q be the
fixed points of 7. If there is a component A of G which separates p
from q, then 7 6 GΔ.
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PROOF. Assume γ(4) Φ A. Put D = D(Δ, p). Since 3D separates p
from q, we see q e D. Hence either y(D) D ΰ o r y~\D) => D. The former
and the latter cases imply D = 2)(J, τ(^)) and Z> = D(Δ, 7~\A)), respec-
tively. This contradicts Lemma 1. Therefore, we have y{A) = A so that
ΎβGA.

Later we need the following.

LEMMA 4. Let 7 and A be a parabolic element and a component of
G, respectively. If the fixed point p of 7 does not lie on dA, then
7(D(Δ, p)) Π D(A, p) = 0 .

PROOF. Put D = D(A, p). Assume 7 CD) Π 2? Φ 0- Then either
dy(D)c:D or dDaτ(D) holds. Since pgDl)y(D), we see that either
τ(-D) ί ΰ or 7~~1(.D) £ JD. Since p g 9J, we see by Lemma 1 that 7 is
loxodromic, a contradiction. Hence y(D) f] D = 0.

Next lemma gives us a characterization of the points of Lλ{G).

LEMMA 5. Let p e LX(G) and let q be a point different from p. Then
there is a sequence of couples (Δn9 dn) of components and elements of G
with the following properties:

ii) aΛ(A) = Dn and
iii) Dn converges to p as n tends to oo, where Dn = D(An, q).

PROOF. Let {Ck} be a sequence of separators converging to p such
that Ck separates C -̂i from Ck+1. Delete, if necessary, a finite number
of terms from {Ck} which do not separate p from q, and denote the new
sequence also by {Ck}. Now there is a sequence {Ak} of components of
G such that CkadAk. Since Ck_u Ck and Ck+1 are included in Λ(G), we
see that {A2k\ is a sequence of distinct components of G such that A2k

converges to p and separates p from q. By the Ahlfors finiteness theorem,
we can choose an infinite subsequence of {A2k} such that this subsequence
is a subset of an equivalence class of components of G. We denote by
{Am} this subsequence. Let 7m be an element of G such that 7m(Λ) = Δm.
The set {Tm

l(dD{Am, q))} is a set of separators of G lying on dΔλ. Now
the Ahlfors finiteness theorem implies that there is a finite number of
separators on 3Δ1 which are not equivalent to each other under GJr

Hence, choosing a subsequence, we have an infinite subsequence
{7~\(dD(Amj, q))}f=2 of {7?(dD(Δm, ?))} such that, for each j > 1,

7mjsmj7nl(dD(Am2, q)) = dD(Amj, q) ,

where emjeGJl. (See Figure 1). Put δmj = 7m3£mfΐ*\. Now it is easy to
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see that, if we change
properties i), ii) and iii).

m ό by m ^ , the couples (Δmj, δmj) satisfy the

FIGURE 1

3. Fixed points on Lλ(G). Now we shall prove the following.

THEOREM 1. Let G be a finitely generated Kleinian group with
L^G) Φ 0 and let 7 (^id) be an element of G. If 7 has a fixed point
on Lλ(G), then 7 is either loxodromic or elliptic. In the latter case there
exists a loxodromic element of G having the same fixed points as 7.

PROOF. Let p be the fixed point of 7 lying on Lλ(G). Assume that
7 is parabolic. Without loss of generality we may assume that p = 00
and that 7(2) = z + 1. Let {Cn} be a nested sequence of separators con-
verging to 00. Let Δn be a component of G with CnadΔn. Put Dn =
D(Δn, 00). Then, by Lemma 4, we see 7(Z>») Π Dn = 0 for each n. Since
A is bounded, 7(A) is also bounded. Since {CJ is a nested sequence
converging to 00 and since 7(A) U A is bounded, there is an n0 such
that Dno 3 7(A) U A- Then we have

7(Dno) n Dno =) 7(7(A) u A ) n (7(A) u A ) ^ τ ( A ) .

This contradicts the fact j(DnQ) Π Dno = 0 . Therefore, 7 is not parabolic.
Next assume that 7 is elliptic. Let q be another fixed point of 7.

We shall show that there is a loxodromic element of G having p and q
as the fixed points. Let {{Any δn)} be a sequence of couples obtained in
Lemma 5. We note that An separates p from q for each n. By Lemma
3, we see 7 6 GΔn for each n so that δ~17§n e GΔι. Since δΛ(3A) = 3A*,
we see that δ~lfγδn is an element of the component subgroup Gj* of GΔl}

where Δ* is the component of GΔχ containing q. Since there is only a
finite number of non-conjugate elliptic elements in GΔ*f there are numbers
m and k (>m) such that δ^ΪΊδm is conjugate to S ^ ^ in Gj*. Let ε be



RESIDUAL LIMIT POINTS 39

an element of Gά* such that δϊlfγδk = eδ~lrγδmε~\ Putting 7* = δkεδ^\ we see
77* - 7*7. Since y*(D(Δm, q)) = D(Δk, q) and D(Δm, q)^D(Δk, q), we see that
7* is a desired loxodromic element of G with the same fixed points as 7.

For the fixed points of elliptic elements of G we have the following.

COROLLARY. Let G be a finitely generated Kleinian group and let
7 be an elliptic element of G. If one of the fixed points of 7 lies on
Li(G), then both of them lie on L^G).

PROOF. Let p and q be the fixed points of 7 and let peL^G). By
Theorem 1, we see that there is a loxodromic element of G whose fixed
points coincide with p and q. Since peL^G), there is a separator
separating p from q. Hence we see qeL^G).

REMARK. The existence of a finitely generated Kleinian group G
containing elliptic elements whose fixed points lie on LX(G) can be shown
by means of the following combination theorem of Maskit.

THEOREM ([4]). Let Gλ and G2 be Kleinian groups and let H be a
common subgroup of G^ and G2. Let Du D2 and Δ be partial fundamental
sets of Gu G2 and H, respectively. For i = 1, 2, set Et = U*e* Λ(A)
Assume that E, U E2 => R(Gy) U R(G2) and D' = int(D) Φ 0 , where D =
E1 Π E2 Π Δ and R{GX) = Ω{G%)\{fixed points of elliptic elements of Gt}
(i — 1, 2). Then G = (Gl9 G2) is Kleinian, no two points of D are equiv-
alent under G, D' is a partial fundamental set for (?, and G is the
free product of Gλ and G2 with the amalgamated subgroup H.

Now let Gi be a finitely generated Fuchsian group of the first kind
such that A(Gx) = R U {^} and that Gx contains the elliptic element h
w i t h t h e fixed p o i n t s i a n d - i . P u t Uε = {z\0 < \z - i\ < e) I) {z\0 <
\z + i\ < ε}. Then, for a small ε, there is a fundamental set D1 of Gλ

such that t/eCUfceirMA)* where H = (h). Let g be a loxodromic trans-
formation with the fixed points i and — i such that both isometric circles
of g and g'1 lie in Uε. Let G2 = (g, H) and let Δ be a fundamental set
of H bounded by two circular arcs with the same endpoints i and — ΐ.
Finally, let D2 be the fundamental set of G2 bounded by the isometric
circles of g and g~x and by the boundary of Δ.

Then it is easy to see that fundamental sets Du D2 and Δ constructed
just above satisfy the assumption of Maskit's theorem stated above.
Hence G = (Gl9 G2> is a finitely generated Kleinian group. By the con-
struction, we see that D is a fundamental set of G. Let D* and D* be
components of D and D1 lying in the upper half plane, respectively. Put
E* = UhenHD*) and E* = \JheHh(D*). Then # * is an annulus obtained
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from Ef by deleting a subset of E*. (See Figure 2). Hence we see
that the component of G containing Z>* has RU{°°} on its boundary.
It is clear that R{J{°°} is a separator of G so that h is an elliptic
element of G with the fixed points on LX{G).

E*

C: isometric circle of g

FIGURE 2

4. Nest groups. First we shall show the existence of a finitely
generated Kleinian group G with Λ0(G) = LX{G) Φ 0 . We shall call such
a group a nest group. The group which we consider in the following
is the one which is constructed by Abikoff in order to prove the existence
of the residual limit points [1].

Let Γ be a finitely generated Fuchsian group of the first kind such
that y(U) =U for each jeΓ, where U = {z\ \z\ < 1}. Taking the con-
jugate of Γ with respect to a linear transformation, we may assume that
0 and oo are not fixed points of any elliptic element of Γ. Then each
7 θ i d ) e Γ has the form zv->(az + b)/(bz + ά), |α | 2 - |6|2 = 1 and b Φ 0.
It is well known that there is a positive number b such that | b | ^ b for
each yeΓ except for the identity. The isometric circle of 7 is the set
{z\ \z + ~ajb\ = 1/161} with the center — ajb and the radius 1/|6|. The
Ford fundamental region of Γ consists of two components Rt and R2, the
former bounded and containing 0 and the latter unbounded and containing
00. It is easy to see that there is a positive number C such that
{z\ \z\ < C) CJBX. Choose a point peR2 on the positive real axis. Let δ
be a hyperbolic transformation such that the repelling and the attractive
fixed points of 3 are 0 and p, respectively, and that the isometric circles
Ix of δ and I2 of δ'1 lie in Rλ and in R2, respectively.

Then, by Klein's combination theorem, we see that G = (Γ, 3} is a
finitely generated Kleinian group with the fundamental set {R1 Π Ext I±) U
(i?2ΠExtI2). By the construction, we see that all the components of G are
equivalent to each other. Let A be the component of G containing Rλ Π
Ext Jlβ Then (R, Π Ext Λ) U δ~1(R2 Π Ext I2) is the fundamental set of G_,
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in J, and {z \ \ z | = 1} and δ~\{z \ \ z \ = 1}) are contained in dΔ.
We shall show that we can choose p and the multiplier of δ so large

that the isometric circles of Γ do not intersect the isometric circles of
δ~Ψδ. Choose the multiplier tc of δ such that tz — p > 1. Then the
isometric circle of δ~λyδ is the set {z\ \Az + B\ = 1}, where

A = -(a(tc - 1) + b(κ - 2 + l/tc)/p)/p + btc + a(κ - l)/p = 6p + 0(1)

and

5 = -6(1 _ 1/Λ:)/̂  + a = α + o(l) ,

as p tends to °o. Since | b | ^ 6 > 0, we see that, for a sufficiently large p,

\B/A\ + 1/\A\<C,

so that each isometric circle of δ~Ψδ lies in Rlβ Hence the isometric
circles of Γ do not intersect those of δ~Ψδ. Put G* = <Γ, δ~Tδ). Then
we easily see that (?* is a free product of Γ and δ~*Γδ and that G* =
Gj. This implies that each boundary of non-invariant components of GΔ

is equivalent to either {z\ \z\ = 1} or δ~\{z\ \z\ — 1}).
Now we can prove the non-existence of the residual limit point of

the second kind of G. Let p e Λ0(G) and let Λ* be the component of GΔ

containing p. Since Δ* is equivalent to either {z \ | z \ > 1} or δ~γ({z \ \ z \ <
1}), there is an element geGΔ such that g~\A*) = {z\ \z\ > 1} or
= δ- 1 ({2 | |« |<l}) . Then Δ, = gδ(Δ) (or = gδ~\Δ)) lies in z/* and 3Λ Π
3J* = 3J*. Let Λ* be the component of GΔί containing p. In the same
way as above, we can find a component Δ2 of G such that Δ2 c z/* and
that dΔ2 Π 3Λ* = dΔf, and so on. Then the sequence of separators {dΔ?}
converges to p and dΔ? separates dΔ?+1 from dΔ?_lm This implies peL^G).
It is clear that AQ(G) Φ 0 . Thus we have shown the following.

THEOREM 2. There exists a nest group, that is, a finitely generated
Kleinian group G with Λ0(G) = Lλ(G) Φ 0 .

REMARK. The group G constructed just above has a set of generators
{δ, 7i, , 7M}, where {jlf , yn} is a set of generators of Γ. The com-
ponent subgroup GΔ is the free product of Γ and δ~Ψδ so that, for
each integer m Φ 0, we have δm £ GΔ. Since each component of G is
equivalent to Δ, we see that δm is not an element of any component
subgroup of G for each integer m Φ 0. This implies that G is not
generated by any collection of component subgroups of G.

In connection with Theorem 1.1 in [9], Kuroda pointed out the
following.
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THEOREM 3. There exists a finitely generated Kleίnian group G
such that any set of generators of G contains at least one loxodromic
element having the fixed points on Λ0(G).

PROOF. For the group G constructed above, we can choose Γ to be
purely loxodromic. Since G is a free product, G contains no elliptic
element. Assume that there are non-elliptic element g of G and a com-
ponent A of G such that the fixed points of g lie on 3 A and that g(A) Φ Δ.
Without loss of generality we may assume that Δ is the component in
the proof of Theorem 2 and that the fixed points of g lie on the unit
circle. Then δ~~ιg{A) — A so that all the non-invariant components of GΔ

are conjugate to each other, a contradiction. Thus the theorem follows.

Now we shall give a characterization of nest groups.

THEOREM 4. Let G be a finitely generated Kleinian group with
Λ0(G) Φ 0 . Then L2(G) = 0 if and only if each separator of G is a
common boundary of two components of G.

PROOF. Without loss of generality we may assume oo e Ω(G). First
we shall show the sufficiency. Let p e Λ0(G). Denote by Δx the component
containing oo and put D1 = D(ΔU p). Then p lies in the interior of dD^
Since 3DX is a separator, there is a component Δ2 with 3D(A2, Δλ) — dDx.
Since any two separators lying on dΔ1 have at most one common point,
we see D(Δl9 Δ2) = A Hence peD(Δ2, Δx). Put D2 = D(Δ2, p). Then
dD2 Φ 3DX and p lies in the interior of dD2. Repeating the same proce-
dure, we have an infinite sequence of separators {3DJ such that p lies
in the interior of 32^ and that dDi+1 lies in the interior of 3A (ΐ =
1, 2, •••)• Hence peL^G).

In order to show the necessity we assme that there is a separator
C lying only on the boundary of one component Δ. Denote by D the
auxiliary domain for Δ with 3D = C. Let Δx be a component of G lying
in the exterior of D. Then 3D(AU Δ) Φ 3D. Let {Δt} be the set of all
components such that D(Δit A) n D = 0 and that D(AU A) ZD D(Aly A). Since
each dD(Δif A) is a separator, there is a component Δ* in {Δt} such that
D(Δ*, J ) D D ( 4 A) for each A, in {A,}. Put D* = D(Δ*, A). Then Df]
D* = 0 and 3D Φ 3D*. We assert that there are loxodromic elements 7 e
GΔ and δ e Gj* such that fixed points of 7 (or δ) lie on 3D (or 3D*) and that
there is no component of G on whose boundary all four fixed points of
7 and δ lie. Let 7 (or δ) be a loxodromic element of Gj (or GΔ*) with
the fixed points ζ, ξ' (or 57,57') on 3D\3D* (or 3D*\3D). If there is a
component zf' on whose boundary £, £', 77 and 77' lie, then, putting D' =
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D(Δ', A), we see D' = D{Δ', A*) and D n D' = Z>* Π D' = 0 . Choose a
loxodromic element eeGj whose fixed points lie on dD\dD' and separate
ξ from f'. Here all four fixed points of 7 and e are considered as points
on the Jordan curve 3D. Then we see easily that there is no component
on whose boundary all four fixed points of ε and δ lie. Thus we have
our assertion. By Lemma 4.2 in [9], we see that there is an integer m
such that yδm is a loxodromic element of G with the fixed points on
A0(G). Let p and q be the fixed points of yδm. We assert peL2(G).

Otherwise we have peL^G). Let {Aά} be the set of components such
that D(Ajf A) = D(Ajf A*) and that p e D(ΔS, A), Put Dd = D(Δif A), Then
there is a component Ao in {Aβ} such that D(ΔQ, A) z) D(Δh A) for each Δά

in {Aj}. Putting D0 = D(A0, A), we see either δm(D0) = D0 or δm(D0)f] Do=0.
(See Figure 3). If δm(D0) = Do, then yδm(DQ)nD0 = 0 , which contradicts
p 6 DQ. Hence δm(D0) f)D0= 0. By the choice of zf*, there is no separator
other than 3D and 3D* which separates D from 2)*. Hence we see
δm(DQ) = D or δm(D0) Π D = 0 . If (5w(Z>0) = D, then yδm(D0) = JD, which
contradicts peD0. Hence 7δm(Z>0)Πί)= 0 . Taking (TS*)" 1 , we have also
(yδm)~\D0) Π D* = 0 . Since p is a point of yδm(D0) Γι Do, we see either
yδm(DQ)i)D0 or (yδ")'1^) => Z)o. We shall only consider the first case,
because the second case can be treated in the same manner. If τ<5m(Z)0) =
DQ, then γ<?w has the fixed points on a separator, a contradiction. If
rγδm(DQ) ^ Z)o, then it contradicts the choice of Ao. In any case we have
a contradiction. Therefore, p e L2(G) and we have completed the proof
of our theorem.

FIGURE 3

5. A web group. In this section we shall show that the method of
the proof of Theorem 4 gives us a sufficient condition for a group to be
a web group. Before stating the theorem, we recall some results in [2],

Let G be a finitely generated Kleinian group with L2(G) Φ 0 and let
p be a point on L2(G). The maximal separator for p relative to a point
z e Ω(G) is the separator which separates p from z and which is not
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separated by any separator from p. The set of all maximal separators
for p is denoted by M(p). The web of p, which is denoted by Φ(p), is
the closure of M(p). The web subgroup of p, denoted by H(p), is the
maximal subgroup of G which keeps Φ{p) invariant. Then Λ(H(p)) —
Φ(p); each component of Ω(H(p)) is simply connected and bounded by a
quasi-circle in M(p); for each maximal separator C in Φ(p), the maximal
subgroup of G which keeps invariant the complementary component ( ί p)
of C is a subgroup of H(p).

THEOREM 5. Let G be a finitely generated Kleinian group with
ΛQ(G) Φ 0 . // there is a collection of components {Δlf Δ2J , Δn) of G
with the following properties, then G is a web group.

i) each Gά. is quasi-Fuchsian (i = 1, 2, , n),
ii) there is no separator separating 3Δt from 3Δi (if j = 1, 2, , n)

and
iii) G = (GΔχ,GΔ%9 - ,GJny.

PROOF. Since ΛQ(G) Φ 0 , we note n > 1. By i) and by Λ0(G) Φ 0 ,
we see 3ΔX Φ dΔi (i = 2, 3, , n). If there is a component Δ of G with
3ΔX 9= 3^, then each J ; lies in a complementary component of Δ (i — 2,
• , w). By ii), we see G = GΔ. This contradicts the assumption ΛCG1) ^
0 . Hence dΔx is a separator which is not the common boundary of two
components of G. By ii), we can choose Δ1 and Δ2 as Δ and Δ* in the
proof of Theorem 4, respectively. Then there are loxodromic elements
7 6 GΔi} δ 6 Gj2 and an integer m so that τ<5m is a loxodromic element of (?
with the fixed points on L2(G). Let p and # be the fixed points of 7<5W.

We assert that there is no separator separating p from dΔi (i =
1, 2, , n). First we shall show this for i = 1. Suppose on the contrary
that there is a separator C separating p from dΔλ. Without loss of
generality we may assume that there is no separator separating C from
34. Let Δ be the component with CadΔ. Put D = D(Δ, 4). Then
d£> = C. By ii), we see Z) Π 4 = 0 . If <?m(3Z>) = 3D, then <5m(Z>) - D
and the fixed points of 7 do not lie on 3D. Hence we see jd'm(D) Γi D =
0 , which contradicts peD. If 3m{3D)aD, then <5W(£>) £ D so that the
attractive fixed point of <5 lie in D, a contradiction. If δm(3D) lies in
the complement of D, then we see either δm(D) = Δλ or δm(Ώ) Π Λ = 0
and ΰ ίl δm(ΰ) = 0 . In the former case we have 7δm(D) Π D = 0 , a
contradiction. In the latter case, rγδm(3D) lies in 5 or in Dc. If 7δm(3D)
lies in 5 (or in Dc), then Ίδm{D)czD (or =>£>). This implies that the
repelling (or the attractive) fixed point of j3m lies outside D, which
contradicts p, q e D. Thus, in any case, we have a contradiction. There-
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fore, we have shown that there is no separator separating p from 3ΔX.
Next we shall show that there is no separator separating p from 34(i>l).
Suppose on the contrary that there is a separator C separating p from
dΔt. Since C does not separate d/l1 from dΔu we see that 3ΔX lies in the
complementary component of C containing dΔt. This implies C separates
p from 3Δlf a contradiction. Thus we have shown our assertion.

Our assertion just proved implies dΔt eM(p) (i = 1, 2, , n). Hence,
for each i (i = 1, 2, , w), GΔ.aH{p). By iii), we see G = H(p). Since
G is finitely generated, we conclude G is a web group.

As an application of Theorem 5 we shall show that the group G' in
[2] is a web group. The Kleinian group G' is constructed as follows:
Let Cj = {z\ \z — e{j~1)zί/2\ = 1/i/ΊΓ} and let Γ3 be a Fuchsian group of
the first kind generated by four parabolic generators, two of which
have the fixed points on C3 Π C;_i and Cy Π Cj+1. Then (?' = <A, Γ29 Γ3, Γ4>.
It is easy to see that the interiors of four circles Clf C2, C3 and C4 satisfy
the properties i), ii) and iii) in Theorem 5. Hence Gr is a web group.

6. Numbers of elliptic and parabolic elements. In this section we
shall investigate the numbers of elliptic and parabolic elements of nest
groups. In the decomposition of finitely generated function groups,
Maskit showed the following.

THEOREM ([5]). Let G be a finitely generated function group. Then
the following hold.

i) There is a finite set of elliptic elements of G such that each
elliptic element of G is conjugate to an element of the set.

ii) There is a finite set of parabolic cyclic and doubly periodic
subgroups of G such that each parabolic element of G is conjugate to
an element of a subgroup in the set.

We shall generalize this as follows.

THEOREM 6. Let G be a finitely generated Kleinian group with
L2{G) = 0. Then the following hold.

i) There is a finite set of elliptic elements of G such that each
elliptic element of G is conjugate to an element of the set.

ii) There is a finite set of parabolic cyclic and doubly periodic
subgroups of G such that each parabolic element of G is conjugate to
an element of a subgroup in the set.

PROOF. By the theorem of Maskit and by the Ahlfors finiteness
theorem, we may only consider the elements of G which do not belong



46 T. SASAKI

to any component subgroup of G. By Theorem 1 and by Lemmas 2 and
3, we may only consider the elements whose fixed points lie on the set
of separators.

First we consider the parabolic elements of G. Let 7 and Δ be a
parabolic element and a component of G, respectively, such that 7 £ GΔ

and that the fixed point of 7 lies on dΔ. Then it is shown in [8] that
there is a parabolic element of GΔ with the same fixed point as 7. Hence
7 is conjugate to an element of a doubly periodic subgroup. Since there
is a finite number of maximal non-conjugate parabolic doubly periodic
subgroups in G, the assertion follows.

Next we consider the elliptic elements. Let 7 be an elliptic element
of G which does not belong to any component subgroup of G and whose
fixed points lie on the set of separators. Let & and ξ2 be the fixed
points of 7. We shall show that there is a separator on which both £x

and ζ2 lie. Suppose on the contrary that there is no separator on which
both ξ1 and ζ2 lie. Let d and C2 be separators on which ξ± and ξ2 lie,
respectively. By Theorem 4, we see that there are components Δu 4, 4
and 4 such that 34 f] dΔ2 = d and dΔ3 Π d4 = C2. Without loss of gen-
erality we may assume D(Δl9 4 ) c ΰ ( 4 4) and D(ΔA, 4) c ΰ ( 4 4). (See
Figure 4). If Δ2 = 4 , then 4 and 4 lie in the distinct components of
4C so that D(ΔU Δ2) n D(Δif Δ2) = 0 . Since ξx (or f2) lies on Cx (or C2), we
see 7(4) Π Z>(Λ, 4) ^ 0 (or 7(4) Π -0(4, 4) ^ 0) . This contradicts the
connectivity of 7(4) Hence 4 ^ 4 By the assumption, we see that
if ζ2 edD(Δ2f 4), then ξ^dD(Δ2f 4). Hence, if f2ed£>(4, 4), then fLe
D(4, 4) so that Z>(4, 4) must be invariant under 7. Hence 7 e Gj2, a
contradiction. If ζ2 is not in the closure of D(Δ2, Δ3), then ξ2eD(Δ2, 4)
so that D(Δ2, 4) must be invariant under 7. Hence 7 6 Gj2, a contradic-
tion. Thus, in any case, we have a contradiction so that we have shown
the existence of a separator on which both ξ1 and ξ2 lie.

We shall next show that there is only a finite number of non-conjugate

FIGURE 4
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elliptic elements whose fixed points lie on a single separator. Let C be
a separator and let {7J be a set of non-conjugate elliptic elements of G
whose fixed points lie on C. Let A be a component with Cad A and let
A' be the complementary component of A with dΔf = C. We assert that
there is only a finite number of elements in {TJ which are non-conjugate
under the component subgroup GΔr of GΔ. Since GΔ> is a finitely generated
quasi-Fuchsian group of the first kind, there are a finitely generated
Fuchsian group F of the first kind with Λ(F) = {z | | z | = 1} and a quasi-
conformal mapping w of the unit disc onto Af such that wFw'1 = GΔ>.
Without loss of generality we may assume that 0 and oo are not the
fixed points of any elliptic element of F. Denote by D the bounded
component of the Ford fundamental region for F. Put gt = w^y^w and
denote by lt the non-Euclidean line connecting the fixed points of gt.
Taking the conjugate of gt with respect to an element of F, we may
assume kPiD Φ 0 . Put Dr = D Π {z\ \z\ < r}. If Dr = D for some
r < 1, then each lt passes through {z | | z | < r) so that the Euclidean
distances between the endpoints of i, are bounded below by a positive
constant. If Dr Φ D for any r < 1, then there is a finite number of
cusped regions of D. Denote by {Dβ})=1 the cusped regions of D and by
fj the corresponding parabolic element of F to Dό. Let r0 < 1 be a
positive number such that J9\DrocU*=i A M ltnDrQ= 0 , then there is
a Zλ, with lif] Dj Φ 0 . The conjugation of gt by //* with an integer m
implies that the non-Euclidean line connecting the fixed points of fjmgifΓ
passes through Dro. Taking such an elliptic element for gif we may
assume lt Π Dro Φ 0 . Hence the Euclidean distances between the endpoints
of li are bounded below by a positive constant. Then we see that there
is a subsequence {lin} of {ZJ converging to a non-Euclidean line I with
the distinct endpoints. Since the endpoints of w(l) are distinct and are
the cluster points of fixed points of {τ<n}, we conclude G is not Kleinian,
a contradiction. Thus we have shown that there is only a finite number
of elements in {7J which are non-conjugate under GΔ'f hence under G.
Since there is only a finite number of non-equivalent separators, there
is only a finite number of non-conjugate elliptic elements in G and the
proof of the theorem is completed.
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