To6hoku Math. Journ.
32(1980), 35-48.

THE RESIDUAL LIMIT POINTS OF THE FIRST KIND AND
THE NEST GROUPS

TAKEHIKO SASAKI

(Received January 29, 1979, revised June 30, 1979)

1. Introduction. Let G be a finitely generated Kleinian group and
denote by 2(G) and by A(G) the region of discontinuity and the limit
set of G, respectively. The residual limit set 4,(G) of G is a subset of
A(G) consisting of all the limit points which do not lie on any boundary
of the component of 2(G). Let 4 be a component of G such that 4 #
C=cCu {eo}. The boundary of a component of 4° is called a separator
of G. A point peA(G) is said to be of the first kind, if there is a
sequence of separators {C,} of G such that C, converges to p as n tends
to < and that C, separates C,_, from C,.,. The set of all the residual
limit points of the first kind of G is denoted by L.,(G), and L,(G) =
A(G\L,(G) is called the residual limit set of the second kind of G. In
this article we shall investigate the elements of G which have their fixed
points on L,(G). Next we shall show the existence of a finitely generated
Kleinian group G such that 4,(G) = L,(G) = @. We shall call it a nest
group and give a characterization of nest groups. Finally, for those
groups, we shall investigate the numbers of elliptic and parabolic elements,
respectively.

2. Lemmas. Throughout this section we assume that G is a finitely
generated Kleinian group with A(G) # @. Let 4 and 4’ be distinet
components of G and denote by 4* the component of 4° containing 4.
The auxiliary domain for 4 relative to 4’ is the complement of 4* and
is denoted by D(4, 4'). First we shall prove the following.

LEMMA 1. Let v and 4 be an element and a component of G, respec-
tively, and suppose Y(4) + 4. Put D = D(4, v(4)). If v(D)> D, then

i) 0v(D) N oD consists of at most one point and

ii) v s either loxodromic or parabolic and the latter holds if and
only if 0v(D) N oD = {p} and v(p) = p.

PrOOF. We shall first show that 0v(D) = 0D. Assume the contrary.
Then o0v(D) = oD so that v(D)= D. By the properties of auxiliary
domains [7], we have
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@ = D(4, (1) N D(v(4), H) DD Nv4) =vD)Nvd) =),

a contradiction. Hence we have 0v(D) # oD so that ¥v(D) 2 D. Put D* =
D(v(4), 4). Since both 4 and ¥(4) lie in v(D), we see that ov(D) # oD*.
Hence both ¢v(D) and oD* are boundaries of the distinet components
of ¥(4). Proposition 5 of [7] asserts that dy(D) N aD* consists of at
most one point. On the other hand, since DN D*= @ and since av(D)C
0v(4) < D*, we see that ov(D) N oD c ov(D) N 9D*. Thus the first asser-
tion follows.

Next we shall show the second assertion. Since v(D) 22 D, we have
v"(D) 2 D for each positive integer . This implies that v is not elliptie.
If ov(D)NoD = @, then v is a loxodromic element with the attractive
and the repelling fixed points in the exterior of v(D) and in the interior
of D, respectively. If ov(D) N oD = {p} and if v(p) # p, then ov¥(D) N
0D = @ so that v is loxodromic. If o9v(D)N oD = {p} and if ~(p) = p,
then v is not loxodromie, for otherwise another fixed point of v would
lie on 0v(D) N oD (see [6]), which contradicts i). Thus we have our lemma.

The following two lemmas give us some sufficient conditions for an
element of G to belong to a component subgroup of G.

LEMMA 2. Let v be an element of G. If one fixzid point p of v lies
neither on the residual limit set nor on the set of separators of G, then
there 1s a component 4 of G such that v € G,.

Proor. If peQ(G), then v is elliptic and the assertion is clear.
Hence we assume p ¢ 2(G@). Since p does not lie on the residual limit
set of G, there is a component 4 such that peod. If v¢ G, then v(4)
is a component of G different from 4. It is known that 04 N ov(4) is
contained in a separator of G. On the other hand, p lies on 04 N av(4).
This contradicts our assumption. Hence we have veG..

Let 4 be a component of G and let » be a point not lying on the
closure of 4. Here we shall consider the domain D(4, p) which is of
the same kind as an auxiliary domain, that is, let 4* be the component
of 4° containing p. We then denote the complement of the closure of
4* by D(4, p) and call it the auxiliary domain for 4 relative to p. We
shall also use the following terminology. Let p and ¢ be distinet points
and let 4 be a component of G. Then we say that 4 separates p from
q if they lie in the distinct complementary components of 4.

LEMMA 3. Let v be an elliptic element of G and let p and q be the
fixed points of v. If there is a component 4 of G which separates p
from q, then ve€ @G,
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PrROOF. Assume v(4) # 4. Put D = D(4, p). Since 0D separates p
from g, we see g€ D. Hence either v(D) > D or v}(D)> D. The former
and the latter cases imply D = D(4, v(4)) and D = D(4, v7%(4)), respec-
tively. This contradicts Lemma 1. Therefore, we have v(4) = 4 so that
7€ @Gy

Later we need the following.

LEMMA 4. Let v and 4 be a parabolic element and a component of
G, respectively. If the fixed point p of v does mot lie on 04, then
v(D(4, p)) N D4, p) = 2.

ProOF. Put D = D(4, p). Assume v(D)N D # @. Then either
ov(D)c D or oD c (D) holds. Since p¢DUv(D), we see that either
Y(D)&E D or vY(D)& D. Since p¢od, we see by Lemma 1 that v is
loxodromie, a contradiction. Hence y(D)ND = O&.

Next lemma gives us a characterization of the points of L,(G).

LEMMA 5. Let pe L/(G) and let q be a point different from p. Then
there 1s a sequence of couples (4,, d,) of components and elements of G
with the following properties:

l) Dn ) -Drn,+17

ii) 0,(D) = D, and

iii) D, converges to p as n tends to oo, where D, = D(4,, q).

PrOOF. Let {C,} be a sequence of separators converging to p such
that C, separates C,_, from C,.,. Delete, if necessary, a finite number
of terms from {C,} which do not separate p from ¢, and denote the new
sequence also by {C,}. Now there is a sequence {4,} of components of
G such that C, < d4,. Since C,_,, C, and C,y, are included in A(G), we
see that {4,,) is a sequence of distinct components of G such that 4,,
converges to p and separates p from q. By the Ahlfors finiteness theorem,
we can choose an infinite subsequence of {4,,} such that this subsequence
is a subset of an equivalence class of components of G. We denote by
{4,} this subsequence. Let v, be an element of G such that v,(4,) = 4,.
The set {v;(0D(4,, q))} is a set of separators of G lying on 94,. Now
the Ahlfors finiteness theorem implies that there is a finite number of
separators on 94, which are not equivalent to each other under G, .
Hence, choosing a subsequence, we have an infinite subsequence
{Ya(0D(4y;, DI5=: of {v:(0D(4,, @))} such that, for each Jj>1,

Ym€mYmg 0D (4, @) = 0D(dy;y Q)

where ¢,,;€G,.  (See Figure 1). Put 0,; = Yu,€n;Vm Now it is easy to
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see that, if we change m; by m,;_,, the couples (4
properties i), ii) and iii).

0,;) satisfy the

mgs

aD(4y, @

OD(dmy D

t 3
q 2

7 3D D

Ficugre 1
3. Fixed points on L,(G). Now we shall prove the following.

THEOREM 1. Let G be a finitely generated Kleinian group with
L(G) # @ and let v (#id) be an element of G. If v has a fived point
on L,(G), then v 1is etther loxodromic or elliptic. In the latter case there
extists a loxodromic element of G having the same fixed points as 7.

ProOF. Let p be the fixed point of v lying on L,(G). Assume that
v is parabolic. Without loss of generality we may assume that p = o
and that v(z) =z + 1. Let {C,} be a nested sequence of separators con-
verging to c. Let 4, be a component of G with C,cdd,. Put D, =
D(4,, «). Then, by Lemma 4, we see v(D,) N D, = @ for each n. Since
D, is bounded, v(D,) is also bounded. Since {C,} is a nested sequence
converging to o and since v(D,) U D, is bounded, there is an mu, such
that D, Dv(D,)UD,. Then we have

V(Dwy) N Dyy 2 v(¥(Dy) U Dy) 0 (v(Dy) U Dy) Dv(Dy)

This contradicts the fact v(D,) N D,, = @. Therefore, v is not parabolic.

Next assume that v is elliptic. Let g be another fixed point of 7~.
We shall show that there is a loxodromic element of G having p and ¢
as the fixed points. Let {(4,, 0,)} be a sequence of couples obtained in
Lemma 5. We note that 4, separates p from ¢ for each n. By Lemma
3, we see ye€Gy,, for each n so that 0,'vd,eG,. Since 0,(0D,) = oD,,
we see that 9;'v0, is an element of the component subgroup G, of G,
where 4 is the component of G, containing ¢. Since there is only a
finite number of non-conjugate elliptic elements in G‘,;, there are numbers
m and k& (>m) such that 0,0, is conjugate to 0;'vd, in Gs. Let ¢ be
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an element of G,; such that 0;'vd, = €d,"v0,e™". Putting v* =0,60,', we see
vy* =*y. Since v*(D(4,,q)) = D(4,, q) and D(4,, )2 D(4,, q), we see that
~v* is a desired loxodromic element of G with the same fixed points as .

For the fixed points of elliptic elements of G we have the following.

COROLLARY. Let G be a finitely generated Kleinian group and let
v be an elliptic element of G. If one of the fixed points of v lies on
L(@), then both of them lie on L,(G).

ProoF. Let p and ¢ be the fixed points of v and let pe L,(G). By
Theorem 1, we see that there is a loxodromic element of G whose fixed
points coincide with » and ¢q. Since pe L,(G), there is a separator
separating p from ¢q. Hence we see q € L(G).

REMARK. The existence of a finitely generated Kleinian group G
containing elliptic elements whose fixed points lie on L,(G) can be shown
by means of the following combination theorem of Maskit.

THEOREM ([4]). Let G, and G, be Kleinian groups and let H be a
common subgroup of G,and G,. Let D, D, and 4 be partial fundamental
sets of Gy, G, and H, respectively. For i =12 set E, = U,z MD,).
Assume that E, U E,D R(G,) U R(G,) and D' = int(D) + @, where D =
E.NE,N4d and R(G) = 2(G,)\{fixed points of elliptic elements of G}
(1 =1,2). Then G = G, G,) is Kleinian, no two points of D are equiv-
alent under G, D' is a partial fundamental set for G, and G 1is the
free product of G, and G, with the amalgamated subgroup H.

Now let G, be a finitely generated Fuchsian group of the first kind
such that 4(G,)) = R U {x} and that G, contains the elliptic element h
with the fixed points ¢ and —7. Put U, = {z|0 < |z — 1| <e}U{z|0<
|z + 4| <e€}). Then, for a small ¢, there is a fundamental set D, of G,
such that U.c U,y K(D,), where H = <(h). Let g be a loxodromic trans-
formation with the fixed points ¢ and —<¢ such that both isometrie circles
of g and ¢! lie in U.. Let G, = <{g, H) and let 4 be a fundamental set
of H bounded by two circular ares with the same endpoints 7 and —z<.
Finally, let D, be the fundamental set of G, bounded by the isometric
circles of ¢ and ¢g~* and by the boundary of 4.

Then it is easy to see that fundamental sets D,, D, and 4 constructed
just above satisfy the assumption of Maskit’s theorem stated above.
Hence G = (G, G,y is a finitely generated Kleinian group. By the con-
struction, we see that D is a fundamental set of G. Let D* and D} be
components of D and D, lying in the upper half plane, respectively. Put
E* = Ujen MD*) and Ef = U,z (D}). Then E* is an annulus obtained
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from E} by deleting a subset of E}. (See Figure 2). Hence we see
that the component of G containing D* has R U {«} on its boundary.
It is clear that R U {} is a separator of G so that & is an elliptic
element of G with the fixed points on L,(G).

Ve

E*

C': isometric circle of g
FIGURE 2

4, Nest groups. First we shall show the existence of a finitely
generated Kleinian group G with 4,(G) = L,(G) = @. We shall call such
a group a nest group. The group which we consider in the following
is the one which is constructed by Abikoff in order to prove the existence
of the residual limit points [1].

Let I" be a finitely generated Fuchsian group of the first kind such
that v(U) =U for each veI', where U = {z||z| < 1}. Taking the con-
jugate of I' with respect to a linear transformation, we may assume that
0 and o are not fixed points of any elliptic element of I. Then each
v(#id) e I' has the form 2zt (az + b)/(bz + @), |a|>* — |b|* =1 and b = 0.
It is well known that there is a positive number b such that |b| = b for
each v el except for the identity. The isometric circle of v is the set
{z] |z + a/b| = 1/|b]} with the center —a/b and the radius 1/|b|. The
Ford fundamental region of I" consists of two components R, and R,, the
former bounded and containing 0 and the latter unbounded and containing
., It is easy to see that there is a positive number C such that
{2z||2] < C}C R,. Choose a point p€ R, on the positive real axis. Let ¢
be a hyperbolic transformation such that the repelling and the attractive
fixed points of 0 are 0 and p, respectively, and that the isometric circles
I, of 6 and I, of 67! lie in R, and in R,, respectively.

Then, by Klein’s combination theorem, we see that G = (I, d) is a
finitely generated Kleinian group with the fundamental set (B, N Ext I;) U
(R,NExtI,). By the construction, we see that all the components of G are
equivalent to each other. Let 4 be the component of G containing R, N

Ext I,. Then (B, NExtL)Ud (R, N ExtI,) is the fundamental set of G,
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in 4, and {z]|z| = 1} and ¢7'({z]|z| = 1}) are contained in o4.

We shall show that we can choose p and the multiplier of 6 so large
that the isometric circles of I" do not intersect the isometric circles of
07'I'6. Choose the multiplier £ of 6 such that £ = p > 1. Then the
isometric circle of 07'vd is the set {z||Az + B| = 1}, where

A= —(a(k — 1) + bk — 2 + 1/k)/p)/p + bk + @(k — 1)/p = bp + OQ1)
and
B=-b1l—-1/g)p+a=a-+ o),
as p tends to . Since |b| = b > 0, we see that, for a sufficiently large p,
|B/A| + 1/|A| < C,

so that each isometric circle of 07'/0 lies in R,. Hence the isometric
circles of I" do not intersect those of 67'I'6. Put G* = (I, 67'I'6)>. Then
we easily see that G* is a free product of I' and 67 /0 and that G* =
G,. This implies that each boundary of non-invariant components of G,
is equivalent to either {z||z| = 1} or 0 '({z]|z| = 1}).

Now we can prove the non-existence of the residual limit point of
the second kind of G. Let pe 4,(G) and let 4* be the component of G,
containing ». Since 4* is equivalent to either {z||z| > 1} or 67'({z| |z] <
1}), there is an element geG, such that ¢g7'(4*) = {z]]|2|> 1} or
=0"'({#|]z| < 1}). Then 4, = gdo(4d) (or = go~*(4)) lies in 4* and 94, N
04* = 04*. Let 4} be the component of G, containing p. In the same
way as above, we can find a component 4, of G such that 4,c 4F and
that 04, N 04 = 04, and so on. Then the sequence of separators {04}}
converges to p and 04F separates 04f,, from 04} ,. This implies p € L,(@).
It is clear that 4,(G) # @. Thus we have shown the following.

THEOREM 2. There exists a nest group, that is, a finitely generated
Kleinian group G with A,(G) = L,(G) # @.

REMARK. The group G constructed just above has a set of generators
{0, vy *+*, Ya}, Where {v,, --+,7,} is a set of generators of I". The com-
ponent subgroup G, is the free produect of I" and 6770 so that, for
each integer m = 0, we have 6™ ¢ G,. Since each component of G is
equivalent to 4, we see that 6™ is not an element of any component
subgroup of G for each integer m == 0. This implies that G is not
generated by any collection of component subgroups of G.

In connection with Theorem 1.1 in [9], Kuroda pointed out the
following.
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THEOREM 3. There exists a finitely generated Kleinian group G
such that any set of gemerators of G contains at least one loxodromic
element having the fixed points on A(G).

ProOF. For the group G constructed above, we can choose I' to be
purely loxodromic. Since G is a free product, G contains no elliptic
element. Assume that there are non-elliptic element g of G and a com-
ponent 4 of G such that the fixed points of g lie on 94 and that g(4) # 4.
Without loss of generality we may assume that 4 is the component in
the proof of Theorem 2 and that the fixed points of ¢ lie on the unit
circle. Then 67'g(4) = 4 so that all the non-invariant components of G,
are conjugate to each other, a contradiction. Thus the theorem follows.

Now we shall give a characterization of nest groups.

THEOREM 4. Let G be a finitely generated Kleinian group with
A(@) = @. Then L,(G) = @ if and only if each separator of G is a
common boundary of two components of G.

ProorF. Without loss of generality we may assume « € 2(G). First
we shall show the sufficiency. Let pe 4,(G). Denote by 4, the component
containing e and put D, = D(4,, p). Then p lies in the interior of oD,.
Since oD, is a separator, there is a component 4, with 0D(4,, 4,) = oD,.
Since any two separators lying on 04, have at most one common point,
we see D(4,, 4,) = D,. Hence pe D4, 4,). Put D,= D4, p). Then
0D, # 0D, and p lies in the interior of 0D,. Repeating the same proce-
dure, we have an infinite sequence of separators {0D,} such that p lies
in the interior of 6D, and that 0D,,, lies in the interior of oD, (1 =
1,2, -..). Hence pe L(G).

In order to show the necessity we assme that there is a separator
C lying only on the boundary of one component 4. Denote by D the
auxiliary domain for 4 with 0D = C. Let 4, be a component of G lying
in the exterior of D. Then 0D(4,, 4) = 0D. Let {4} be the set of all
components such that D(4,, 4) N D = @ and that D(4,, 4) D D(4,, 4). Since
each 0D(4,, 4) is a separator, there is a component 4* in {4,} such that
D(4*, 4) D D(4,, 4) for each 4, in {4;}. Put D* = D(4*, 4). Then DN
D* = @ and oD # 60D*. We assert that there are loxodromic elements v €
G, and 6 € G, such that fixed points of v (or 6) lie on dD (or 6D*) and that
there is no component of G on whose boundary all four fixed points of
v and 0 lie. Let v (or 6) be a loxodromic element of G, (or G,) with
the fixed points &, & (or %, %") on 0D\dD* (or dD*\6D). If there is a
component 4’ on whose boundary ¢&, &, » and 7’ lie, then, putting D’ =
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D', 4), we see D' = D4, 4*) and DND = D*ND = @. Choose a
loxodromic element ¢ € G, whose fixed points lie on 0D\0D’ and separate
& from &. Here all four fixed points of v and ¢ are considered as points
on the Jordan curve dD. Then we see easily that there is no component
on whose boundary all four fixed points of ¢ and 6 lie. Thus we have
our assertion. By Lemma 4.2 in [9], we see that there is an integer m
such that vo™ is a loxodromic element of G with the fixed points on
A(G). Let p and ¢ be the fixed points of vé™. We assert p e L,(G).

Otherwise we have pe L(G). Let {4;} be the set of components such
that D(4;, 4) = D(4;, 4*) and that pe D(4;, 4). Put D; = D(4;, 4). Then
there is a component 4, in {4;} such that D(4,, 4) D D(4;, 4) for each 4;
in {4,}. Putting D,=D(4,, 4), we see either 6™(D,)= D, or 6"(D,) N D,= .
(See Figure 3). If ¢™(D,) = D,, then vé™(D,) N D, = ¢, which contradicts
pe D, Hence o™ (D,)ND,= @. By the choice of 4*, there is no separator
other than 0D and 0D* which separates D from D*. Hence we see
o™(Dy) = D or o(D,)ND = @. If o™(D, = D, then vé™(D,) = D, which
contradicts pe D,., Hence vo"(D,)ND = @. Taking (vo™)™*, we have also
(v6™ Y D,) N D* = @. Since p is a point of vé™(D,) N D,, we see either
v6™(Dy) D D, or (vé™)™(D,) D> D,. We shall only consider the first case,
because the second case can be treated in the same manner. If v6™(D,) =
D,, then vo™ has the fixed points on a separator, a contradiction. If
vo™(D,) 2 D,, then it contradicts the choice of 4,. In any case we have
a contradiction. Therefore, pe L,(G) and we have completed the proof
of our theorem.

FIGURE 3

5. A web group. In this section we shall show that the method of
the proof of Theorem 4 gives us a sufficient condition for a group to be
a web group. Before stating the theorem, we recall some results in [2].

Let G be a finitely generated Kleinian group with L,(G) # @ and let
p be a point on L,(@). The maximal separator for p relative to a point
z2€ 2(G) is the separator which separates » from z and which is not
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separated by any separator from p. The set of all maximal separators
for p is denoted by M(p). The web of p, which is denoted by @(p), is
the closure of M(p). The web subgroup of p, denoted by H(p), is the
maximal subgroup of G which keeps @(p) invariant. Then A(H(p)) =
@(p); each component of 2(H(p)) is simply connected and bounded by a
quasi-circle in M(p); for each maximal separator C in @(p), the maximal
subgroup of G which keeps invariant the complementary component ( 3 p)
of C is a subgroup of H(p).

THEOREM 5. Let G be a finitely generated Kleinian group with
A(G) = @. If there is a collection of components {4, 4,, ----, 4,} of G
with the following properties, then G is a web group.

i) each G, is quasi-Fuchsian (1 =1,2, -+, n),

ii) there is mo separator separating o4, from 04; (i, =1,2, -+, n)
and

i) G = (Gy, Gy -, G-

ProoF. Since 4,(G) # @, we note » > 1. By i) and by 4,(G) # @,
we see 04, # 04, (i =2,3,---,n). If there is a component 4 of G with
04, & 04, then each 4, lies in a complementary component of 4 (i =2,
.-+, mn). By ii), we see G = G,. This contradicts the assumption 4,(G) =
@. Hence 94, is a separator which is not the common boundary of two
components of G. By ii), we can choose 4, and 4, as 4 and 4* in the
proof of Theorem 4, respectively. Then there are loxodromic elements
v € Gy, 0€ Gy, and an integer m so that vo™ is a loxodromic element of G
with the fixed points on L,(G). Let p and ¢ be the fixed points of vo™.

We assert that there is no separator separating p from o4, (¢t =
1,2, ---,n). First we shall show this for 7+ = 1. Suppose on the contrary
that there is a separator C separating p from o4, Without loss of
generality we may assume that there is no separator separating C from
04,. Let 4 be the component with Ccdd. Put D= D(4, 4,). Then
0D =C. By ii), we see DN4d,=@. If 6™0D) = oD, then ¢"(D) =D
and the fixed points of v do not lie on 9D. Hence we see vo"(D)N D =
@, which contradicts pe D. If 6"(D)c D, then 6"(D) S D so that the
attractive fixed point of 6 lie in D, a contradiction. If 6™(6D) lies in
the complement of D, then we see either 6™(D) = 4, or o"(D)N4, = @
and DNom(D) = @. In the former case we have vo"(D)ND = O, a
contradiction. In the latter case, v6™(8D) lies in D or in D°. If v6™(0D)
lies in D (or in D°), then v6™(D)c D (or D D). This implies that the
repelling (or the attractive) fixed point of 6™ lies outside D, which
contradicts », g€ D. Thus, in any case, we have a contradiction. There-
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fore, we have shown that there is no separator separating p from od4,.
Next we shall show that there is no separator separating p from 04;(¢>1).
Suppose on the contrary that there is a separator C separating p from
d4,. Since C does not separate 04, from 04;,, we see that 94, lies in the
complementary component of C containing 64,. This implies C separates
p from 04, a contradiction. Thus we have shown our assertion.

Our assertion just proved implies 04, € M(p) t =1, 2, ---, »). Hence,
for each ¢ 01 = 1,2, ---,n), G,,CH(p). By iii), we see G = H(p). Since
G is finitely generated, we conclude G is a web group.

As an application of Theorem 5 we shall show that the group G’ in
[2] is a web group. The Kleinian group G’ is constructed as follows:
Let C; = {z]| |z — ™2 = 1)1/ 2} and let I'; be a Fuchsian group of
the first kind generated by four parabolic generators, two of which
have the fixed points on C; N C;_; and C; N C;4,. Then G' = I, I',, I's, I,>.
It is easy to see that the interiors of four circles C, C,, C; and C, satisfy
the properties i), ii) and iii) in Theorem 5. Hence G’ is a web group.

6. Numbers of elliptic and parabolic elements. In this section we
shall investigate the numbers of elliptic and parabolic elements of nest
groups. In the decomposition of finitely generated function groups,
Maskit showed the following.

THEOREM ([5]). Let G be a finitely generated function group. Then
the following hold.

i) There is a finite set of elliptic elements of G such that each
elliptic element of G is conjugate to an element of the set.

ii) There is a finite set of parabolic cyclic and doubly periodic
subgroups of G such that each parabolic element of G is conjugate to
an element of a subgroup in the set.

We shall generalize this as follows.

THEOREM 6. Let G be a finitely generated Kleinian group with
L(G) = @. Then the following hold.

i) There is a finite set of elliptic elements of G such that each
elliptic element of G is conjugate to an element of the set.

ii) There is a finite set of parabolic cyclic and doubly periodic
subgroups of G such that each parabolic element of G is conjugate to
an element of a subgroup in the set.

Proor. By the theorem of Maskit and by the Ahlfors finiteness
theorem, we may only consider the elements of G which do not belong
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to any component subgroup of G. By Theorem 1 and by Lemmas 2 and
3, we may only consider the elements whose fixed points lie on the set
of separators.

First we consider the parabolic elements of G. Let v and 4 be a
parabolic element and a component of G, respectively, such that v¢ G,
and that the fixed point of v lies on 4. Then it is shown in [8] that
there is a parabolic element of G, with the same fixed point as v. Hence
v is conjugate to an element of a doubly periodic subgroup. Since there
is a finite number of maximal non-conjugate parabolic doubly periodic
subgroups in G, the assertion follows.

Next we consider the elliptic elements. Let v be an elliptic element
of G which does not belong to any component subgroup of G and whose
fixed points lie on the set of separators. Let & and & be the fixed
points of v. We shall show that there is a separator on which both &
and &, lie. Suppose on the contrary that there is no separator on which
both & and &, lie. Let C, and C, be separators on which & and &, lie,
respectively. By Theorem 4, we see that there are components 4,, 4,, 4,
and 4, such that 04, N 04, = C, and 94, N 04, = C,. Without loss of gen-
erality we may assume D(4,, 4,) C D(4,, 4,) and D(4,, 4,) C D(4,, 4,). (See
Figure 4). If 4, = 4,, then 4, and 4, lie in the distinct components of
d; so that D(4,, 4,) N D(4,, 4,) = @. Since &, (or &) lies on C, (or C,), we
see v(4,) N D4, 4,) = @ (or v(4,) N D(4,, 4,) #+ @). This contradicts the
connectivity of v(4,). Hence 4, # 4,, By the assumption, we see that
if &,e0D(4,, 4,), then & ¢0D(4,, 4,). Hence, if & €0D(4,, 4;,), then & €
D(4,, 4;) so that D(4,, 4,) must be invariant under v. Hence veG,, a
contradiction. If &, is not in the closure of D(4,, 4,), then & e D(4,, 4,)
so that D(4,, 4,) must be invariant under v. Hence v € G, a contradic-
tion. Thus, in any case, we have a contradiction so that we have shown
the existence of a separator on which both & and &, lie.

We shall next show that there is only a finite number of non-conjugate

6D(A‘.‘n Al)

FIGURE 4
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elliptic elements whose fixed points lie on a single separator. Let C be
a separator and let {v,} be a set of non-conjugate elliptic elements of G
whose fixed points lie on C. Let 4 be a component with Cc o4 and let
4" be the complementary component of 4 with 4’ = C. We assert that
there is only a finite number of elements in {v,} which are non-conjugate
under the component subgroup G, of G,. Since G, is a finitely generated
quasi-Fuchsian group of the first kind, there are a finitely generated
Fuchsian group F' of the first kind with A(F) = {z||z] = 1} and a quasi-
conformal mapping w of the unit disc onto 4’ such that wFw™ = G .
Without loss of generality we may assume that 0 and oo are not the
fixed points of any elliptic element of F. Denote by D the bounded
component of the Ford fundamental region for F. Put g, = w™y,w and
denote by !, the non-Euclidean line connecting the fixed points of g,.
Taking the conjugate of g, with respect to an element of F, we may
assume ;N D+ @. Put D.=Dn{z||z|<r}. If D,=D for some
r <1, then each [, passes through {z||z| < r} so that the Euclidean
distances between the endpoints of [, are bounded below by a positive
constant. If D, # D for any » < 1, then there is a finite number of
cusped regions of D. Denote by {D,}:., the cusped regions of D and by
f; the corresponding parabolic element of F to D;. Let r,<1 be a
positive number such that D\D, cU%., D;. If I, N D, = @, then there is
a D; with I, N D; # @. The conjugation of g, by f with an integer m
implies that the non-Euclidean line connecting the fixed points of f;7™g.f7"
passes through D,. Taking such an elliptic element for g,, we may
assume [;N D, # @. Hence the Euclidean distances between the endpoints
of I, are bounded below by a positive constant. Then we see that there
is a subsequence {l,,} of {l} converging to a non-Euclidean line ! with
the distinet endpoints. Since the endpoints of w(l) are distinet and are
the cluster points of fixed points of {7, }, we conclude G is not Kleinian,
a contradiction. Thus we have shown that there is only a finite number
of elements in {y,} which are non-conjugate under G,, hence under G.
Since there is only a finite number of non-equivalent separators, there
is only a finite number of non-conjugate elliptic elements in G and the
proof of the theorem is completed.
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