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Introduction. When we study non-singular algebraic varieties V de-
fined over C the field of complex numbers, it is very important to know
the logarithmic Kodaira dimension ϋ{V) of them V. In order to com-
pute H(V) of a non-singular algebraic variety V, we have to find a
complete non-singular algebraic variety F* and a divisor D# with normal
crossings on V*, such that V = V* — DK Then by definition, κ(V) =
ιc(K{V*) + D*, V*). Here ιc(X, V) denotes the X-dimension of V (see [1]).

Occasionally, V is given as a complement of a reduced divisor D on
a complete non-singular algebraic variety V. In practice, it is very
laborious to transform D into D* with normal crossings by a finite suc-
cession of blowing ups with non-singular centers. However, in general,

ic(V) £ κ(K(V) + D, V) .

In many examples, we observe that the equality above holds actually.
In such a case, we say that the virtual singularity theorem holds for
the pair (V, D). For example, when D has only normal crossings, the
virtual singularity theorem holds by definition. If ιc(V) ^ 0, the virtual
singularity theorem holds with any effective divisor D. In this case,
however, the strong virtual singularity theorem will be proved in
Theorem 1. Moreover, even if V is a non-singular non-rational ruled
surface, we can prove the virtual singularity theorem for (V, D) in
Theorem 2.

On the other hand, when V is a rational surface (which is always
assumed to be non-singular), the virtual singularity theorem does not
hold in general. But even in this case, if D has very bad singularities,
we have the virtual singularity theorem (Theorem 4). This is a gen-
eralization of a theorem of Wakabayashi [10].

THEOREM (Wakabayashi). Let C be an irreducible curve of degree
d in P\

(1) If C is not rational and d >̂ 4, or
(2) if C is a rational curve which has at least two singular
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points such that one of those points is not a cusp, or
(3) if C is a rational curve with at least three cusps, then

ic(P2 — C) = 2, i.e., P2 — C is an algebraic surface of hyperbolic type
(or, as Mumford calls it, logarithmic general type).

Furthermore, if C is a rational curve with at least two cusps,
then ic(P2 - C) ^ 0.

REMARK. The above theorem is reformulated as (i) £(P2 — C) ^ ιc\C),
and (ii) ιt\C) = 1 implies that ic(P2 — C) — 2 or C is a rational curve
with only one singular point. Here, ιc\W) denotes the singular Kodaira
dimension of W, which is defined to be ic(Reg W).

The latter part of Wakabayashi's theorem is extended to the
"Bigenus theorem" (Theorem 3).

Trigenus theorem and Kodaira dimension of graphs of the third
kind will be discussed in a forthcoming paper.

Finally, we make the following

CONJECTURE. Let V be a complete non-singular rational variety and
W a subvariety of codimension 1 of V.

(1) If/c*(W)^0, then κ(V - TF) ̂  0,
(2) If κ\W) = n- 1, then tc(V - W)^n- 1.

The author would like to express his heartfelt thanks to Professor
I. Wakabayashi.

1. Let V be a non-singular algebraic variety and let (V, B) be a
3-manifold whose interior is V, i.e., V is a non-singular complete alge-
braic variety and B is a divisor with normal crossings such that V =
V — B. Now let D be a reduced divisor on V and denote by D the
closure of D in V. We choose a proper birational morphism p: F*—>V
such that ρ~\B + D) has only normal crossings with F* being non-
singular. Define F* to be p~\V), and D* to be the proper transform
of D by μ = p\V*. If the equality:

έ(V* _ #*) = K(K(V) + B + D,V)

holds, we say that the strong virtual singularity theorem holds for the
pair (V, D).

THEOREM 1. Suppose that JC(V)^0. Then the strong virtual
singularity theorem holds for the pair (V, D).

This was proved in [2]. But for the convenience of the reader, we
give a sketch of the proof here. We use the above notation. By hy-
pothesis, £(V) - fc(K(V) + B, V) = tc(K(V*) + p~\B), V*) ^ 0. Hence,
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denoting by D* the closure of D* in F* we have,

ic(V* - D*) = ιc(K(V*) + ρ~\B) + D\ V*)

= tc(p*(K(V) + B) + Rμ + D\ V*) ,

where Rμ is the logarithmic ramification divisor, by the logarithmic
canonical bundle formula [1, p. 180]. This is equal to

κ(p*(K(V) + B) + NRμ + D\ V*) for any N ^ l .

Choose N so large that NRμ + Z>* ̂  (μ*D)\ where (μ*D)* denotes the
closure of the divisor μ*D in V*. Then,

ιc(p*(K(V) + B) + NRμ + D\ V*)

+ B) + (μ*D)\ V*)

+ B + D), V*) = fc(K(V) + B + D, V) .

However, in general,

κ(K(V) + B + D,V)^ >r(F* - D*) .

Thus, we establish

κ(V*-D*) = fc(K(V) + B + D,V) . q.e.d.

The following lemmas play the key role in our theory.

LEMMA 1. Let (F, B) be a d-manίfold whose interior is V and let
D be a reduced divisor on V — V — B. Suppose there exist a complete
nonsingular algebraic variety V1 and a proper birational morphism
fiV'-^V such thai

(1) f~\B + D) has only normal crossings,
(2) for g = f\f~\V) and D1 = g~\D)f there is a decomposition

D1 = D* + E with effective divisors JD* and E such that
( i ) ic(f-\V)_-D*)^0,
(ii) f*(B + D) ̂  /*(B) + D* + iVjK* + (Rgy for some N>0, where

D* and E* are the closures of D*, and E in V1, respectively and Rg

is the ramification divisor of g: f~\V) —>V.
Then fc(f-XV) - D*) = ic(V- D) = tc(K(V) + B + D, V).

The following lemma is a bit more general than Lemma 1.

LEMMA 2. Let B be a reduced divisor on V, and D a reduced
divisor on V = V — B. Suppose there exists a complete non-singular
algebraic variety V1 and a proper birational morphism f: V1->V such
that

(1) f~\B + D) has only normal crossings,
(2) there is a decomposition D1 = g~\D) = D* + E such that
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( i )* tcOaV1) + D* + f~\B), F1) ̂  0,
(ii) f*_(B + D) ^ f~\B) + D* + NE* + (Rgf for some N>0._

Then KiKiV1) + D* + f~ι(B)) = κ(J-\V) - D*) = κ(K(V) + B + D, V).

When B has only normal crossings, (i)* is equivalent to (1). Hence,
Lemma 2 is a generalization of Lemma 1 and so it suffices to prove
Lemma 2.

PROOF OP LEMMA 2. By making use of /c-calculus (see [2]), we have

iciKiV1) + f~\B + D), F1) = κ{K{Ϋλ) + f-\B) + D* + E*, F1)

= KiKiV1) + f~\B) + D* + NE*, V1)

for any JV>0, because of (i)*. Then by (ii), we have f*(β + D) ^
f*(B) + D* + NE* + (Rf). Hence,

KiKiV1) + f~\B) + D* + NE*, V1)

= κ(f*(K(V)) + Rf + f~\B) + D* + NE*, V1)

^ κ(f*(K(V)) + f*(B + D), V1) = κ(K(V) + B + D,V). q.e.d.

LEMMA 3. Let & = ^ + £%, be a sum of two reduced divisors on
V, μ: F—> F t α proper birational morphism and D a reduced divisor on
Fx such that

( i ) V1 is non-singular,
(ii) μr\D) = 3r._
Suppose that κ{K{V) + &» V) ^ 0 α%d «(ϋ:(F) + ^, V) ^ 0. Γ/iew

κ(K(V) + Ξf, V) = κ(K(V1) + ND, V,) for any N^l.

PROOF. K(K(V) + &x + &„ V) = «(Jf(F) + ^ + iV2^ξ, F) for any
iV2>0, since κ{K{V) + &„ V)^0. Moreover, /c(JfiΓ(F) + ̂  +(N
^5, F)_= κ(K(V) + ^ 2 + (iV2 - 1 ) ^ + N&, V) = κ(K(V)
Ni&fx, V) for any Nt > 0. On the other hand, we have N > 0 such
that μ*D 5= iV^". Hence, for any m ^ 1,

ic(ίΓ(F) + ^ , F) = κ{K{V) + w,N3f, V)

^ κ(K(V) + mμ*D, V) = κ{μ*{K{Vi) + mD) + Rμ, V)

= κ{K(Vύ + mD, Vλ) ̂  KiKiVJ + D, Fx) ̂  /c(ίC(F) + ^ , V) .

Thus, Λ(JE ( F ) + 3r, V) = iciKiV,) + mD, V,) for any m ^ 1. q.e.d.

2. THEOREM 2. Lei W be a complete non-singular algebraic variety
of dimension n — 1 with κ{ W) 2: 0. Suppose that there exists a surjec-
tive morphism f: V—>W with dim V — n.

Then for any reduced divisor D on V, we have

κ(V~ D) = κ(K(V) + D, V) .
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PROOF. We may assume that a general fiber Vw is irreducible. If
/ r ( F J ^ 0 , then by Viehweg's theorem [9], /r(F)^0. Hence, the as-
sertion follows easily from Theorem 1. Thus we may assume that
VW^P\ If #(FW Π D) ^ 1, then both the sides equal -oo. Therefore,
we assume that # ( F w n # ) ^ 2 , i.e., tc(Vw- D)^0. By Kawamata's
theorem [7], we have ϊc(V - D)^0. Let μ: V*->V be a proper bira-
tional morphism such that F* is non-singular and that μ~\D) has only
normal crossings. Let H be the horizontal component of μ~\D) with
respect to f°μ: F* —• W. Then by Kawamata's theorem [7] again,
/r(F* — H) ^ 0. Hence we can apply Lemma 1 and get

κ(V-D) = fc(K(V) + D, V) . q.e.d.

Similarly, we obtain

THEOREM 1*. Instead of fc(W)^0, we assume that there exists a
reduced divisor G on W such that ic( W — G) ^ 0 and D ^ f~\G). Then,

κ(V- D) = κ(K(V) + D,V).

REMARK. The strong virtual singularity theorem does not hold on
a non-rational ruled surface, as will be seen in the next example.

EXAMPLE 1. Let S1 = P1xE9 E being an elliptic curve, and let
u A = Exp2, Δ = qxP1.

a

b

T
Fa.

E
FIGURE 1

Let μ: S = Qa,b(Si)-+S1 be a blowing up with centers a = (q, pj, b =
(Q9 V^)y and F, = μ~\a)9 F2 = μ~\b). Denoting by ΰ * the proper trans-
form of D = D, + A + Δ, we define S = S_- J9*. Then K(S) + 2?* +
Ft + F2~ ί£*(JSΓ(S1) + D) - μ*(Δ). Hence K(S) + _ I ) * - J * . J* is a non-
singular rational curve with (J*) 2=— 2. Thus Pm(S) = 1 for any m ^ 1.
Here, ~ denotes the linear equivalence.

3. Let V be a complete non-singular algebraic variety and D a
reduced divisor. Then define the sets:

NC(-D) = {p e D D has only normal crossing at p) ,

NNCD) = Supp D - NC(Z?) .
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It is clear that NC(D) D Reg D, NN(D) is a closed (proper) subset of D.
We assume dim V = 2 and introduce the notion of cusps of D.

First assume D to be irreducible and let μ: D* —>D be a resolution of
singularities. If p is a singular point of D and if %{μ~\P)} = 1, p is
called a cwsp of Zλ Next, assume that D consists of irreducible compo-
nents CU-',C9. Let Cχ9j>, •••, C r9j), C r + 1 Φp, •••, C 8 φp. If p is a
cusp or a simple point of each C< ( l ' ^ i ^ r ) and if p e N N ( ΰ ) , then p is
called a cwsp of a reducible curve Zλ Furthermore, letting p be a cusp
of D, we classify cusps as follows (cf. Figure 2).

( i ) if p is a cusp of some component Ci9 then p is called a cusp
of type I,

(ii) if p is a non-singular point of each component G3 and if at
least two tangents of these Clf •••, Cr at p coincide, then p is called a

of type II,

Type I Type II

Figure of cusp types

FIGURE 2

Type IΠ

Type I 'Type I Type II

Type II

FIGURE 3
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(iii) otherwise, p is called a cusp of type III.
In general, let D be a reduced divisor on V and μ: Vι-^Vι~1—> •••

—•> V1—>V° = V a composition of blowing ups μl9 μZ9 , μx such that
Dι = μ~\D) has only normal crossings. We have reduced transforms of
D: D, D1 = μi\D), D2 = μΛD2) and finally Dι. We say that {D, D\ - , D'}
is the seί 0/ reduced transforms in the process of simplification of the
boundary D.

LEMMA 4. Let p be a cusp of type 1 of a maybe reducible curve D
on a surface S. Then in a process of simplification of D, there ap-
pears a cusp of type II. Similarly, in a process of simplification of D
which has a cusp of type II, there appears a cusp of type III.

This is obviously seen by the observation of figures as in Figure 3.

4. In this section, we shall study singular curves imbedded in a
complete non-singular rational surface S. First, we recall the ^-formula
[3, p. 51].

LEMMA 5. Let D = Σ Ĉ  be a reduced divisor on S. Then

pg(S - D) = Σ g(Cj) + h(Γ(D*)) .

Here, by μ:S*-^S we denote a composition of blowing ups such that
D* = μ~\D) has only normal crossings, g{G5) is the geometric genus of
Cj9 Γ(D*) is the graph associated with D* and h(Γ(D*)) is the cycloto-
mic number of Γ(D*).

By the above formula, we know that when pg(S — D) = 0, each Cd

is a rational curve which has only cusp singularities.
We shall prove the following "Bigenus theorem".

THEOREM 3. Let D be a reduced divisor on S. Suppose that
# NN(JD) ̂  2. Then P2(S - D) ^ 1.

In order to prove this, we first prove some elementary lemmas.
The next result is obvious.

LEMMA 6. In general, let D be a reduced divisor on a complete
non-singular surface S and let μ: S1 = QP(S)^>S be the blowing up at
p. Letting m == e(p, D) to be the multiplicity of D at p, we have

KiS1) + μ~\D) - μ*(K(S) + D) - (m - 2)E .

Here ~ indicates the linear equivalence.

Let μι:S
ι->S1-1, μ^: S1-1-* Sι~2, - , μt: S1-^ S° = S be blowing ups
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in a process of simplification of D. By pά we denote the center of
μJ+1. Let D° = D, D> = μj\D*-% Ed = μΛv,~d and ms = e(Pj-19 D*-%
Then, by using the same symbols to indicate their pullbacks, we have

K{Sι) + Dι ~ K(S) +
3=1

LEMMA 7. In the above situation, we further assume S to be ra-
tional LetX = K(S) + D- Σ r ^ f r ^ O ) . Then, putting 2π(D) - 2 =
D(D + K(S)),

dim I X\ + 1 ^ π(D) - Σ ^ ( ^ + l)/2 .

Moreover, if there is a reduced connected divisor Y in \D — Σ (TJ +
we have

dim I -XΊ + 1 = π(D) - Σ rfa + l)/2 .

In particular,

pg(S -D) = π(D) - Σ (m,

PROOF. Using K(Sι) ~ K(S)+^ΣiEj and X — ,
the assertion follows from the Riemann-Roch theorem on Sι.

LEMMA 8. Let Cu , Cr be non-singular rational curves on S such
that Sing(CiH \-Cr) = {p} with p a cusp of type III of CtΛ hCr.
Then π(C,+ - +Cr) = (r - 2)(r - l)/2.

PROOF. By the adjunction formula, we have

2*Γ(ΣCΛ " 2 = (ΣCy, ΣC, + K(S)) ,
\j=l / \j=l 3=1 /

hence

In the process of simplification of the boundary, we shall use X{ί) to
indicate the proper transform of the divisor X{i~1] and the same symbol
Y to denote the total transform (with suitable coefficients) of the divisor
Y. Further, we shall use the symbol A Λ A to denote the greatest
common divisor of the two effective divisors Dx and D2.

LEMMA 9. Let D = Cλ + C2 + L + ΓΊ + Γ2 be a reduced divisor on
S each component of which is a non-singular rational curve such that
D has two triple points p and q as in Figure 4:
Then P2(S - D) ̂  1.
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FIGURE 4

PROOF. Letting μ: S* = Qp>q(S)^S be the blowing up at p, q and
putting E = μ~\p), F = μ~\q), we have by Lemma 6

K(S*) + ^ ( D ) = K + D-E-F,

K being ZSL(S). Since π ( d + C2 + L) = π(L3 + L2 + Γ) = 1, it follows
that \K + C± + C2 + L\=£ 0 and | K + Γa + Γ2 + L| ^ 0 . Hence there
is an effective divisor Z e 12K + Cj + C2 + 2L + Λ + Γ2 \ = 12ίΓ + D + L |.
Furthermore,

Then,

Z) - L - C, + C2 + Λ + Γ2 - Cί + C2 + Γ[ + Γ^ + 2E

Hence

2(K(S*) + ^(Z))) - Z + Cί + α + Γ[ + ΓJ . q.e.d.

LEMMA 10. Let D = C, + C2 + C3 + Λ + Γ2 + Γs be a reduced
divisor on S consisting of non-singular rational curves Clf ,Γ8.
Suppose that D has two triple points p and q as in Figure 5. Then

P2(S - D) ^ 1, P3(S - D) ^ 2 α^ώ

£(S - D) = Λ(J5Γ(S) + M ) , S) /or any N ^ l .

r2

FIGURE 5
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PROOF. Let μ: S* = QP,,(S)—><S be the blowing up at p and q.
Then μ-\D) + K(S*) = K(S) + D- E- F by Lemma 6. Since π(C) =
π{Γ) = 1 (where C = C,_+ C2 + C3, f = Λ + Γ2 + ΓS)L there exist l e
lίΓCS) + C\ and Γe|ίΓ(S) + Γ\. Hence X + Ye\2K(S) + C + Γ\. Thus

2(K(S*) + μ~\D)) ~X+Y+C + Γ-2E-2F

~X+Y+C' + Γ' + E + F.

This implies P2(S - D) ̂  1. Since 2X + 7 e |3ίΓ(S) + 2C + Γ{\, we^have

Z(K(S*) + μ~\D)) ~ 2X + Γ + C + 2Γ - ZE - ZF

~ 2X + r + σ + f + r.
Similarly,

Z(K(S*) + μΛD)) ~2Y+ X+ Γ + C + C' .

If P3(S - D) = 1, we would have

2X+ Y + σ + r + f' = 2Y + x + f' + c + σ.
Hence, X + f = Y + C. But since_ C Λ Γ = 0, X- C = Y- Γ would
then be effective. By X — C ~ E"(.S), we would have «(S) ^ 0, a con-
tradiction.

Furthermore,

6(ίΓ(S*) + μ~\D)) -ZX+ZY+ZC + ZΓ' + ZE + ZF

~ ZX + ZY + 2C' + 2Γ + C + Γ ^ D .

Hence

ic(S) = κ(K(S*) + μ~\D) + 6N(K(S*) + μ~\D)), §*)

^ κ(K(S*) + μ~\D) + Nμ*(D), S*)

^ κ(μ*(K(S)) + Rμ + μ~\D) + μ*(D) + (N - l)μ*D, §*)
^ κ(μ*(K(S) + (N- 1)D), S*) = κ(K(S) + (N- ΐ)D, S)

for any N^2. Thus κ(S) = *(ί(S) + iVZ>, S), for any iV> 0. q.e.d.

LEMMA 11. Let D be a reduced divisor on S. Suppose that
κ(S - D) = κ(K(S) + ND, S) ̂  0 for any N>1. Then S-D is an
elliptic surface or ic(S — D) — 0 or 2.

PROOF. Assume ic(S — D) = 1 and fix N ̂  3. There exists a
(K(S) + ND)-canonical fibered surface f:S-+J such that κ((K(S) +
ND)^~Kii), ψ~Ku)) = 0 for a general point u e J. Hence, when
(D, ψ-Kw)) Φ 0, it follows that

-(K(S), γ-Ku)) = N(D, ψ~\u)) ̂  Z(D, ψ-\u)) ^ Z .

On the other hand,
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where g{ψ~\u)) denotes the genus of ψ~\u). Thus we arrive at a con-
:radiction.

When (D, ψ~\u)) = 0, D is vertical with respect to ψ and
K\ψ~\u) ~ 0, i.e., ψ~\u) is an elliptic curve. q.e.d.

REMARK. Under the hypothesis of Lemma 11, suppose ic(S — D) = l.
Then D is contained in a finite union of fibers of the elliptic surface.

Now, we prove Theorem 3. It is no loss of generality to assume
pg(S — D) = 0. Then D consists of rational curves which have only
cusp singular points. By hypothesis, there are at least two cusps.
After suitable blowing ups, we may assume that p and q are cusps of
type III by Lemma 5. Applying Lemmas 9 and 10, we complete the
proof. q.e.d.

THEOREM 4 (The virtual singularity theorem). Let D be a reduced
divisor on a complete non-singular rational surface S. Assume one of
the following:

(1) There is a non-rational component of D,
(2) #(NN(Z>))^3,
(3) #(NN(D)) = 2 and one of NN(JD) is not a cusp,
( 3 ) ' #(NN(JD)) = 1 and there is an effective divisor Do contained in

D such that h{Γ(D0)) = 1 and DQ Π NN(JD) = 0 . Then, the virtual singu-
larity theorem holds for (S, D).

PROOF. Assume (1). Let μ:S*-+S be a birational morphism such
that (S*, μ^D) is a 9-surface. Take a non-rational component C of
μ^D. Then Λ;(S* — C) ^ 0. Hence, by Lemma 1, we get the assertion.

Next, assume (2). Choose two points p and q from NN(D). Per-
forming blowing ups with centers which are points over p and q, we
have a proper birational morphism p:S*->S such that p is isomorphic
except around p and q and that p~\D) has only normal crossings at all
points over p and q. Then take a proper birational morphism μ: S#—>S*
such that μ-ιp~\D) has only normal crossings. Now, let D* be the pro-
per transform of D by p-1. We have an effective divisor g7 such that
jgr = p-\D) = D* + gf. There is Nλ > 0 such that N& + Z>* ̂  p*(D).
Next, let ^ * be the proper transform of 3f by μ~\ By Theorem 3,
Λ:(S* — £&*) ̂  0. Hence, in view of Lemma 1,

jc(S - D) = £(S* - 3f) = κ(K(S*) + 3Γ, S*) .

Recalling the hypothesis, we get dim|UL(S*) + D*\ ^ 0. From this, it
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follows that κ(K(S*) + D*, S*) ^ 0. Applying Lemma 2, we obtain

κ(K(S*) + &, S*) = κ(K(S) + D,S).

FIGURE 6

FIGURE 7
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Similarly, one can show that (3) or (3)' implies the virtual singu-
larity theorem. Actually, it suffices to use the pictures illustrated in
Figure 7 for the condition (3).

THEOREM 5. Let D be a reduced divisor on S. If there is a proper
birational morphism p:S*—>S such that p~\D) contains an effective
divisor 3? which satisfies the hypothesis of Lemma 10. Then /c(S — D) —
tc(K{S) + ND, S) for any N^l.

PROOF. We use the proof of Lemma 10. Then

i(S - D) = κ(K(S*) + Np-\D), S*) , for any N^ 1.

From this, we readily infer that

ic(S - D) = κ(K(S) + N,D, S) for any N, ^ 1 .

q.e.d.

REMARKS (1) The pictures in Figure 8 are examples of D satisfying
the hypothesis of Theorem 5.

(a) (b)

(e)

FIGURE 8

(2) In these cases, from Lemmas 10 and 12, it follows that
ic(S — D) = 1 or 2. The first case occurs only when S — D is an elliptic
surface (cf. Lemma 11 and Remark).

EXAMPLE 2. Let C be a non-singular cubic curve in P 2 . Attaching
ten 1/2-points to P2 — C, we have a surface S and its completion S with
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smooth boundary C. Then C2 = - 1 and K(S) + C ~ 0 (cf. [6], [12]). Thus j

*(S) - κ(K(S) + ΛΓC, S) - κ(C, S) = 0.

EXAMPLE 3. Let C19 C2, C3 be three lines on P2 such that d n C 2 n
C3 = {p}. Attaching several^ 1/2-points to P2 — (Cλ U C2 U C3), we have a
surface S and its completion S with smooth boundary D = C* + C2* + C3*, C?
being the proper transforms of the Ciy such that the matrix [(C*, C*)]J
is negative-definite. Then

fc(K(S) + M), S) = κ(D, S) = ιc{K{P2) + £ + C8 + C3, P2) = 0 .

Appendix. Let C denote an irreducible curve on P2 of degree d.
Suppose that there is a point p on C such that C — {0} is isomorphic to
the affine line A1. Let e indicate the multiplicity of C at p.

PROPOSITION A (H. Yoshihara). If n^ Se, then ϊc(P2 - C) = 2.

PROPOSITION B (H. Yoshihara). If n = 6, then e ^ 3.

COROLLARY. If n^6, then ic{P2 - C)= - oo.

Proof of Proposition A follows immediately from Lemma 6. But
the proof of Proposition B depends on a laborious and long computation
(see [11]).

REMARK (Y. Yoshihara). There exists a sextic curve Γ on P2 which
has a singular point p with Γ — {p} = Gm. In this case, ic(P2 — Γ) = 2.
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