THE VIRTUAL SINGULARITY THEOREM AND THE LOGARITHMIC BIGENUS THEOREM

Shigeru Iitaka

(Received October 28, 1978, revised October 6, 1979)

Introduction. When we study non-singular algebraic varieties V defined over C the field of complex numbers, it is very important to know the logarithmic Kodaira dimension $\bar{\kappa}(V)$ of them V. In order to compute $\bar{\kappa}(V)$ of a non-singular algebraic variety V, we have to find a complete non-singular algebraic variety \bar{V}^{*} and a divisor $D^{\#}$ with normal crossings on \bar{V}^{*}, such that $V=\bar{V}^{*}-D^{\#}$. Then by definition, $\bar{\kappa}(V)=$ $\kappa\left(K\left(\bar{V}^{*}\right)+D^{\#}, \bar{V}^{*}\right)$. Here $\kappa(X, \bar{V})$ denotes the X-dimension of \bar{V} (see [1]).

Occasionally, V is given as a complement of a reduced divisor D on a complete non-singular algebraic variety \bar{V}. In practice, it is very laborious to transform D into $D^{\#}$ with normal crossings by a finite succession of blowing ups with non-singular centers. However, in general,

$$
\bar{\kappa}(V) \leqq \kappa(K(\bar{V})+D, \quad \bar{V}) .
$$

In many examples, we observe that the equality above holds actually. In such a case, we say that the virtual singularity theorem holds for the pair (\bar{V}, D). For example, when D has only normal crossings, the virtual singularity theorem holds by definition. If $\kappa(\bar{V}) \geqq 0$, the virtual singularity theorem holds with any effective divisor D. In this case, however, the strong virtual singularity theorem will be proved in Theorem 1. Moreover, even if \bar{V} is a non-singular non-rational ruled surface, we can prove the virtual singularity theorem for (\bar{V}, D) in Theorem 2.

On the other hand, when \bar{V} is a rational surface (which is always assumed to be non-singular), the virtual singularity theorem does not hold in general. But even in this case, if D has very bad singularities, we have the virtual singularity theorem (Theorem 4). This is a generalization of a theorem of Wakabayashi [10].

Theorem (Wakabayashi). Let C be an irreducible curve of degree d in \boldsymbol{P}^{2}.
(1) If C is not rational and $d \geqq 4$, or
(2) if C is a rational curve which has at least two singular
points such that one of those points is not a cusp, or
(3) if C is a rational curve with at least three cusps, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=2$, i.e., $\boldsymbol{P}^{2}-C$ is an algebraic surface of hyperbolic type (or, as Mumford calls it, logarithmic general type).

Furthermore, if C is a rational curve with at least two cusps, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right) \geqq 0$.

Remark. The above theorem is reformulated as (i) $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right) \geqq \kappa^{\sharp}(C)$, and (ii) $\kappa^{\sharp}(C)=1$ implies that $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=2$ or C is a rational curve with only one singular point. Here, $\kappa^{\star}(W)$ denotes the singular Kodaira dimension of W, which is defined to be $\bar{\kappa}(\operatorname{Reg} W)$.

The latter part of Wakabayashi's theorem is extended to the "Bigenus theorem" (Theorem 3).

Trigenus theorem and Kodaira dimension of graphs of the third kind will be discussed in a forthcoming paper.

Finally, we make the following
Conjecture. Let \bar{V} be a complete non-singular rational variety and W a subvariety of codimension 1 of \bar{V}.
(1) If $\kappa^{\sharp}(W) \geqq 0$, then $\bar{\kappa}(\bar{V}-W) \geqq 0$,
(2) If $\kappa^{\sharp}(W)=n-1$, then $\bar{\kappa}(\bar{V}-W) \geqq n-1$.

The author would like to express his heartfelt thanks to Professor I. Wakabayashi.

1. Let V be a non-singular algebraic variety and let (\bar{V}, B) be a ∂-manifold whose interior is V, i.e., \bar{V} is a non-singular complete algebraic variety and B is a divisor with normal crossings such that $V=$ $\bar{V}-B$. Now let D be a reduced divisor on V and denote by \bar{D} the closure of D in \bar{V}. We choose a proper birational morphism $\rho: \bar{V}^{*} \rightarrow \bar{V}$ such that $\rho^{-1}(B+\bar{D})$ has only normal crossings with \bar{V}^{*} being nonsingular. Define V^{*} to be $\rho^{-1}(V)$, and D^{*} to be the proper transform of D by $\mu=\rho \mid V^{*}$. If the equality:

$$
\bar{\kappa}\left(V^{*}-D^{*}\right)=\kappa(K(\bar{V})+B+\bar{D}, \bar{V})
$$

holds, we say that the strong virtual singularity theorem holds for the pair (V, D).

Theorem 1. Suppose that $\bar{\kappa}(V) \geqq 0$. Then the strong virtual singularity theorem holds for the pair (V, D).

This was proved in [2]. But for the convenience of the reader, we give a sketch of the proof here. We use the above notation. By hypothesis, $\bar{\kappa}(V)=\kappa(K(\bar{V})+B, \bar{V})=\kappa\left(K\left(\bar{V}^{*}\right)+\rho^{-1}(B), \bar{V}^{*}\right) \geqq 0$. Hence,
denoting by D^{\ddagger} the closure of D^{*} in \bar{V}^{*} we have,

$$
\begin{aligned}
\bar{\kappa}\left(V^{*}-D^{*}\right) & =\kappa\left(K\left(\bar{V}^{*}\right)+\rho^{-1}(B)+D^{\sharp}, \bar{V}^{*}\right) \\
& =\kappa\left(\rho^{*}(K(\bar{V})+B)+\bar{R}_{\mu}+D^{\#}, \bar{V}^{*}\right),
\end{aligned}
$$

where \bar{R}_{μ} is the logarithmic ramification divisor, by the logarithmic canonical bundle formula [1, p. 180]. This is equal to

$$
\kappa\left(\rho^{*}(K(\bar{V})+B)+N \bar{R}_{\mu}+D^{*}, \bar{V}^{*}\right) \text { for any } \quad N \geqq 1
$$

Choose N so large that $N \bar{R}_{\mu}+D^{\#} \geqq\left(\mu^{*} D\right)^{*}$, where $\left(\mu^{*} D\right)^{\#}$ denotes the closure of the divisor $\mu^{*} D$ in \bar{V}^{*}. Then,

$$
\begin{aligned}
& \kappa\left(\rho^{*}(K(\bar{V})+B)+N \bar{R}_{\mu}+D^{*}, \bar{V}^{*}\right) \\
& \quad \geqq \kappa\left(\rho^{*}(K(\bar{V})+B)+\left(\mu^{*} D\right)^{\sharp}, \bar{V}^{*}\right) \\
& \quad \geqq \kappa\left(\rho^{*}(K(\bar{V})+B+\bar{D}), \bar{V}^{*}\right)=\kappa(K(\bar{V})+B+\bar{D}, \bar{V}) .
\end{aligned}
$$

However, in general,

$$
\kappa(K(\bar{V})+B+\bar{D}, \bar{V}) \geqq \bar{\kappa}\left(V^{*}-D^{*}\right)
$$

Thus, we establish

$$
\kappa\left(V^{*}-D^{*}\right)=\kappa(K(\bar{V})+B+\bar{D}, V)
$$

The following lemmas play the key role in our theory.
Lemma 1. Let (\bar{V}, B) be a ∂-manifold whose interior is V and let D be a reduced divisor on $V=\bar{V}-B$. Suppose there exist a complete nonsingular algebraic variety \bar{V}^{1} and a proper birational morphism $f: \bar{V}^{1} \rightarrow \bar{V}$ such that
(1) $f^{-1}(B+\bar{D})$ has only normal crossings,
(2) for $g=f \mid f^{-1}(V)$ and $D^{1}=g^{-1}(D)$, there is a decomposition $D^{1}=D^{*}+E$ with effective divisors D^{*} and E such that
(i) $\bar{\kappa}\left(f^{-1}(V)-D^{*}\right) \geqq 0$,
(ii) $\quad f^{*}(B+\bar{D}) \leqq f^{*}(B)+D^{\sharp}+N E^{\#}+\left(R_{g}\right)^{\sharp}$ for some $N>0$, where $D^{\#}$ and $E^{\#}$ are the closures of D^{*}, and E in \bar{V}^{1}, respectively and R_{g} is the ramification divisor of $g: f^{-1}(V) \rightarrow V$.

Then $\bar{\kappa}\left(f^{-1}(V)-D^{*}\right)=\bar{\kappa}(V-D)=\kappa(K(\bar{V})+B+\bar{D}, \bar{V})$.
The following lemma is a bit more general than Lemma 1.
Lemma 2. Let B be a reduced divisor on \bar{V}, and D a reduced divisor on $V=\bar{V}-B$. Suppose there exists a complete non-singular algebraic variety \bar{V}^{1} and a proper birational morphism $f: \bar{V}^{1} \rightarrow \bar{V}$ such that
(1) $f^{-1}(B+\bar{D})$ has only normal crossings,
(2) there is a decomposition $D^{1}=g^{-1}(D)=D^{*}+E$ such that
(i) ${ }^{*} \kappa\left(K\left(\bar{V}^{1}\right)+D^{\#}+f^{-1}(B), \bar{V}^{1}\right) \geqq 0$,
(ii) $\quad f^{*}(B+\bar{D}) \leqq f^{-1}(B)+D^{\#}+N E^{\#}+\left(R_{g}\right)^{\#}$ for some $N>0$.

Then $\kappa\left(K\left(\bar{V}^{1}\right)+D^{\#}+f^{-1}(B)\right)=\bar{\kappa}\left(f^{-1}(V)-D^{*}\right)=\kappa(K(\bar{V})+B+\bar{D}, \bar{V})$.
When B has only normal crossings, (i)* is equivalent to (1). Hence, Lemma 2 is a generalization of Lemma 1 and so it suffices to prove Lemma 2.

Proof of Lemma 2. By making use of κ-calculus (see [2]), we have

$$
\begin{aligned}
\kappa\left(K\left(\bar{V}^{1}\right)+f^{-1}(B+\bar{D}), \bar{V}^{1}\right) & =\kappa\left(K\left(\bar{V}^{1}\right)+f^{-1}(B)+D^{\#}+E^{\sharp}, \bar{V}^{1}\right) \\
& =\kappa\left(K\left(\bar{V}^{1}\right)+f^{-1}(B)+D^{\#}+N E^{\#}, \bar{V}^{1}\right)
\end{aligned}
$$

for any $N>0$, because of (i)*. Then by (ii), we have $f^{*}(B+\bar{D}) \leqq$ $f^{*}(B)+D^{\sharp}+N E^{\#}+\left(R_{f}\right)$. Hence,

$$
\begin{aligned}
& \kappa\left(K\left(\bar{V}^{1}\right)+f^{-1}(B)+D^{\sharp}+N E^{\sharp}, \bar{V}^{1}\right) \\
& \quad=\kappa\left(f^{*}(K(\bar{V}))+R_{f}+f^{-1}(B)+D^{\sharp}+N E^{\sharp}, \bar{V}^{1}\right) \\
& \quad \geqq \kappa\left(f^{*}(K(\bar{V}))+f^{*}(B+\bar{D}), \bar{V}^{1}\right)=\kappa(K(\bar{V})+B+\bar{D}, \bar{V}) . \quad \text { q.e.d. }
\end{aligned}
$$

Lemma 3. Let $\mathscr{D}=\mathscr{D}_{1}+\mathscr{D}_{2}$ be a sum of two reduced divisors on $\bar{V}, \mu: \bar{V} \rightarrow \bar{V}_{1}$ a proper birational morphism and D^{\prime} a reduced divisor on \bar{V}_{1} such that
(i) \bar{V}_{1} is non-singular,
(ii) $\mu^{-1}(D)=\mathscr{D}$.

Suppose that $\kappa\left(K(\bar{V})+\mathscr{D}_{1}, \bar{V}\right) \geqq 0$ and $\kappa\left(K(\bar{V})+\mathscr{D}_{2}, \bar{V}\right) \geqq 0$. Then $\kappa(K(\bar{V})+\mathscr{D}, \bar{V})=\kappa\left(K\left(\bar{V}_{1}\right)+N D, \bar{V}_{1}\right)$ for any $N \geqq 1$.

Proof. $\quad \kappa\left(K(\bar{V})+\mathscr{D}_{1}+\mathscr{D}_{2}, \bar{V}\right)=\kappa\left(K(\bar{V})+\mathscr{D}_{1}+N_{2} \mathscr{D}_{2}, \bar{V}\right)$ for any $N_{2}>0$, since $\kappa\left(K(\bar{V})+\mathscr{D}_{1}, \bar{V}\right) \geqq 0$. Moreover, $\kappa\left(K(\bar{V})+\mathscr{D}_{2}+\left(N_{2}-1\right) \mathscr{D}_{2}+\right.$ $\left.\mathscr{D}_{1}, \bar{V}\right)=\kappa\left(K(\bar{V})+\mathscr{D}_{2}+\left(N_{2}-1\right) \mathscr{D}_{2}+N_{1} \mathscr{\mathscr { D }}_{1}, \bar{V}\right)=\kappa\left(K(\bar{V})+N_{2} \mathscr{D}_{2}+\right.$ $\left.N_{1} \mathscr{D}_{1}, \bar{V}\right)$ for any $N_{1}>0$. On the other hand, we have $N \gg 0$ such that $\mu^{*} D \leqq N \mathscr{D}$. Hence, for any $m \geqq 1$,

$$
\begin{aligned}
& \kappa(K(\bar{V})+\mathscr{D}, \bar{V})=\kappa(K(\bar{V})+m N \mathscr{D}, \bar{V}) \\
& \quad \geqq \kappa\left(K(\bar{V})+m \mu^{*} D, \bar{V}\right)=\kappa\left(\mu^{*}\left(K\left(\bar{V}_{1}\right)+m D\right)+R_{\mu}, \bar{V}\right) \\
& \quad=\kappa\left(K\left(\bar{V}_{1}\right)+m D, \bar{V}_{1}\right) \geqq \kappa\left(K\left(\bar{V}_{1}\right)+D, \bar{V}_{1}\right) \geqq \kappa(K(\bar{V})+\mathscr{D}, \bar{V}) .
\end{aligned}
$$

Thus, $\kappa(K(\bar{V})+\mathscr{D}, \bar{V})=\kappa\left(K\left(\bar{V}_{1}\right)+m D, \bar{V}_{1}\right)$ for any $m \geqq 1$. q.e.d.
2. THEOREM 2. Let \bar{W} be a complete non-singular algebraic variety of dimension $n-1$ with $\kappa(\bar{W}) \geqq 0$. Suppose that there exists a surjective morphism $f: \bar{V} \rightarrow \bar{W}$ with $\operatorname{dim} \bar{V}=n$.

Then for any reduced divisor D on \bar{V}, we have

$$
\bar{\kappa}(\bar{V}-D)=\kappa(K(\bar{V})+D, \bar{V})
$$

Proof. We may assume that a general fiber \bar{V}_{w} is irreducible. If $\kappa\left(\bar{V}_{w}\right) \geqq 0$, then by Viehweg's theorem [9], $\kappa(\bar{V}) \geqq 0$. Hence, the assertion follows easily from Theorem 1. Thus we may assume that $\bar{V}_{w} \xrightarrow{\rightarrow} \boldsymbol{P}^{1}$. If $\#\left(\bar{V}_{w} \cap D\right) \leqq 1$, then both the sides equal ${ }^{-}-\infty$. Therefore, we assume that $\#\left(\bar{V}_{w} \cap D\right) \geqq 2$, i.e., $\bar{\kappa}\left(\bar{V}_{w}-D\right) \geqq 0$. By Kawamata's theorem [7], we have $\bar{\kappa}(\bar{V}-D) \geqq 0$. Let $\mu: \bar{V}^{*} \rightarrow \bar{V}$ be a proper birational morphism such that \bar{V}^{*} is non-singular and that $\mu^{-1}(D)$ has only normal crossings. Let H be the horizontal component of $\mu^{-1}(D)$ with respect to $f \circ \mu: \bar{V}^{*} \rightarrow W$. Then by Kawamata's theorem [7] again, $\bar{\kappa}\left(\bar{V}^{*}-H\right) \geqq 0$. Hence we can apply Lemma 1 and get

$$
\bar{\kappa}(\bar{V}-D)=\kappa(K(\bar{V})+D, \bar{V})
$$

q.e.d.

Similarly, we obtain
Theorem 1*. Instead of $\kappa(\bar{W}) \geqq 0$, we assume that there exists a reduced divisor G on \bar{W} such that $\bar{\kappa}(\bar{W}-G) \geqq 0$ and $D \geqq f^{-1}(G)$. Then,

$$
\bar{\kappa}(\bar{V}-D)=\kappa(K(\bar{V})+D, \bar{V})
$$

Remark. The strong virtual singularity theorem does not hold on a non-rational ruled surface, as will be seen in the next example.

Example 1. Let $\bar{S}_{1}=P^{1} \times E, E$ being an elliptic curve, and let $D_{1}=E \times p_{1}, D_{2}=E \times p_{2}, \Delta=q \times \boldsymbol{P}^{1}$.

Figure 1
Let $\mu: \bar{S}=Q_{a, b}\left(\bar{S}_{1}\right) \rightarrow \bar{S}_{1}$ be a blowing up with centers $a=\left(q, p_{1}\right), b=$ (q, p_{2}), and $F_{1}=\mu^{-1}(a), F_{2}=\mu^{-1}(b)$. Denoting by D^{*} the proper transform of $D=D_{1}+D_{2}+\Delta$, we define $S=\bar{S}-D^{*}$. Then $K(\bar{S})+D^{*}+$ $F_{1}+F_{2} \sim \mu^{*}\left(K\left(\bar{S}_{1}\right)+D\right) \sim \mu^{*}(\Delta)$. Hence $K(\bar{S})+D^{*} \sim \Delta^{*} . \quad \Delta^{*}$ is a nonsingular rational curve with $\left(\Delta^{*}\right)^{2}=-2$. Thus $\bar{P}_{m}(S)=1$ for any $m \geqq 1$. Here, \sim denotes the linear equivalence.
3. Let \bar{V} be a complete non-singular algebraic variety and D a reduced divisor. Then define the sets:

$$
\begin{aligned}
& \mathrm{NC}(D)=\{p \in D ; D \text { has only normal crossing at } p\}, \\
& \mathrm{NN}(D)=\operatorname{Supp} D-\mathrm{NC}(D) .
\end{aligned}
$$

It is clear that $\mathrm{NC}(D) \supset \operatorname{Reg} D, \mathrm{NN}(D)$ is a closed (proper) subset of D.
We assume $\operatorname{dim} \bar{V}=2$ and introduce the notion of cusps of D. First assume D to be irreducible and let $\mu: D^{*} \rightarrow D$ be a resolution of singularities. If p is a singular point of D and if $\#\left\{\mu^{-1}(P)\right\}=1, p$ is called a cusp of D. Next, assume that D consists of irreducible components C_{1}, \cdots, C_{s}. Let $C_{1} \ni p, \cdots, C_{r} \ni p, C_{r+1} \ni p, \cdots, C_{s} \ddagger p$. If p is a cusp or a simple point of each $C_{i}(1 \leqq i \leqq r)$ and if $p \in \mathrm{NN}(D)$, then p is called a cusp of a reducible curve D. Furthermore, letting p be a cusp of D, we classify cusps as follows (cf. Figure 2).
(i) if p is a cusp of some component C_{i}, then p is called a cusp of type I ,
(ii) if p is a non-singular point of each component C_{j} and if at least two tangents of these C_{1}, \cdots, C_{r} at p coincide, then p is called a cusp of type II,

Figure of cusp types
Figure 2

Figure 3
(iii) otherwise, p is called a cusp of type III.

In general, let D be a reduced divisor on \bar{V} and $\mu: \bar{V}^{l} \rightarrow \bar{V}^{l-1} \rightarrow \cdots$ $\rightarrow \bar{V}^{1} \rightarrow \bar{V}^{0}=\bar{V}$ a composition of blowing ups $\mu_{1}, \mu_{2}, \cdots, \mu_{l}$ such that $D^{l}=\mu^{-1}(D)$ has only normal crossings. We have reduced transforms of $D: D, D^{1}=\mu_{1}^{-1}(D), D^{2}=\mu_{2}^{-1}\left(D^{2}\right)$ and finally D^{l}. We say that $\left\{D, D^{1}, \cdots, D^{l}\right\}$ is the set of reduced transforms in the process of simplification of the boundary D.

Lemma 4. Let p be a cusp of type I of a maybe reducible curve D on a surface \bar{S}. Then in a process of simplification of D, there appears a cusp of type II. Similarly, in a process of simplification of D which has a cusp of type II, there appears a cusp of type III.

This is obviously seen by the observation of figures as in Figure 3.
4. In this section, we shall study singular curves imbedded in a complete non-singular rational surface \bar{S}. First, we recall the \bar{p}_{g}-formula [3, p. 51].

Lemma 5. Let $D=\sum C_{j}$ be a reduced divisor on \bar{S}. Then

$$
\bar{p}_{g}(\bar{S}-D)=\sum g\left(C_{j}\right)+h\left(\Gamma\left(D^{*}\right)\right) .
$$

Here, by $\mu: \bar{S}^{*} \rightarrow \bar{S}$ we denote a composition of blowing ups such that $D^{*}=\mu^{-1}(D)$ has only normal crossings, $g\left(C_{j}\right)$ is the geometric genus of $C_{j}, \Gamma\left(D^{*}\right)$ is the graph associated with D^{*} and $h\left(\Gamma\left(D^{*}\right)\right)$ is the cyclotomic number of $\Gamma\left(D^{*}\right)$.

By the above formula, we know that when $\bar{p}_{g}(\bar{S}-D)=0$, each C_{j} is a rational curve which has only cusp singularities.

We shall prove the following "Bigenus theorem".
Theorem 3. Let D be a reduced divisor on \bar{S}. Suppose that $\# \mathrm{NN}(D) \geqq 2$. Then $\bar{P}_{2}(\bar{S}-D) \geqq 1$.

In order to prove this, we first prove some elementary lemmas. The next result is obvious.

Lemma 6. In general, let D be a reduced divisor on a complete non-singular surface \bar{S} and let $\mu: \bar{S}^{1}=Q_{p}(\bar{S}) \rightarrow \bar{S}$ be the blowing up at p. Letting $m=e(p, D)$ to be the multiplicity of D at p, we have

$$
K\left(\bar{S}^{1}\right)+\mu^{-1}(D) \sim \mu^{*}(K(\bar{S})+D)-(m-2) E
$$

Here \sim indicates the linear equivalence.
Let $\mu_{l}: \bar{S}^{l} \rightarrow \bar{S}^{l-1}, \mu_{l-1}: \bar{S}^{l-1} \rightarrow \bar{S}^{l-2}, \cdots, \mu_{1}: \bar{S}^{1} \rightarrow \bar{S}^{0}=\bar{S}$ be blowing ups
in a process of simplification of D. By p_{j} we denote the center of μ_{j+1}. Let $D^{0}=D, D^{j}=\mu_{j}^{-1}\left(D^{j-1}\right), E_{j}=\mu_{j}^{-1}\left(p_{j-1}\right)$ and $m_{j}=e\left(p_{j-1}, D^{j-1}\right)$. Then, by using the same symbols to indicate their pullbacks, we have

$$
K\left(\bar{S}^{l}\right)+D^{l} \sim K(\bar{S})+D-\sum_{j=1}^{l}\left(m_{j}-2\right) E_{j}
$$

Lemma 7. In the above situation, we further assume \bar{S} to be rational. Let $X=K(\bar{S})+D-\sum r_{j} E_{j}\left(r_{j} \geqq 0\right)$. Then, putting $2 \pi(D)-2=$ $D(D+K(\bar{S}))$,

$$
\operatorname{dim}|X|+1 \geqq \pi(D)-\sum r_{j}\left(r_{j}+1\right) / 2
$$

Moreover, if there is a reduced connected divisor Y in $\left|D-\sum\left(r_{j}+1\right) E_{j}\right|$, we have

$$
\operatorname{dim}|X|+1=\pi(D)-\sum r_{j}\left(r_{j}+1\right) / 2
$$

In particular,

$$
\bar{p}_{g}(\bar{S}-D)=\pi(D)-\sum\left(m_{j}-2\right)\left(m_{j}-1\right) / 2
$$

Proof. Using $K\left(\bar{S}^{l}\right) \sim K(\bar{S})+\sum E_{j}$ and $X-K\left(\bar{S}^{l}\right)=D-\sum\left(r_{j}+1\right) E_{j}$, the assertion follows from the Riemann-Roch theorem on \bar{S}^{\imath}.

Lemma 8. Let C_{1}, \cdots, C_{r} be non-singular rational curves on \bar{S} such that $\operatorname{Sing}\left(C_{1}+\cdots+C_{r}\right)=\{p\}$ with p a cusp of type III of $C_{1}+\cdots+C_{r}$. Then $\pi\left(C_{1}+\cdots+C_{r}\right)=(r-2)(r-1) / 2$.

Proof. By the adjunction formula, we have

$$
2 \pi\left(\sum_{j=1}^{r} C_{j}\right)-2=\left(\sum_{j=1}^{r} C_{j}, \sum_{j=1}^{r} C_{j}+K(\bar{S})\right),
$$

hence

$$
\pi\left(\sum_{j=1}^{r} C_{j}\right)=(r-1)(r-2) / 2 .
$$

In the process of simplification of the boundary, we shall use $X^{(i)}$ to indicate the proper transform of the divisor $X^{(i-1)}$ and the same symbol Y to denote the total transform (with suitable coefficients) of the divisor Y. Further, we shall use the symbol $D_{1} \wedge D_{2}$ to denote the greatest common divisor of the two effective divisors D_{1} and D_{2}.

Lemma 9. Let $D=C_{1}+C_{2}+L+\Gamma_{1}+\Gamma_{2}$ be a reduced divisor on \bar{S} each component of which is a non-singular rational curve such that D has two triple points p and q as in Figure 4: Then $\bar{P}_{2}(\bar{S}-D) \geqq 1$.

Proof. Letting $\mu: \bar{S}^{\sharp}=Q_{p, q}(\bar{S}) \rightarrow \bar{S}$ be the blowing up at p, q and putting $E=\mu^{-1}(p), F=\mu^{-1}(q)$, we have by Lemma 6

$$
K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)=K+D-E-F,
$$

K being $K(\bar{S})$. Since $\pi\left(C_{1}+C_{2}+L\right)=\pi\left(L_{1}+L_{2}+\Gamma\right)=1$, it follows that $\left|K+C_{1}+C_{2}+L\right| \neq \varnothing$ and $\left|K+\Gamma_{1}+\Gamma_{2}+L\right| \neq \varnothing$. Hence there is an effective divisor $Z \in\left|2 K+C_{1}+C_{2}+2 L+\Gamma_{1}+\Gamma_{2}\right|=|2 K+D+L|$. Furthermore,

$$
\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right)=2 K+2 D-2 E-2 F \sim Z+D-L-2 E-2 F .
$$

Then,

$$
D-L=C_{1}+C_{2}+\Gamma_{1}+\Gamma_{2} \sim C_{1}^{\prime}+C_{2}^{\prime}+\Gamma_{1}^{\prime}+\Gamma_{2}^{\prime}+2 E+2 F .
$$

Hence

$$
2\left(K\left(\bar{S}^{\ddagger}\right)+\mu^{-1}(D)\right) \sim Z+C_{1}^{\prime}+C_{2}^{\prime}+\Gamma_{1}^{\prime}+\Gamma_{2}^{\prime} . \quad \text { q.e.d. }
$$

Lemma 10. Let $D=C_{1}+C_{2}+C_{3}+\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ be a reduced divisor on \bar{S} consisting of non-singular rational curves $C_{1}, \cdots, \Gamma_{3}$. Suppose that D has two triple points p and q as in Figure 5. Then

$$
\begin{aligned}
& \bar{P}_{2}(\bar{S}-D) \geqq 1, \bar{P}_{3}(\bar{S}-D) \geqq 2 \text { and } \\
& \bar{\kappa}(\bar{S}-D)=\kappa(K(\bar{S})+N D, \bar{S}) \text { for any } N \geqq 1
\end{aligned}
$$

Figure 5

Proof. Let $\mu: \bar{S}^{\sharp}=Q_{p, q}(\bar{S}) \rightarrow \bar{S}$ be the blowing up at p and q. Then $\mu^{-1}(D)+K\left(\bar{S}^{\#}\right)=K(\bar{S})+D-E-F$ by Lemma 6 . Since $\pi(\widetilde{C})=$ $\pi(\widetilde{\Gamma})=1$ (where $\widetilde{C}=C_{1}+C_{2}+C_{3}, \tilde{\Gamma}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$), there exist $X \in$ $|K(\bar{S})+\widetilde{C}|$ and $Y \in|K(\bar{S})+\widetilde{\Gamma}|$. Hence $X+Y \in|2 K(\bar{S})+\widetilde{C}+\widetilde{\Gamma}|$. Thus

$$
\begin{aligned}
2\left(K\left(\bar{S}^{\#}\right)+\mu^{-1}(D)\right) & \sim X+Y+\widetilde{C}+\widetilde{\Gamma}-2 E-2 F \\
& \sim X+Y+\widetilde{C}^{\prime}+\widetilde{\Gamma}^{\prime}+E+F
\end{aligned}
$$

This implies $\bar{P}_{2}(\bar{S}-D) \geqq 1$. Since $2 X+Y \in\left|3 K(\bar{S})+2 \widetilde{C}+\widetilde{\Gamma}_{\mathrm{d}}\right|$, we have

$$
\begin{aligned}
3\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right) & \sim 2 X+Y+\widetilde{C}+2 \widetilde{\Gamma}-3 E-3 F \\
& \sim 2 X+Y+\widetilde{C}^{\prime}+\widetilde{\Gamma}+\widetilde{\Gamma}^{\prime}
\end{aligned}
$$

Similarly,

$$
3\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right) \sim 2 Y+X+\widetilde{\Gamma}^{\prime}+\widetilde{C}+\widetilde{C}^{\prime}
$$

If $\bar{P}_{3}(\bar{S}-D)=1$, we would have

$$
2 X+Y+\widetilde{C}^{\prime}+\widetilde{\Gamma}+\widetilde{\Gamma}^{\prime}=2 Y+X+\widetilde{\Gamma}^{\prime}+\widetilde{C}+\widetilde{C}^{\prime}
$$

Hence, $X+\widetilde{\Gamma}=Y+\widetilde{C}$. But since $\widetilde{C} \wedge \widetilde{\Gamma}=0, X-\widetilde{C}=Y-\widetilde{\Gamma}$ would then be effective. By $X-\widetilde{C} \sim K(\bar{S})$, we would have $\kappa(\bar{S}) \geqq 0$, a contradiction.

Furthermore,

$$
\begin{aligned}
6\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right) & \sim 3 X+3 Y+3 \widetilde{C}^{\prime}+3 \widetilde{\Gamma}^{\prime}+3 E+3 F \\
& \sim 3 X+3 Y+2 \widetilde{C}^{\prime}+2 \widetilde{\Gamma}^{\prime}+\widetilde{C}+\widetilde{\Gamma} \geqq D .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\bar{\kappa}(S) & =\kappa\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)+6 N\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right), \bar{S}^{\sharp}\right) \\
& \geqq \kappa\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)+N \mu^{*}(D), \bar{S}^{\sharp}\right) \\
& \geqq \kappa\left(\mu^{*}(K(\bar{S}))+R_{\mu}+\mu^{-1}(D)+\mu^{*}(D)+(N-1) \mu^{*} D, \bar{S}^{\sharp}\right) \\
& \geqq \kappa\left(\mu^{*}(K(\bar{S})+(N-1) D), \overline{S^{\#}}\right)=\kappa(K(\bar{S})+(N-1) D, \bar{S})
\end{aligned}
$$

for any $N \geqq 2$. Thus $\bar{\kappa}(S)=\kappa(K(\bar{S})+N D, \bar{S})$, for any $N>0$. q.e.d.
Lemma 11. Let D be a reduced divisor on \bar{S}. Suppose that $\bar{\kappa}(\bar{S}-D)=\kappa(K(\bar{S})+N D, \bar{S}) \geqq 0$ for any $N>1$. Then $\bar{S}-D$ is an elliptic surface or $\bar{\kappa}(\bar{S}-D)=0$ or 2 .

Proof. Assume $\bar{\kappa}(\bar{S}-D)=1$ and fix $N \geqq 3$. There exists a $(K(\bar{S})+N D)$-canonical fibered surface $\psi: \bar{S} \rightarrow J$ such that $\kappa((K(\bar{S})+$ $\left.N D) \psi^{-1}(u), \psi^{-1}(u)\right)=0$ for a general point $u \in J$. Hence, when ($\left.D, \psi^{-1}(u)\right) \neq 0$, it follows that

$$
-\left(K(\bar{S}), \psi^{-1}(u)\right)=N\left(D, \psi^{-1}(u)\right) \geqq 3\left(D, \psi^{-1}(u)\right) \geqq 3 .
$$

On the other hand,

$$
\left(K(\bar{S}), \psi^{-1}(u)\right)=2 g\left(\psi^{-1}(u)\right)-2 \geqq-2,
$$

where $g\left(\psi^{-1}(u)\right)$ denotes the genus of $\psi^{-1}(u)$. Thus we arrive at a conzradiction.

When $\left(D, \psi^{-1}(u)\right)=0, \quad D$ is vertical with respect to ψ and $K \mid \psi^{-1}(u) \sim 0$, i.e., $\psi^{-1}(u)$ is an elliptic curve. q.e.d.

Remark. Under the hypothesis of Lemma 11, suppose $\bar{\kappa}(\bar{S}-D)=1$. Then D is contained in a finite union of fibers of the elliptic surface.

Now, we prove Theorem 3. It is no loss of generality to assume $\bar{p}_{g}(\bar{S}-D)=0$. Then D consists of rational curves which have only cusp singular points. By hypothesis, there are at least two cusps. After suitable blowing ups, we may assume that p and q are cusps of type III by Lemma 5 . Applying Lemmas 9 and 10 , we complete the proof.

Theorem 4 (The virtual singularity theorem). Let D be a reduced divisor on a complete non-singular rational surface \bar{S}. Assume one of the following:
(1) There is a non-rational component of D,
(2) $\#(\mathrm{NN}(D)) \geqq 3$,
(3) $\#(\mathrm{NN}(D))=2$ and one of $\mathrm{NN}(D)$ is not a cusp,
(3) $\#(\mathrm{NN}(D))=1$ and there is an effective divisor D_{0} contained in D such that $h\left(\Gamma\left(D_{0}\right)\right)=1$ and $D_{0} \cap \mathrm{NN}(D)=\varnothing$. Then, the virtual singularity theorem holds for (\bar{S}, D).

Proof. Assume (1). Let $\mu: \bar{S}^{*} \rightarrow \bar{S}$ be a birational morphism such that $\left(\bar{S}^{*}, \mu^{-1} D\right)$ is a ∂-surface. Take a non-rational component C of $\mu^{-1} D$. Then $\bar{\kappa}\left(\bar{S}^{*}-C\right) \geqq 0$. Hence, by Lemma 1 , we get the assertion.

Next, assume (2). Choose two points p and q from $\mathrm{NN}(D)$. Performing blowing ups with centers which are points over p and q, we have a proper birational morphism $\rho: \bar{S}^{*} \rightarrow \bar{S}$ such that ρ is isomorphic except around p and q and that $\rho^{-1}(D)$ has only normal crossings at all points over p and q. Then take a proper birational morphism $\mu: \bar{S}^{\#} \rightarrow \bar{S}^{*}$ such that $\mu^{-1} \rho^{-1}(D)$ has only normal crossings. Now, let D^{*} be the proper transform of D by ρ^{-1}. We have an effective divisor \mathscr{E} such that $\mathscr{D}=\rho^{-1}(D)=D^{*}+\mathscr{E}$. There is $N_{1}>0$ such that $N_{1} \mathscr{E}+D^{*} \geqq \rho^{*}(D)$. Next, let \mathscr{D}^{*} be the proper transform of \mathscr{D} by μ^{-1}. By Theorem 3, $\bar{\kappa}\left(\bar{S}^{\#}-\mathscr{D}^{*}\right) \geqq 0$. Hence, in view of Lemma 1 ,

$$
\bar{\kappa}(\bar{S}-D)=\bar{\kappa}\left(\bar{S}^{*}-\mathscr{D}\right)=\kappa\left(K\left(\bar{S}^{*}\right)+\mathscr{D}, \bar{S}^{*}\right)
$$

Recalling the hypothesis, we get $\operatorname{dim}\left|K\left(\bar{S}^{*}\right)+D^{*}\right| \geqq 0$. From this, it
follows that $\kappa\left(K\left(\bar{S}^{*}\right)+D^{*}, \bar{S}^{*}\right) \geqq 0$. Applying Lemma 2, we obtain

$$
\kappa\left(K\left(\bar{S}^{*}\right)+\mathscr{D}, \bar{S}^{*}\right)=\kappa(K(\bar{S})+D, \bar{S}) .
$$

Figure 6

$/ \mu_{1}$
$\Sigma \mu$

Figure 7

Similarly, one can show that (3) or (3)' implies the virtual singularity theorem. Actually, it suffices to use the pictures illustrated in Figure 7 for the condition (3).

Theorem 5. Let D be a reduced divisor on \bar{S}. If there is a proper birational morphism $\rho: \bar{S}^{*} \rightarrow \bar{S}$ such that $\rho^{-1}(D)$ contains an effective divisor \mathscr{D} which satisfies the hypothesis of Lemma 10. Then $\kappa(\bar{S}-D)=$ $\kappa(K(\bar{S})+N D, \bar{S})$ for any $N \geqq 1$.

Proof. We use the proof of Lemma 10. Then

$$
\bar{\kappa}(\bar{S}-D)=\kappa\left(K\left(\bar{S}^{*}\right)+N \rho^{-1}(D), \bar{S}^{*}\right), \quad \text { for any } \quad N \geqq 1
$$

From this, we readily infer that

$$
\bar{\kappa}(\bar{S}-D)=\kappa\left(K(\bar{S})+N_{1} D, \bar{S}\right) \quad \text { for any } \quad N_{1} \geqq 1
$$

q.e.d.

Remarks (1) The pictures in Figure 8 are examples of D satisfying the hypothesis of Theorem 5.

Figure 8
(2) In these cases, from Lemmas 10 and 12, it follows that $\bar{\kappa}(S-D)=1$ or 2 . The first case occurs only when $S-D$ is an elliptic surface (cf. Lemma 11 and Remark).

Example 2. Let C be a non-singular cubic curve in \boldsymbol{P}^{2}. Attaching ten $1 / 2$-points to $\boldsymbol{P}^{2}-C$, we have a surface S and its completion \bar{S} with
smooth boundary C. Then $C^{2}=-1$ and $K(\bar{S})+C \sim 0$ (cf. [6], [12]). Thus ;

$$
\bar{\kappa}(S)=\kappa(K(\bar{S})+N C, \bar{S})=\kappa(C, \bar{S})=0
$$

Example 3. Let C_{1}, C_{2}, C_{3} be three lines on \boldsymbol{P}^{2} such that $C_{1} \cap C_{2} \cap$ $C_{3}=\{p\}$. Attaching several $1 / 2$-points to $\boldsymbol{P}^{2}-\left(C_{1} \cup C_{2} \cup C_{3}\right)$, we have a surface S and its completion \bar{S} with smooth boundary $D=C_{1}^{*}+C_{2}^{*}+C_{3}^{*}, C_{i}^{*}$ being the proper transforms of the C_{i}, such that the matrix $\left[\left(C_{i}^{*}, C_{j}^{*}\right)\right]_{\text {\% }}^{\text {\% }}$ is negative-definite. Then

$$
\kappa(K(\bar{S})+N D, \bar{S})=\kappa(D, \bar{S})=\kappa\left(K\left(\boldsymbol{P}^{2}\right)+C_{1}+C_{2}+C_{3}, P^{2}\right)=0
$$

Appendix. Let C denote an irreducible curve on \boldsymbol{P}^{2} of degree d. Suppose that there is a point p on C such that $C-\{0\}$ is isomorphic to the affine line \boldsymbol{A}^{1}. Let e indicate the multiplicity of C at p.

Proposition A (H. Yoshihara). If $n \geqq 3 e$, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=2$.
Proposition B (H. Yoshihara). If $n=6$, then $e \geqq 3$.
Corollary. If $n \leqq 6$, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=-\infty$.
Proof of Proposition A follows immediately from Lemma 6. But the proof of Proposition B depends on a laborious and long computation (see [11]).

Remark (Y. Yoshihara). There exists a sextic curve Γ on \boldsymbol{P}^{2} which has a singular point p with $\Gamma-\{p\} \cong G_{m}$. In this case, $\bar{\kappa}\left(\boldsymbol{P}^{2}-\Gamma\right)=2$.

References

[1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 175-189.
[2] S. Iitaka, On some applications of logarithmic Kodaira dimension, Proc. Int. Symp. Algebraic Geometry, Kyoto, 1977, 185-206.
[3] S. Ittaka, On the Diophantine equation $\varphi(X, Y)=\varphi(x, y)$, J. Reine Angew. Math. 298 (1978), 42-51.
[4] S. Iitaka, Geometry on complements of lines in \boldsymbol{P}^{2}, Tokyo Math. J. 1 (1978), 1-19.
[5] S. Iitaka, On Kodaira dimension of graphs, Proc. Japan Acad. 54 (1978), 128-132.
[6] S. Irtaka, On Logarithmic K3 surfaces, Osaka J. of Math. 16 (1979), 675-705.
[7] Y. Kawamata, Addition theorem of logarithmic Kodaira dimension for morphisms of relative dimension one, Proc. Interl. Spmp. on Algebraic Geometry, Kyoto, 1977, 207-217.
[8] F. SASAKI, Kodaira, dimension of complements of divisors, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 239-258.
[9] E. Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. 35 (1977), 197-223.
[10] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in P^{2}, Proc. Japan Acad. 54 (1978), 157-162.
[11] H. Yoshihara, On plane rational curves, Proc. Japan Acad. 55 (1979), 152-155.
[12] S. Ittaka, A numerical criterion of quasiabelian surfaces, Nagoya J. of Math. 73 (1979), 99-115.

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan

