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1. Introduction. 1°. Assumptions, Let there be given a system
of n nonlinear ordinary differential equations of the form

(E) xσ+ιdw/dx = F(x, w) , F(0, 0) = 0 ,

where σ is a positive integer; # is a complex variable; w is an w-vector;
F(x, w) is an ^-vector function whose components are holomorphic func-
tions of (x, w) near the origin of the (x, w)-space. For many years of
study, the author has been interested in the problem of constructing
analytic expressions of bounded solutions for (E). A solution which is
defined in a domain D with the origin as an interior point or a boundary
point will be said to be bounded in D if, for an arbitrary point x0 of D,
there exists a smooth curve Γ in D starting from x0 and extending to
the origin such that this solution converges to zero as x tends to the
origin along the curve Γ.

Let {λx, λ2, , λ j be the eigenvalues of the Jacobian matrix Fw(0, 0).
We draw a straight line L passing through the origin of the complex
λ-plane. Denote by Sx = {Xu λ2, , λΛ>} a set of the eigenvalues which
are located on one side of L and by S2 = {λΛ,+1, λΛ,+2, , λΛ,,} those which
are on the other side. Then each λy of a set S3 = {λΛ"+1, λΛ"+2, , λw}
is on L. As is well known by experts of this field, Malmquist [10, 11,
12] constructed analytic expressions for two kinds of particular bounded
solutions which correspond to the sets Sx and Si9 respectively. These
analytic expressions are in terms of uniformly convergent power series
of certain functions of x with coefficients admitting asymptotic expansions
in powers of x as x -»0 through some sectors A and D2, respectively
(see, also, Hukuhara [1], Iwano [3, 4]). It is noteworthy that the sectors
A and D2 have no common part. So, it seems to be hard to construct
an analytic expression for a general solution unless certain special con-
ditions are satisfied. This is certainly the case when we can find a
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straight line L passing through the origin such that all the eigenvalues
of the matrix Fw(0, 0) are located on one side of L. When σ = 0, this
condition has to be read as follows: all the eigenvalues and the unity
are on one side of L. When some of the eigenvalues are zero, Iwano
[4, 5, 6, 7, 8] constructed, under certain additional assumptions, analytic
expressions for general solutions. But, as far as we know, in the case
when there exists at least one pair of eigenvalues whose arguments
differ from π (mod27r), the problem of constructing an analytic expres-
sion for a general solution has not been studied yet. In this paper we
will give an example of such equations which enables us to construct an
analytic expression for a general solution.

We want to study a nonlinear 2-system of the form, in vector form,

(1.1) x2dw/dx = Aw + xh{x, w)

or, in scalar form,

x2dy/dx = (μ + ax)y + xf(x9 y, z) ,

x2dz/dx = ( — v + βx)z + xg(x, y, z) .

So, w, A and h(x, w) are given by

a 01 Γf(x, y, z)~
\w + \ ,

_0 β\ \_g(χ, y,

We assume that:

(a) x, y and z are complex variables;
(b) μ and v are positive numbers, and a and β are nonnegative

numbers satisfying one of the following three conditions:

(1.3) ( i ) α = 0, β>0; ( i i ) a > 0, β > 0 (iii) a > 0, β = 0 .

(c) f{x, y, z) and g(x, y, z) are holomorphic functions of (xf y, z) for

(1.4) • \x\£a, \y\Sb , \z\ £b,

and are both equal to zero identically at y — z = 0, a and b being posi-
tive constants. Moreover, all their first order partial derivatives with
respect to y and z identically vanish at (y, z) = (0, 0), namely

(1.5) fy(x, 0, 0) = fz(x, 0, 0) = gy(x, 0, 0) = gz(x, 0, 0) = 0 .

2°. Main result. Our main result can be stated as follows.

MAIN THEOREM. Given ε > 0, the differential equations (1.2) possess
a general solution of the form

(1.6) y - Φ{x, U(x), V(x)) , z = Ψ(x, U(x), V(x))

with the properties that:

w = z 0 -v
h(x, w) = I \w +
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( i ) The pair (U(x), V(x)) = (CX exp ( - μ\x\ C2x
β exp (φ)) is the

general solution of the differential equations

(1.7) x2du/dx = (μ + ax)u , x2dv/dx = ( — v + βx)v ,

Cγ and C2 being integration constants.
(i i) Φ(x, u, v) and Ψ{x, u, v) are holomorphic functions of (x, u, v)

in a domain of the form

(1.8) 0 < \x\ < α " , | a r g z - π/2\ < π - ε , \u\ < b" , \v\ < b"

or

(1.9) 0 < \x\ < a" , | a r g x + π/2\ < π -ε , \u\ < 6" , | v | < 6" ,

α" and b" being positive constants. Moreover, these functions have uni-
formly convergent expansions in powers of u and v

Φ{x, u, v) = u + Σ Pjk(%)u5vk (j + fc ^ 2) ,
(1.10) ''fc

? w, v) = v + Σ Qjk(x)ujvk (j + k ^ 2) .
ifc

ί/ie coefficients pjk(x) and qjk(x) are holomorphic functions of x for
a sector of the form

(1.11) I arg x - π/2 \ < π - ε , 0 < | x \ < a"

or

(1.12) I arg x + π/2 \ < π - ε , 0 < | a? | < α"

α^d admit asymptotic expansions in powers of x as x tends to zero
through the domain (1.11) or (1.12).

To simplify the description, instead of (1.8) or (1.9) we write

0 < |g | < a" , |arg£ + τr/2| < π - ε , \u\ < b" , \v\ < b" .

Analogously, a domain of the form (1.11) or (1.12) will be written as

(1.13) |arg£=Fτr/2| < π - ε , 0 < \x\ < a" .

3°. Contents. To prove Main Theorem, assuming that there exists
a formal transformation of the form

(1.10 bis) y = u + Σ pjk(x)ujvk , z = v + Σ qjk(x)ujvk (j + k ^ 2) ,

which formally transforms the equations (1.2) into the differential equa-
tions (1.7), we want to determine the coefficients pjk(x) and qjk(x) as
solutions of certain differential equations. To this end, by inserting
(1.10 bis) into the equations (1.2) and replacing x2du/dxf x2dv/dx by (1.7),
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we shall obtain differential equations which determine the functions
Pjk(%), Qjk(%)> For each pair (j, &), a unique formal power series solution
{Pjk(%), Qjk(%)} will be obtained. To give analytic meaning to this formal
solution, we put

Pjk = Ί>)k + xPjk , Qjk = Q% + xQ, k ,

where p)k = pifc(0), q)k = qik(0). Then we have the differential equations
satisfied by {Pjk, Qj]c} and we can prove that there exists a unique solu-
tion {Pjk(x)9 Qjk(%)} which admits the formal power series solution as an
asymptotic expansion for a domain of the form (1.13). Thus the coefficients
pjk(x) and qjk(x) will be determined as analytic functions by the formulas

(1.14) pjh(χ) = p)k + χPjk(χ) , qjk(χ) = q)k{χ) + χQjk(χ) .

It will be proved that if the ratio μ/v is not equal to a rational
number, we have for any pair (j, k)

(1.15) p°jk = 0 , q)k = 0 ,

while if the ratio μ\v is equal to a rational number, say m/n, with
relatively prime positive integers m and n, we have

pj* = 0 if (j, k)Φ(l + In, Im) for any I ,

q°jk = 0 if (j, k) Φ {In, 1 + Im) for any I .

Thus the double power series u + Σ p°jku
jvk, v + Σ q]ku

jvk have the form
of single power series

(1.17) φo(u, v) = u(l + Σ (^™yαz) , ψo(u, v) =

We will prove that the power series Σ Σ α^ z , Σ i 6^^ converge so that
the sums φo(u, v) and ψo(u, v) of the power series (1.17) define holomorphic
functions of (u, v) at (0, 0).

If we replace (u, v) by the general solution (U(x), V(x)) of the
equations (1.7), the formal transformation (1.10 bis) with the relations
(1.14) will produce a formal general solution (for the equations (1.2)) of
the form

y = Φo(U(χ\ v(χ))
(1.18)

z = ψo(U(x), V(x)) ί

It will be proved that, for every k, the power series ^P^W and
Σ i Qjk(%)uj are convergent uniformly for x in the domain (1.13) and, for
every j, the power series ΣkPjk(%)vk and Σ*Qj*0IΦ* are convergent
uniformly for x in the domain (1.13).
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Let N be an arbitrary but fixed positive integer. We make a
transformation of the form

y = Φo(U(χ), V(χ)) + Σcir)χPjk(χ)U(xyV(χ)k + Γ ,

* - U U(χ), V{χ)) + Σ W ) *Q

where Σw> denotes the summation of all the arrangements (j, k) such
that min {(j — l)/v, (fc — 1)1 μ) < N. Then it will be expected that the
equations satisfied by {Y, Z) admit a solution satisfying the order con-
dition Y = O(U(xyN+1V(xYN+ί), Z = O(U(xyN+1V(xYN+1). To prove this
assertion, we put

(1.20) Y = U(x)% , Z = V(x)Ά .

We will prove that, for a given sufficiently small ε > 0, there exists a
unique solution for the equations satisfied by {2), 3} such that

(1.21) 2) = O( U(xy« V(xYN+1) , 3 = O( £/(αO^+1 F(ίr)^v)

whenever the values of x, U(x), V(x) belong to a domain in the (x, u, v)-
space of the form

(1.22) 0 < \ x \ < a N , | a r g c c + τ r / 2 | < π - ε , \ u \ < b N , \ v \ < b N

with suitably chosen positive constants aN and bN. In the course of the
proof, it is convenient to replace this domain by a slightly modified
domain of the form

(1.23)
0 < x I < α'ω(arg x) , | arg x + π/2 \ < π - ε ,

u I < 6'%α(arg x) , | v \ < b'Xβ(arg x) ,

where α' and 6' are positive constants. Here, the function ω{τ) and
Xδ(z) (5 = α, β) are to be given by the formulas

j (sin ε)-1 if | τ + π/2 | ^ ττ/2 ,

~~ (I cos τ I (sin ε)-1 if π/2 < | τ T π/2 \ < π - ε

and

if \τ + τr/2| ^τr/2 ,

|4 if π/2 < | r + π/2\ < π - ε .

A domain of the form (1.23) will be called a stable domain for the
equations (1.7). Here is the reason: Let (x0, u\ v°) be an arbitrary point
of the domain (1.23) and determine the values of integration constants
Cx and C2 so that we have U(x0) = u° and V(x0) = v°. Then we can find
a curve ΓXo, joining the point x0 and the origin of the complex x-plane
such that, when x travels on this curve, the triple (x, U(x), V(x)), con-
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sidered as a point of the (x, u, v)-space, always stays in the domain
(1.23). This property is a sort of stability of the general solution of
the equations (1.7). A stability property like this always plays an im-
portant role in studying the analytic meaning of the formal solution.
By using a fixed point theorem which was devised by Professor M. Huku-
hara, we can prove the existence of a unique solution for equations
satisfied by {2), 3} with the order condition (1.21) whenever the values
of x, U(x), V(x) remain in the domain (1.23). By virtue of the unique-
ness of such solutions, our standard analysis concludes the uniform con-
vergence of the formal solution (1.18) and, consequently, the power
series (1.10).

Chapter I. Formal Transformation.

2. Formal transformation. Since f(x, y, z) and g(x, y, z) admit
Taylor expansions in powers of y and z, the equations (1.2) can be
written as

x2dy/dx = (μ + ax)y Σ"
(2.1) iΛ

x2dz/dx = (-ι> + βx)z + Σ " xbjk(x)yjzk ,

where the ajk(x)9s and the bik(x)'& are holomorphic functions of x for
\x\ ^ a. Σ " denotes the sum of all the arrangements (j, k) of nonnega-
tive integers j and k such that j + k ^ 2.

When the ratio μjv is equal to a rational number, we denote it by
m/n with relatively prime integers m and n. We want to prove the
following theorem.

THEOREM 1. Let ε be a sufficiently small positive number. Then
there exists a formal transformation of the form

(2.2) y = u + Σ " PsMu'v* , z = v + Σ " ?i*0
jk jk

which formally changes the equations (2.1) into the equations

(2.3) x2du/dx = (μ + ax)u , x2dv/dx = ( — v + βx)v .

Here the pjk(x)'s and the qjk(x)98 have the form

(2.4) pik(χ) = p)k + xPjk(x) , qjk(x) = q)k + xQjk(x) ,

where the p)ks and the q)ks are constants such that

(2.5) p)k Φ 0 implies {j, k) = (1 + In, Im) for some integer I > 0 ,

(2.6) q)k Φ 0 implies (j, k) = (In, 1 + Im) for some integer I > 0 ,
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and the Pjk(xYs and the Qjk(x)'s are holomorphic functions of x for a
domain of the form

(2.7) 0<\x\<a', |arg x + π/2\ < π - ε

and, moreover, admit asymptotic expansions in powers of x as x tends
to 0 through the domain (2.7).

PROOF. Let (u, v) be a solution of the equations (2.3). Put the
power series (2.2) into both sides of (2.1) and formally rearrange them
in the form of double power series in u and v. Then we have the
relations

x2dy/dx = (μ + ax)u + Σ " [%2dpjk/dx + (jμ - kv + (ja + kβ)x)pίk\ujvk ,

x2dz/dx = (-i>+ βx)v + Σ " [x2dqjk/dx + (jμ - kv

(μ + ax)y + xf(x, V, z) = {μ + ax)(u + Σ " P^vή

Σ " ΦikW + Ajk(a8t(x), ptt(x), qJίn)Σ

(-v + βx)z + xg(x, y,z) = (-v + βx)(v + Σ "

+ Σ/'Φikfr) + Bjk(b8t(x), pat(x), q8t(x))]uhk .
j,k

Here the Ajk(ast, pttf q8t)'s (or the Bjk(bst, p8t, q8t)'s) are linear forms in the
αsί's (or the &8t's) for all the arrangements (s, ί) such that s + t < i + k
with polynomial coefficients in the P8t's and the Q8ί's for s + ί < j + fc.
If we equate the coefficients in like terms, we have the linear differential
equations

(2.8) x2dpjk/dx = ((1 - j)μ + kv- ((j - ΐ)a + kβ)x)pάk + x(ajk(x) + Wjk(x)) ,

(2.9) x2dqjk/dx = (~j

which determine respectively the functions pjk(x) and qjk(x). Here, to
simplify the description, we used the symbols

(2.10) %k(x) = Ajk(a8t(x), Pst(x), ?.ι(a)) , SB f̂l?) - Bjk(b8t(x), p8t(x\ q8t(x)) .

We shall define a transitive relation < for the set of all arrange-
ments (j, k) of nonnegative integers j and k in such a way that we
have (j, k) < (/, k') if and only if either j + k < j ' + k[ or j + fe = / + &'
and j < j ' holds. Suppose that the functions p8t(x) and (7βf(#) for all
arrangements (s, ί) < (j, k) have been determined as solutions of the
equations (2.8) and (2.9) with j = s, k = t9 respectively, in such a way
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that they are holomorphic in x and admit asymptotic expansions in
powers of x as x tends to 0 through the domain (2.7). Then, the func-
tions % k(x) and S8jk(x) are thought of as known holomorphic functions
of x which admit asymptotic expansions in powers of x as x tends to
0 through the domain (2.7). There are two possibilities. If (1 — j)μ +
kv Φ 0, then the equation (2.8) possesses a formal solution which is
expressed by a power series in x without a constant term. If (1 — j)μ +
kv = 0, the quantity (j — l)α + kβ is equal to neither zero nor a negative
integer. Indeed, assume this is not the case. Since we must have
(j — l)α + kβ = (j — l)(α + βμ/v), the value of j will necessarily be
equal to 1 or 0. Thus the relation (1 — j)μ + kv = 0 will be reduced to
the relation kv = 0 or μ + kv = 0, which is a contradiction. Since the
equation (2.8) is reduced to the equation

(2.11) xdpjk/dx = - ( ( i - l)α + kβ)pjk + ajk(x) + Wjk(x) ,

there is a formal solution which is expressed by a power series in x with
a constant term

(2.12) p)k = (αi4(0) + «

where αifc(0) + 8lifc(0) = limx^0 («,*(») + 8tj*(»)). I n any case, the differential
equation (2.8) has a formal power series in x as a formal solution.
Similarly, this is also the case for the differential equation (2.9). Hence,
it turns out that there exists a unique actual solution pjk(x) (holomorphic
in x in the domain (2.7)) which admits an asymptotic expansion of the
formal solution as x tends to 0 through the domain (2.7). Thus the
function pjk(x) has been uniquely determined. Similarly, we can determine
qjk(x) uniquely as a solution of the equation (2.9).

In order to get a solution of the form (2.4), we put, for ex-
ample,

(2.13) pjk = p)k + xPjk .

If (j9 k) φ (1 + In, Im), we have (1 - j)μ + kv Φ 0 and p°jk = 0. The
equation (2.8) gives

(2.14) x2dPjk/dx = ((1 - j)μ + kv- {{j - V)a Λ-kβΛ- l)x)Pjh + aJh(x) + W, k(x) .

If (jf ft) = (1 + In, Im), we have (1 - j)μ + kv = 0. The equation (2.11)
implies

(2.15) xdPjJdx = - ( ( i - ΐ)a + kβ + l)PiJk

+ x-\ajk(x) + ai4(a?) - ((j - ΐ)a + ft/3)pj4) .

One notes that, in view of the relation (2.12), the nonhomogeneous term
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of (2.15) is a bounded holomorphic function which admits an asymptotic
expansion in powers of x as x tends to 0 through (2.7). In any case,
by solving the equation (2.14) or (2.15) we can obtain a unique holomorphic
solution Pjk(x) admitting an asymptotic expansion in powers of x for
(2.7).

3. Determination of holomorphic functions φQ(u, v) and ψQ(u, v). Let
(U(x), V(x)) be a general solution of (2.3), namely

U(x) = C, exp (-μ/x) xa , V(x) = C2 exp (u/x) xβ ,

where C1 and C2 are integration constants. If we replace {u, v) by
(U(x), V(x)), the power series (2.2) represents a formal general solution
of the equation (1.2). When the ratio μ/v is equal to a rational number,
as was already proved, the constant terms pjk(Q) = p)k do not always
vanish if we have (j, k) — (1 + In, Im) for some integer I ̂  1 and the con-
stant terms qjk(0) = q)k are not always equal to zero if (j, k) = {In, 1 + Im)
for some integers I ^ 1, where m/n is the relatively prime expression
for μjv. This means that the asymptotic expansions of the coefficient
functions pjk(x) and qίk(x) may begin with nonzero constant terms for
some (j, k). This situation will cause a certain trouble when we study
an analytic meaning of the formal solution. So, we must consider a
formal solution of a slightly different form. But, fortunately, we can
prove the following theorem.

THEOREM 2. The power series of u and v which consist of the terms
independent of x on the right hand sides of (2.2), namely

φo(u, v) = u + Σ P)k ujvk , ψo(uf v) = v +
j,k j,k

are convergent. If μ/v is equal to a rational number, m/n, the power
series are reduced to

φo(u, v) = u + uΣ (unvm)ιp°1+lntlm ,

(3D
ψo(, ) +Σ ()ql,i+ιm

If !J/V is n°t equal to a rational number, we have

(3.2) φlu, v) = u , ψo(u, v) = v .

In any case, the sums φo(u, v) and ψo(u, v) define holomorphic functions
of (u, v) at (0, 0).

PROOF. We assume that the ratio μ\v is a rational number. We
formally rearrange the power series (2.2) in the form of single power



462 M. IWANO

series in # as

(3.3) y = φo(u, v) + xφ^u, v) + '— , z = ψo(u, v) + xψx(u, v) + .

In particular, the coefficients φo(u, v), φo(v>, v), Φi(u9 v) and ψx(u9 v) are
given by the power series

φQ(u, v) = u + Σ Pife^V , to<>, v) = v + Σ 9 ; * ^ * ,

Φi(u, v) = Σ P;*(0)uV, t i K v) - Σ QM

The power series φo(u, v) and ψ 0(^, ^) have the form

φo(uf v) = u(l + Σ (nnvm)ιa^ , ψo(u, v) = v(Σ
In order to prove the convergence, we have to look for the equations
which determine the functions φQ(u, v) and ψo(u, v). Insert (3.3) into the
equations (1.2). Then a simple consideration gives x2dy/dx = u(μ +
ax)dφo/du + v(-v + βx)dφQ/dv + x{u(μ + ax)dφjdu + v( — v + βx)dφjdv + &&} +
O(x2), (JM + αa;)i/ + α/(a?, 2/, «) - (μ + α^)(^0 + xφi) + xftO, φ0, to) + O(x2).
Thus, equating the coefficients in like terms with respect to the powers
of x, we obtain the equations

(3.4) μudφo/du — vvdφQ/dv — μφ0 = 0 ,

(3.5) μudφjdu - vvdφjdv — μφ1 = aφ0 — audφo/du — βvdφjdv + /(0, ^0, ^ 0)

In quite a similar way, we can derive the equations

(3.6) μudψjdu - vvdψjdv + vψQ = 0 ,

(3.7) μudψjdu — vvdψjdv + vψx = βf0—audfo/du — βvdψo/dv + gr(O, ̂ 0, to)

The partial differential equations (3.4) and (3.6) have respectively
formal general solutions of the form

(3.8) φ0 = u + u Σ (%*vm)Iαι , to = v + v Σ (w^*)^!

with undetermined coefficients αz and 6Z.
Indeed, if one inserts formal power series φ0 = u + Σi.fc a5kUάvk into

(3.4), one finds the relation Σj\* (i"(i — 1) — vk)ajku
jvk = 0. Hence, we

must have the relations αifc = 0 if 0', &) ^ (1 + Z?ι, Zm) for any I ^ 0, and
ajk = arbitrary if (i, &) = (1 + iw, ίm) for some I >̂ 1.

As was already shown, there exist for the linear equations (3.5) and
(3.7), respectively, formal solutions which are expressed in terms of
power series in u and v. Therefore, when we expand the right hand
side of (3.5) in powers of u and v, no terms of the form u(unvm)1 must
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appear. This requirement is the condition for the undetermined at

9s to
satisfy. Similarly, no terms of the form v(unvm)1 must appear in the
formal power series expansion of the right hand side of the equation
(3.7). In this way, the power series (3.8) are uniquely determined. To
prove the convergence of the power series (3.8), we have to look for
the equations which define φ0 and ψ0.

Let

(3.9) /(0, φ0, y0) = Σ fJkφW , 0(0, φ0, ψ0) = Σ <7;*#>o U + k ^ 2)
jk

be Taylor expansions. Put

(3.10) Φo = u(l + φ0) , Ψo = v(l + to) ,

(3.11) unvm = w .

Corresponding to the power series (3.8), the equations in Φo and Ψo admit
formal solutions which are expressed by power series of w

φ0 = Σ w% , Ψo = Σ w% .
I I

Hence, it is easy to see that the terms of the form uwk {k = 1, 2, )
come from only the partial sum (of (3.9)) of the form Σj/i+*w,zm$+i7Yom =
ΣΓ.i/i+in.^w^l + Φ,)ι+ln(l + Ψ0)

lm Thus the equation satisfied by Φo is
given by a partial differential equation of the form

(3.12) -audΦo/du - βvdΦJdv + Σ Uι^w\l + Φoγ+ι*(l + Ψ0)
lm = 0 .

Analogously, we can derive, by using (3.7),

(3.13) -audΨo/du - βvdΨJdv + Σ 9uti+imWι(l + Φ0)
ln(l + ¥o)ί+tm = 0 .

Z = l

Since u and v are considered as the independent variables, we can
regard them as general solutions of the differential equations

(3.14) xdu/dx = an , xdv/dx = βv .

Then, w = unvm is a solution of the equation

xdw/dx = (an + βm)w .

If we consider w as the independent variable, x, u and v are functions
of w, so that they satisfy the differential equations

(3.15) wdx/dw = (an + βm)~~ιx ,

(3.16) wdu/dw = (an + βm)~ιau , wdv/dw = (an + βm)~ιβv .

Hence, if Φo is regarded as a function of w, we have (an + βm)wdΦQ/dw =
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(dΦ0/du)(an + βm)wdu/dw + (dΦQ/dv)(an + βm)wdv/dw = audΦ0/du + βvdΦJdv.
Thus, it turns out that the 2-system of partial equations (3.12) and (3.13)
is reduced to the 2-system of ordinary differential equations

(an + βm)wdΦJdw = Σ / 1 + * Λ , ^ ( 1 + Φ0)
ι+ln(l + Ψ0)

lm ,

(3.17)
(an + βm)wd¥0/dw = Σ 9m,i+ιmwι(l + Φ0)

ι*(l + Ψ*)ι+lm ,

or, removing the common factor w,

dΦJdw =

(3-18) ' : '
dΨ0/dw = Σ (an

It is the 2-system of equations (3.18) that determines the functions
Φ0(w) and Ψ0(w). This system has no singularity at w = 0. Hence there
exists a unique holomorphic solution Φ0(w), Ψ0(w) satisfying the initial
condition (Φo, Ψo) = (0, 0) at w = 0. Thus, by virtue of the uniqueness
of formal solutions, the functions defined by

φo(u, v) = u(l + Φ0(unvm)) , ψQ(u, v) = v(l + Ψ0(unvm))

admit the convergent expansions (3.1).
It is immediately seen that there is no integer I such that (j, k) =

(1 + In, Im) when the ratio μjv is not equal to a rational number.

Chapter II. Proof of Main Theorem
(Convergence of the formal solution).

4. Formal solution. In view of Theorems 1 and 2, we obtain the
following:

THEOREM 3. The equations (1.2) possess a formal solution of the
form

y - Φo(U(χ\ v(χ)) + Σ/fχPjk(χ)U(χyv(χ)k,

)k
(χ\ V(χ)) + Σ"χQJk(χ)U(xyv(χ)k

j , k

with

U(x) = CX exp (— ///α;) , V(x) = C2x
β exp(v/x) .

Here,

( i ) ^0(^, v) and ψo(u9 v) have the form

(4.2) φo(u, v) = u(l + Φ0(unvm)) , Ψo(u, v) = v(l + ?F0(iΛΛ)) ,

where Φ0(w) and W0(w) are holomorphic functions of w in a neighborhood
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ofw = 0 and are identically zero ivhen the ratio μ/v is equal to an
irrational number.

ii) The Pjk(x)'s and the QSk(x)'8 are functions admitting asymptotic
expansions in powers of x in a domain of the form (2.7).

When we study an analytic meaning of the formal solution (4.1),
the following theorem will be very important.

THEOREM 4. ( i ) For each k, the power series Σ i Pjk(%)uj and
Σ i Qjk(%)uj we uniformly convergent for a domain of the form

(4.3) 0 < \x\ < alf |argff + τr/2| < π - ε , \u\<blf

corresponding to the domain of validity of the asymptotic expansions for
the coefficients Pίk(x) and Qik(x), where αx and bλ are positive constants.

(ii) Analogously, for each j, the power series YjkPjk(x)vk and
Σ& Qjk(%)vh uniformly converge for a domain of the form

(4.4) 0 < | a j | < α 1 , | argx + π/2\ < π - ε , \v\ < b, .

PROOF. We give the proof of Assertion (i) only, because that of
Assertion (ii) can be carried out in quite a similar way.

To prove this theorem, let us introduce the new variables {η, ζ} by

(4.5) y = φo(U(x), V{x)) + V f * = Ψo(U(x), V(x)) + ζ .

Then the equations satisfied by (Ύ)f ζ) can be written in the form

x2dy/dx = (μ + ax)η + xF(x, U{x\ V(x), V, ζ) ,
( * x'dζ/dx = (-v + βx)ζ + xG(x, U(x), V(x), η, ζ) ,

where the F(x, u, v, η, ζ) and the G(xf u, v, η, ζ) are holomorphic functions
of (x, u, v, η, ζ) for a domain of the form

(4.7) \ x \ < a 2 , \ u \ < b 2 , M < & 2 , \ η \ < c t t | ζ | < c 2

with suitably chosen positive constants α2, δ2 and c2.
Indeed, a simple consideration gives x2dη/dx = x\dy/dx) — x2(d/dx)φ0(U(x)f

V(x)) = (μ + ax)(φo(U(x), V{x)) + η) + xf(x, φ0 + V,Ψo+Q-(μ + ax)U(x)dφo/dU-
(-v + βx)V(x)dφo/dV. Here dφQ/dU means (dφo/du)(U(x), V(x)). In view
of the equations (3.4), we have F(x, u, v, τj9 ζ) = aφo(u9 v) — au(d/du)φQ(u, v) —
βv(d/dv)φo(uf v) + f{x, φo(u, v) + η, ψo(u, v) + ζ). This shows that the F
satisfies our requirement.

Obviously, the power series

(4.8) ί = xΣ"P»(x)U{xyV{x)k, ζ = xΣ"Qjk(x)U(xYV(x)k

3 k j,k

is a formal solution of the equations (4.6). We formally rewrite (4.8)
in the form of single power series in V in such a way that
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(4.9) 7) = xΣ Ak(x, U(x))V(xY , ζ = x±Bk(x, U(x))V{xf ,
A;=0 k=0

where the Ak(x, u)'s and the Bk(x, u)'s are power series in u. Let us
look for the differential equations which determine the coefficients Ak(x, u)
and Bk(x,u). A direct calculation yields x2dη/dx = x Σ£U {x2dAJdx +
(-kv + (kβ + l)x)Ak}V\ (μ + ax)η + xF(x, U, V, η, ζ) - x(μ + ax)A, +
xF{x, U, 0, xA0, xBQ) + x Σ?=i {(μ + oίx + ffi^O, ?7, 0, #A0, ίc£0))Afe + ίcFζ(a;,
U, 0, fljAo, a;J50)βfc + x%k{x, U;AU , Λ-i, 5X, , Bh_dWh. Here the §ί/s
are linear forms in the expressions (dr+t+t/dvrdη8dζ*)F(xf U(x), 0, xA0(x, U(x)),
xBQ(x, U(x)))9 2 ^ r + s + ί ^ f c with polynomial coefficients in {x, Ax(x, U),
•—f -A*-i(«, U\ B^x, U\ - , Bk_x{x, U)). In particular, if fc = 1, we have
% = (dF/dv)(x, U(x), 0, xAQ(x, U(x)\ xB0(x, U(x))). Thus we are lead to
the relations

(4.10) x2dAJdx = (μ + (a - l)x)A0 + F(x, U(x), 0, xA0, xB0)

and

(4.11.&) x2dAJdx = (to + ^ + (a — kβ — l)a?)Afc

where, to simplify the description, we adopted the symbol [ ], for ex-
ample, to mean

[Fη] = Fη(x, U(x), 0, xAQ(x, U(x)), xB0(x, U(x))) ,

[Si,] = at(α?, U(x\ Ax(x, U(x)\ . . , B^x, U(x))) .

Similarly, by using the power series expression for ζ, we can derive
equations of the form

(4.12) x2dBJdx = (-v + (β - l)x)BQ + G(x, U(x), 0, xA0, xB0) ,

(4.13.fc) x2dBJdx = ((fc - l)v + (β - kβ - l)x)Bk

+ x[Gv]Ak + *[Gc]ft + [»*] -

The meaning of the functions [Gη], [Gc], [S3,] will be almost clear.
The following are noteworthy.
( i ) The system of equations (4.10) and (4.12) determines the func-

tions A0(x, u) and B0(xf u) and it is a nonlinear 2-system with an ir-
regular type singularity at x — 0. Moreover, there exists a formal solu-
tion of the form

(4.14) Λ = Σ Pjo(x) U(xY , BQ = Σ QjQ(x
3 3

(ii) For every k ^ 1, the 2-system of linear differential equations
(4.11.&) and (4.13.Λ) determines the functions Ak(xf u) and Bk(x, u). x — 0
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is an irregular singularity of this linear system. There is a formal
solution of the form

(4.15.&) Ak = Σ Pjk(x) U(xY , Bk = Σ Qiuix) U(x)j .
5 3

(iii) These differential equations involve an arbitrary function U{x)
in the sense that U(x) contains an arbitrary constant.

Differential equations of this type were already studied by the
author. By applying a theorem due to Iwano [3] (in which a nonlinear
%-system of much more general type was studied), we see that the
formal solution (4.14) is uniformly convergent when the values of
(x, U(x)) belong to a domain of the form (4.3) and its sum {A0(x, U(x)),
B0(x, U(x))} represents a solution of the equations (4.10) and (4.12) when-
ever the values of x and U(x) stay in the domain (4.3). Thus, A0(x, u)
and B0(x, u), considered as functions of (x, u), are holomorphic in (x, u)
for (4.3). In order to apply an induction technique, suppose that the
functions At(xf u) and B^x, u) have been already determined for I < k
in such a way that, for every I, they are holomorphic functions of (x, u)
for (4.3) and the pair {At(xf U(x)), Bt(x, U(x))} is a solution of the 2-system
of equations (4.11.ϊ) and (4.13.Z) whenever the values of x and U{x)
remain in the domain (4.3). Then the coefficients of the linear differential
equations (4.11.&) and (4.13.A0 are considered as holomorphic functions of
(x, U(x)) provided the values of x and U(x) remain in the domain (4.3).
Moreover, there exists a formal solution given by the power series
(4.15.&). So, if we again apply the same theorem to our linear system,
it can be proved that this formal solution is uniformly convergent so
that the sum {Ak(x, U(x)), Bk{xy U(x))} represents a solution of the linear
system (4.11.ZG)-(4.13.ZG) provided the values of x and U(x) stay in the
domain (4.3). Hence, Ak(xf u) and Bk(x, u) have been determined as
holomorphic functions of (x, u) for the domain (4.3).

Thus, proceeding inductively, we see that, for each k, the coefficients
Ak(xt u) and Bk(x, u) are uniquely determined as holomorphic functions
of (a?, u) in a domain of the form (4.3) in such a way that the pair
{Ak{x, U(x)), Bk{x, U(x))} is a solution of the linear system (4.11.fc)-(4.13.fc).
This proves Assertion (i) of Theorem 4.

5. Truncated differential equations. In order to prove the con-
vergence of the power series (2.2), it suffices that the formal solution
(4.1) is convergent, or what is the same thing, that the formal solution
(4.8) of the equations (4.6) is convergent whenever the values of x,
U(x), V(x) remain in a domain of the form (1.8) (or (1.9)). Observe that
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the differential equations and their formal solutions under consideration
are given by

x2dη/dx = (/ι + ax)η + xF(x, U(x), V(x), V, 0 ,

x2dζ/dx = (-v + /3a?)C + xG(x, U(x), V(x\ η, ζ)

and

(5.2) ij = x Σ " Pi*(») ̂ (*) y W , C = » Σ " Q»{χ) U(χY V{χ)k,

where

exp (-μ/α;) , 7(a?) = C2x
β exp (î /α?) .

As was shown in Section 4, the function F(xf u, v, rj, ζ) takes the form
Fix, u, v, η, ζ) = aφo(u, v) - au(d/du)φo(u, v) - βv(d/dv)φo(u, v) + f(x, φo(u, v) +
V> ΨO(M, V) + ζ). By definition, we have the order relations

f(x, y, z) = O(y2) + O(yz) + O(z2) ,

φQ(u, v) = u(l + O(tt vw)) ,

to(^, v) - v(l + O(uwi;m)) .

Hence, it is concluded that the functions F(x, u, v, η, ζ) and G(x, u, v, η, ζ)
satisfy an inequality of the form

(5.3) max {\F(x, u, v, V, 0 - F{x, u, v, 0,0)1, \G(x, u, v, η, ζ) - G(x, u, v, 0,0)|}

for (xf u, v, η, ζ) in the domain (4.7), where Mo is a suitably chosen
positive constant.

Let JV be an arbitrary but fixed positive integer, and put

(5.4) PN(x9 u,v) = x Σttfϊ Pjk(x)ujvk, QN(xf u, v) = x Σnm Qίk(x)W'vk ,

where Σw) denotes the summation of all the arrangements (j, k) of non-
negative integers j and k such that min{(i — l)/v, (k — 1)1 μ) < JV. Now
we apply the transformation

(5.5) η = PN{x, U{x), V{x)) +Y, ζ = QN(x, U(x), V(x)) + Z .

Since

x2dY/dx = x'dy/dx - x2dPN/dx - U(x)(μ + ax)dPN/dU- V(x)(-v + βx)dPN/dV ,

we see that the transformed equations take the form

s - (μ + ax)Y + xA(x, U{x), V{x\ Y9 Z) ,

x2dZ/dx = (-v + ^ Z + xB(x, U(x), V{x\ Y, Z) ,
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where, A(x, u, v, Y, Z) and B(x, u, v, Y, Z) are holomorphic and bounded
functions of (x, u, v, Y, Z) in a domain in the (x, u, v, Y, Z)-space of the
form

0<\x\<aN, l a r g o ; T π/2\ < π -e ,

\u\<bN, \v\<bN, \Y\<cN9 \Z\<cN9

where aN, bN and cN are suitably chosen positive constants. It is obvi-
ous that the equations (5.6) have a formal solution of the form

(5.8) Y=x Σ Rίlc(x)U(xyV(x)k, Z=x Σ Sjk(x)U(x)>Ύ(x)k,

where the coefficients Rik(x) and Sjk(x) have analytic meanings analogous
to those of the Pjk(x)'8 and the Qik(x)9s.

Note that the functions PN(x, u, v) and QN(x, u, v) satisfy the order
relations PN(x, u, v) = O(u2) + O(uv) + O(v2), QN(x, u, v) = O(u2) + O(uv) +
O(v2). By using the inequality (5.3) and the formal solution (5.8), we
can easily verify that the functions A(x, u, v, Y, Z) and B(x, u, v, Y, Z)
satisfy an inequality of the form

(5.9) max {| A(x, u, v, Y, Z) |, | B(x, u, v, Y, Z) \)

£ M((\u\ + \v\)(\Y\ + \Z\) + | Γ | 2 + \Z\2) + LN\ur^\v\^

for (x, u, v, Y, Z) in the domain (5.7) and Lipschitz' inequality of the
form

(5.10) max {| A(x, u, v, Ylf Z,) - A(x, u, v, Y2f Z2)\,

\B(x, u, v, Ylf Zx) - B{x, u, v, Y2, Z2)\}

£ M(\u\ + |tι| + IΓJ + I Y2\ + \ZX\ + \Z2\){\ Yx - Y2\ + \Z, - Z2\) ,

where LN is a positive constant and M ^ Mo is a positive constant
independent of N.

We expect that the equations (5.6) possess an actual solution satisfy-
ing the order condition

(5.11) Y= O(x U(x)uN+1 V(xYN+1) , Z = O(x U(x)*N+1 V(x)μN+ι) .

We make a further transformation of the form

(5.12) Y = U(xW , Z = V(x)3 ,

so that we have the equations

Ά{x, U(x), V(x), U{x)% V(x)3) ,
( ' } dS/dx x-iVixy'Bfr, U{x), V(x), U{x)% V(x)3) .
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6, Fundamental lemma and the proof of the convergence. To
prove the existence of a solution for the equations (5.6) satisfying the
order condition (5.11), we have to borrow a lemma which is usually
called a fundamental lemma.

FUNDAMENTAL LEMMA. For a preassigned sufficiently small positive
ε, the differential equations (5.13) possess a solution of the form

(6.1) 2) = &,(*, U(x), V(x)) , 3 = SAx, U(x), V(x))

such that the ^)N(x, u, v) and the &N(x, U, V) are holomorphic functions of
(x, u, v) in a domain of the form

(6.2)* 0<\x\<a°N, \argxTπ/2\ <π -e , \u\<b°Nf \v\<b%

with some positive constants α^(r£αiV) and bn

N(<zbN). Moreover, a solution
of the equations (5.13) such that

(6.3) 2) = 0(U(χyNv(xyN+i), 3 = o(U(χyN+ίv(χyN)

is unique.

Conditional on this fundamental lemma, we shall prove the uniform
convergence of the formal solution (5.2), which produces the proof of
our main theorem. Obviously the expressions

VM U(x\ V{x)) = PN(x, U(x), V(x))+ U(xWN(x, U{x), V{x))

ζN(x, U(x), V(x)) - QN(x, U{x), V(x)) + V{x)ΆM U{x), V(x))

are solutions of the equations (5.1). If we can prove that these sums
are independent of N, the convergence of our formal solution will be
established.

Indeed, the functions PN(x, u, v) and ^)N(x, u, v) are both holomorphic
with respect to (u, v) at (0, 0). Hence, by virtue of the Cauchy Theorem,
the sums y)N(x, U(x), V(x)) and ζN(x, U(x), V(x)), which are independent
of N, have uniformly convergent expansions in double power series of
U(x) and V(x). By the uniqueness of the Hartogs series expansions,
such double power series expansions must coincide with the power series
(5.2).

Thus the solution {Φ(x, U(x), V(x)), Ψ(x, U{x), V(x))} mentioned in the
introduction is given by the formulas

Φ(x, U(x\ V{x)) - φo{U{x\ V(x)) + η(x, U{x\ V{x)) ,

Ψ(x, U(x), V(x)) = UU{x\ V(x)) + ζ(x, U(x), V(x)) ,

where η(x, u, v) ='ηN(x,.u, v) and ζ(x, u, v) = ζN(x, u, v) are supposed to
be independent of N.
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To prove that the solution {ηN(x, U(x), V(x)\ ζN(x, U(x), V(x))} is
independent of N, take N > N. Then, the pair

η = VAX, U(x), V(x)) - PN(x, U(x), V(x)) ,

ζ = CAx9 U(x), V(x)) - QM U{x), V(p))

is a solution of the equations (5.13) because {ηN>(x, U(x), V(x)), ζN'{x, U(x),
V(x))} is a solution of (5.1). However, this solution satisfies the order
condition UfrrWAx, U{x\ V{x)) - PN{x, U{x\ V{x))) = U(x)-\PN.(p, U(x),
V(x)) -PN{x, U(x\ V(x)) + U(xWA*> U(x), V(x))) = O(xU(xyNV(xYN+1) +
O(U(xYNV(xYN+1) = O(U(xYNV(xyN+1) in the common part of the domains
(6.2)^ and (6.2)^/. Similarly, we have the order condition V(x)-\ζAv,U(%),
V(x)) - QN(x, U(x), V{x))) = O(U(xyN+ίV(x)μN) in the same common part.
Owing to the fundamental lemma such a solution must coincide with
our solution {2)̂ (̂ , U{x\ V{x))t &N(x, U(x), V(x))}. Hence we have the
identities

ηAx, U(x), V(x)) - PN{x, U(x), V(x)) + U(x)®N(x, U(x), V(x)) ,

CAx, U(x), V(x)) = QN(x, U{x\ V(x)) + V(x)8Ax, U(x), V(x))

in the common part of the domains (6.2)^ and (6.2)^,, which immediately
implies that we have the identity relations

rjAXf u, v) = ηN(x, u, v) , ζAx, u, v) = ζN(x, u, v) ,

in the common part of the domains (6.2)^ and (6.2)^/. Thus the functions
7)(x, u, v) and ζ(α?, u, v) are defined as holomorphic functions of (x, u, v)
in a domain of the form

0 < | z | < α " , largo;+ τr/2| < π - ε , \u\<b", \v\<b"

with a" = sup aN, 6" = sup bN.

Chapter III. Proof of the Fundamental Lemma.

7. Family % and mapping £. We need a lengthy reasoning to
prove the fundamental lemma. It is very convenient to consider, instead
of the domain (6.2)v, a domain of the form

0 < \x\ < α°α>(argα;) , |argz + π/2\ < π - ε ,

\u\< 6°Zα(arg x) , \ v | < 5°Z,(arg x) ,

where the ω(τ) and the Xδ{τY& (δ = a, β) are continuous functions defined

by

(sinε)-1 , \τ + πβ\ ^ π/2 ,
( 7 ' 2 ) ω ( r ) 11 cos τ I (sin ε)-1 , ττ/2 < | τ T π/2\ < π
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(7.3)
"cosτ |

The functions are bounded from below by a positive constant. It is to
be noted that, for a preassigned positive numbers α° and 6°, if we choose
the values of a% and b% in a suitable way, every point (x, u, v) of the
domain (6.2)^ belongs to the domain (7.1).

We will prove that the fundamental lemma holds in a domain of the
form (7.1). Let % be the set of pairs {φ, ψ} of functions φ(x, u, v) and
ψ(x, u, v) which are holomorphic in (x, u, v) for the domain (7.1) and
satisfy there an inequality of the form

(7.4) m a x {|v\~ ι\φ{x, n, v)\y \uI"11ψ(x, u, v)|} ^ KN\uvvμ\N ,

JK^ being a certain positive constant. Since {0, 0}e§, % is not empty.
It is almost evident that this family is closed and normal with respect
to the topology of uniform convergence on every compact subsets.
Moreover, % is convex.

In order to define a mapping %, let (x09 u\ v°) be an arbitrary point
of the domain (7.1). Choose the values of integration constants Cλ and
C2 satisfying the conditions U(x0) = u°9 V(xQ) = v°9 so that we have

(7.5) •Cιu\x^-a exp (μ/x0) , C2 = v\xo)-β exp (-v/x0) .

We define the functions Φ(x, u9 v) and Ψ(x9 u, v) by the integrals

(7 ft) Φ(Ύ n0 i)°} — I i7frWr W(Ύ ΊI° II0} — I Π(τ\flΎ

where the integration is to be carried out along a curve Γ9Q which will
be defined later. Here, to simplify the description, we introduced the
functions Ξ(x) and Π(x) by

Ξ{x) = χ-iU(x)-ιA(x, U(x\ V(x), U(x)φ(x, U{x), V(x)\ V(x)ir(xf U(x),

Π(x) = x-iVixrWx, U(x), V(x), U(x)φ(x, U(x), V{x)\ V(x)ψ(x, U(x), V(x))) .

The mapping £ is to be defined by

{φ(x, u, v), ψ(x, u, v)} -> {Φ(x, u, v), Ψ(x, u, v)} .

We want to prove that, if the curve ΓXQ is chosen in a suitable way,
there exists a fixed point of the mapping Z. But, since the definition
of the curve ΓXo is very complicated, we will first list up, without proofs,
some important properties concerning this curve. Those properties will
be verified in the last chapter.

8. Curve ΓXQ and its properties. The domain of the independent



NONLINEAR 2-SYSTEM 473

variable x is given either by

(8.1) D: 0 < IxI < α°α>(argx) , |argα - π/2| < π - e

or by

(8.1 bis) 0 < I a | < α°ω(arg a;) , | arg x + π/2 | < π - ε .

As is illustrated in the figure, we divide the domain into three subsets
either of the form

Imx

(8.2)

or of the form

(8.2 bis)

FIGURE 1

A I Re x I ̂  Im x , Im x > 0 ,
D

2
: Re ίc > Im x , Re a > 0 ,

JD
8
: — Re x > Im # , Re x < 0

A*. I Re x I ̂  -Im cc , Im x < 0 ,

A: Rez>-Imα;, R e α > 0 ,

A —Re cc > —Im x , Re £ < 0 .

Rex

We discuss only the former case. Because, if we notice that the
domain (8.1 bis) is the symmetric image of the domain (8.1) with respect
to the real axis, the latter will be treated in quite a similar way.

1°. We consider the case when a ^ 0 and β > 0. Then we define
the positive number K by

(8.3) = Avβ-1 + V 2 αo(sin



474 M. IWANO

Our curve ΓXo consists generally of two parts Γ' and Γ" (See Figure

2).

Imx

Rex

FIGURE 2

( I ) The case x0 e Dλ. Let x0 = Ao -f iB0 (i = i / ^ ϊ ) . Then, \A0\ £ Bo,
Bo > 0. The curve ΓXQ consists of a part Γ' only. The variable point
x = 7 ( ^ o5o) on Γ' is expressed by

(8.4) γ(σ, α^)"1 = σ + A - iBeμa , 0 ^ cr < co f

if we put

(8.5) A = Λ/(A? + So2) , £ - Bo/(AS + Bl) .

(II) The case x0 e D2. Let x0 = Ao + iB0. Then, Ao > Bo and AQ > 0.
The curve ΓXQ consists of two parts Γ' and Γ". The variable point x
on Γ" is expressed in the polar coordinates by

(8.6) a? = (I α?o I cos τ/cos θ)eiτ , θ ^τ ^π/4 ,

where τ = arg x, θ = arg x0. The end point of the curve Γ' is
|α?ol(2cos^)-1(l + i) (i = V^Ϊ). Then we switch to a curve Γ' of the
form (8.4) with A = B = l^oh'cos/? > 0 since A = Bo = |aj0|(2cos^)-1.

(III) The case x0eD3. Let x0 = Ao + iB0. Then, -Ao > Bo and
Ao < 0. The curve ΓXo is made of two parts Γ' and Γ". The variable
point x on Γ" is expressible as

(8.7) x = (\xo\ cos r/cos 0)eίr 3π/4 ^ r ^ 6> .

At the end point of the curve Γ", namely \xQ\(2 cos θ)~\l — i) (i = λ/^Λ),
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we switch to a curve Γr of the form (8.4) with A = — B = \x0\~ιcosθ < 0
since we have Ao = — J30 = |ίro| (2 cos ^)~1.

The curve ΓXo furnishes the following properties stated in the
proposition below.

PROPOSITION A. ( i ) The curve ΓXQ is contained in the domain (8.1)
as long as its start point x0 is.

(ii) The part of this curve for σ > max {0, — A] is in the open first
quadrant and is tangent to the imaginary axis at the origin.

(iii) This curve never intersects itself and, for any two points x0

and x19 the curves ΓXQ and ΓXχ cannot have common points unless one of
them is a subset of the other as point sets.

(iv) When x travels on the part Γ', \x\.is a decreasing function in
the parameter σ.

Let s be the arc length of the curve ΓXQ measured from the origin
to the variable point x. When x is on Γ"9 s is considered as a decreasing
function or an increasing function in the argument τ = arg x according
as we have x0eD2 or x0 eD z . Hence, ds — +{{d\x\jdτ)2 + |x\2}ι/2dτ =
HF{(|α?0| sin r/cos 0)2 + (|αo| cos r/cos θfγ/2dτ = qp|a?0| |cos θ^dτ = - |^0|(cos θ)~ιdτ.
Thus we have

(8.8) ds = -1 x01 (cos θ)~ιdτ on Γ" .

By differentiating (8.4), we have

(8.9) dx/dσ = -x\l - iκBeκa) on Γ .

Since s is a decreasing function in the parameter σ, we have ds =
— \dx/dσ\dσ and hence

(8.10) ds = -\x\2{l +/c2B2e2κσ}U2dσ on Γ'.

The growth order of the general solution of (2.3) along the curve
ΓXo will be clarified in the proposition below.

PROPOSITION B. ( i ) The functions U(x) and V(x) with the initial
condition (7.5) satisfy the inequalities

(8.11) I U(x) I < 6°Zα(arg x) , | V(x) | < 6%(arg x) on ΓXQ .

(ii) In particular, as x is on the curve Γ\ we have

(8.12) I U(x) \'λdI U{x) \/ds ^ μ \ x\~2{1 + tz'B>e

2κσ}-m ,

(8.13) I V { x ) \ - χ d I V ( x ) \ / d s ^ v \ x \ ~ 2 { l + /c2B2e2κσ}~1/2 .

(iii) We have moreover inequalities of the form
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(8.14) I U(x) I ̂  I u° I (sin ε)~a , \V(x)\^\v°\ (sin s)-' on ΓSo .

The inequalities (8.11) show that, as x travels from the start point
x0 to the origin along the curve ΓXQ, the values of x, U(x) and V(x)
continue to remain in the domain (7.1) provided their initial values xot

u° and v° belong to the same one. For this reason, a domain of the
form (7.1) will be usually called a stable domain for the reduced equations
(2.3). Such a stability condition will be necessary when we want to
prove the existence of solutions by means of the fixed point technique.
The inequalities (8.12) and (8.13) mean that, on the curve Γ', the func-
tions I U(x) I and | V(x) | are monotone decreasing functions in the param-
eter σ associated with the curve Γ''.

2°. In the case when a > 0 and β = 0, we define the positive
number ic by

(8.15) K = Aμa-1 + vΊΓ α°(sin ε)"1 .

A curve Γ' is to be defined by

(8.16) y(σ, xQ)~ι = -σ + A - %Beκa , 0 ^ σ < oo .

Then if σ > max {0, A), the part of the curve Γ' is in the open second
quadrant and is tangent to the imaginary axis at the origin. A curve
Γ" will be defined in the same way as in 1°. Thus we have a similar
curve ΓXo as in 1°. So we do not go into any details in this case.

9. Existence of a fixed point. 1°. First of all we must prove the
following assertion.

(a) The mapping £ is well defined.

To prove this, one notes that, if the positive constants α° and b° are
chosen appropriately, the domain (7.1) becomes a subset of the domain
in the (x, uy v)-space which is expressed by the (x, u, /y)-component of
the domain (5.7) in the (x, u, v, Yy Z)-space. Suppose that the constants
KN and b° satisfy

(9.1) KN(bT+μ)N+2 < bN , KN(bT+μ)N+ι < 1 .

By virtue of Proposition B, the values of x, U(x), V(x) belong to the
domain (7.1) as x moves on the curve ΓXQ. Hence, the functions
φ(x, U(x), V(x)) and ψ{x, U(x), V(x)) become holomorphic functions of x
on the curve ΓXo. Therefore, owing to (9.1), the values of x, U(x), V(x),
U(x)φ(x, U(x), V(x)) and V(x)f(x, U(x), V(x)) remain in the domain (5.7)
as x travels on ΓXQ. This fact shows that the integrands Ξ(x) and Π(x)
are holomorphic functions of x on the curve Γx.
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We shall show that the integrals (7.6) are convergent. Note that,
in view of (5.9), we have, for example,

(9.2) IΞ(x) I ̂  IxI-11 U\~ι{M{\U\ + | V\)(2KN | Ur+1|

+ M(2Kϊ,)\U\*N+2\V\2μN+2 + LN\U\vN+1\V\'lN+1}

^ {2M(2b° + KN(by+")N+*)KN + LIf}\x\-1\U\*"\V\'lN+1

<Ξ «fiMV)K* + LN)\xI"11U(x)rIV(x)Γ+ι (by (9.1)) .

In quite a similar way, we can derive an inequality of the form

I Π{x) I ̂  ((6MbηKN + LN) I x I-11 tf(aθ |^+11 V(x) | ^ .

However, thanks to (8.10), the inequalities (8.12) and (8.13) give
-lUl^dlUl/dσ ^ μ, -Wl^dlVl/dσ ^ p on Γ', which implies that |t7(a?)| =
O(e-<">), \V(x)\ = O(e~vσ) on Γ'. And, (8.4) and (8.10) imply that we have
\x\-χds = O(ΐ)dσ for large σ. Thus we have \Ξ(x)\ds = O(exp (— (^viV+
v + vμN)σ))dσ for large σ. Hence the first integral of (7.6) is convergent.

Analogously we can prove the convergence of the second.

2°. We shall prove the following assertion.

(b) % maps % into itself,

or what is the same thing,

(b.l) The functions Φ(x, u, v) and Ψ(x, u, v) satisfy the inequality

(9.3) m a x ί l ^ l - 1 ! ^ , u, v)\, \u\~l\W(x, u, v)\) ^ KN\v?vμ\N .

(b.2) These functions are holomorphic in (x, u, v) in the domain

(7.1).

PROOF OF ASSERTION (b.l). It is sufficient to prove that

because the point (xQ, u\ v") was arbitrarily chosen from the domain (7.1).

In view of the inequality (9.2), it will be sufficient to prove that

(9.5) ((6Mb°)Kγ + LN)\ IxI" 1 1U(x)Γ\V(x)\ f ί N + 1 ds ^ KN\u°\vN\v°
JΓx0

To estimate this integral, we estimate two integrals

(9.6) ( \x\-1\U(x)r\V(x)\"N+1dsf
JΓ"

(9.7) \ \x\-1\U(x)\"N\V(x)\fιN+ιds .
JΓ'
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By v i r tue of (8.14) in Proposition B, we get two types of estimation

0.8) i u{x) I I v{χ) i ^ j ^ ( ( g i n ^ ( ^ ^ ( 7 ( β ) ^ o n r .

Since

^F(a;)^ - (y(μ + αa?) + M - ^

we have, by solving the linear equation,

(9.9) U(xYV(xY = (^°)^0)/<(^0)
αv+/3//

On the curve Γ", by virtue of (8.8), we have

l^l^cίs = — (\XQ\~1 cos Θ/cos τ)(\xQ\/cos θ)dτ = —

When x is on Γ", τ — arg x belongs to a τ-interval [arg x0, TΓ/4] or [3π/4,
argίc0]. Hence, we have

or =or t ^
cos τ J3̂ /4 cos τ 4 smε

Thus the integral (9.6) is bounded by

(9.10) ( \x\~'\U\"N\V\μNΛ-ιds ^ (Sπ/^ίsine)-^ 1 '^^-^ 1 !^ 0 !^^ 0

On the curve Γf, as is seen from Proposition B, the functions | U{x) \
and \V(x)\ are increasing functions in the arc length s. By (8.12) and
(8.13), we see that the function W(x) = (\U(x)\u\V(x)\μ)N satisfies the
inequality dW(x)/ds ^ N{vμ + μv)W{x)\x\'2{^ + fc2B2e2Ka}~m. We shall prove
later that

(9.11) KB = fcB0/(Al + B0

2) > 1 if \A0\^B0.

Hence we get \x\~ι{l+_ιc2B2e2κa}-m = {{σ + A)2 + B2e2κσ}1/2{1 + κ2B2e2κaYm ^
Beκσ{2/c2B2e2κσ}-m = (V 2 tc)~ι. Thus we have dW(x)/ds ^ N(vμ +
//vXl/Y/c)-1^!-1^^) ^ (iV^/yc)!^!-1^^). Hence it turns out that the

integral (9.7) is bounded by \ ^\ \v°\(smε)-β\x\-1W(x)ds ^
JΓ' JΓ'

v°\(βmε)'-βκ(Nvμ)-'1W(x1)9 where x± is the start point of the curve Γ\
In view of (9.9), we have W{xx) = l ^ l ^ l ^ l ^ l ^ o l ^ ^ ^ ^ . The point x,
is given by

x0 if x0 A ,

x01 Cι/ΊΓ cos θ)-1 exp (πΐ/4) if x0 e D2,

#o I (VΊΓI cos θ I)"1 exp (3πi/4) if x0 e A .
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Since |cos#| ;>sinε, it turns out that the value W{x^) is bounded by
W(Xχ) ^ \u°\vN\v°\μNθ/Tsmε)-<av+βμ)N ^ \u°\uN\v0\μN(Qmε)-{aίf+βμ)N. Thus we

have the estimate

(9.12) ί ixl-'lUl^lVl^ds ^ κ(Nuμ)-\8mε)-{au+βμ)lτ'β\u0\i>lί\υ0\tι^1 .

It follows from (9.10) and (9.12) that the inequality (9.5) certainly
holds if we take KN in such a way, for example, that it satisfies the
equation

(9.13) ((6Mb°)KN + LN){ιc(Nvμ)-1 + (3τr/4)(sin ε)"])(sin e)-^+β^-«-β = KN .

In quite a similar way, we can prove that the inequality

(9.14) ((6Mb°)KN + LN) \ \x\-1\U(x)\^N+1\V(x)\"Nds ^ KN(\u0\^\v°\μ)N\
JΓx0

is satisfied for the KN defined by the equation (9.13).
To complete the proof of Assertion (b.l), we shall prove the inequality

(9.11). One observes that, since Ao + iBoeDlf Ao and Bo satisfy the
inequalities |A0| ^ J30 < {(α°/sinε)2 - Al}m , | A 0 | < a\V~2 sinε)-1. How-
ever, since B = B0/(A2

0 + B0

2), we have 3B/dB0 = (AS - B!)/(A2

0 + Bϊ)2 ^ 0.
Hence, B > (α°/sin ε)-2{(α°/sin ε)2 - A\)m > (α°/sin ε)-2{2-1(α°/sin ε)2}1/2 -
t l / ϊ α 0 ) " 1 sinε. Thus the definition of K proves the inequality (9.11).

PROOF OF ASSERTION (b.2). The inequalities (9.4) show that, for
each fixed x0, the integrals (7.6) are uniformly convergent with respect
to (u°, v°). Hence the functions Φ(x0, u, v) and Ψ(x0, u, v) are holomorphic
with respect to (u, v) at (u°, vn). To prove that, for each fixed pair
(u°, v°), the functions Φ(x, u\ v°) and Ψ(x, u°, v°) are holomorphic with
respect to x at x = xQf it is sufficient to prove that, for x1 sufficiently
near xQ, we have, for example, the relation

(9.15) Φ(x0, n\ v°) = ( Ξ{x)dx + \9°Ξ(x)dx ,

where the second integration must be carried out along the segment x^.
Let <0

 a n ( i *i b e intersection points of the curves ΓXQ and ΓXλ with a
circle \x\ = p of a sufficiently small radius p. Then the relation (9.15)
will be established if we can prove that

(9.16) I P Ξ(x)dx -* 0 as p->0,
I J*o

where the integration is to be carried out along an arc of the circle
I x I = p. Since the arc length is less than pπ/4t, the integral appearing
on the left hand side of (9.16) is bounded by ((6Mb°)KN +
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LN)p~ι1 U(x) \»N I V(x) Γ+ 1(τφ/4) = O(\ U(x) Γ | V(x) \'ιN+ί) = O(exp ( - (μvN +v +
vμN)σ)) —> 0 as p —• 0. Analogously, we can prove a relation of the form
(9.15) for the function Ψ(xQ, u\ v°). This proves the assertion (b.2).

3°. We have to prove the following assertion.

(c) The mapping X is continuous with respect to the topology of
uniform convergence on compact subsets.

To prove this assertion, let {φι(x, u, v), ψι(x9 u, v)} be any sequence of
the family g which converges uniformly {φ(x, u} v), ψ(x, u, v)}. Put

X{φl(xf U, V), ft(x, U, V)} = {Φ^X, U, V), Ψt(x9 U, V)} ,

%{φ{x, u, v), ψ(x, u, v)} = {Φ(x, u, v), W(x, u, v)} .

Then, the continuity of % follows from the assertion that we have
uniformly l i m ^ {Φι(x, u, v), Ψι(x, u, v)} — {Φ{x, u, v), Ψ(x, u, v)}. If we use
the Lipschitz inequality (5.10), this assertion can be easily verified. We
would like to leave the proof to the reader.

Owing to a fixed point theorem in the functional space (see, for
example, Hukuhara [2], pp. 14-15), there exist a pair of functions, say
{%)N(x, u, v), $N(x, u, v)}, which correspond to a fixed point of the mapping
X. Then we can prove that

(d) The pair {$)N(x, U(x), V(x)\ 3N(x9 U(x), V(x))} is a solution of
the equations (5.13).

Since the proof of this assertion is easy, the author would like to
leave the proof to the reader (See, Iwano [5]).

Thus we have obtained a proof of the fundamental lemma.
Finally we have to prove the uniqueness of our solutions.

(e) A solution of the equations (5.13) such that

(9.17) 2) = O(| U(x) r I V(x) Γ + 1 ) , 3 = 0(1 U(x) Γ + i | V(x) \!tN)

is unique.

To prove this, we impose the condition

(9.18) 2AMb°(/c(Nvμ)-1 + (3π/4)(sinε)-1)(sinε)-(^+^^-α-^ < 1

on the value of 6°, where M is the constant appearing in (5.10). It is
easy to see that this condition also enables us to solve the KN as a
positive solution of the equation (9.13). Suppose that there exist two
pairs of solutions for the equations (5.13) satisfying the order condition
(9.17). Let {2)(α, U(x), V(x)), &(x, U(x), V(x))} be the difference between
these two solutions. Then we have
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(9.19) max{|tι| |2Ka>, u, v)\, \v\\8(x, u, v)\) ^ 2KN\u\»ir+1\v\"N+1

for (x, u, v) in the domain (7.1). On the other hand, in view of (5.10)
with Y, - Γ2 = U$) and Z, - Z2= 73, we have the inequality, for
example,

+ 17| + ^l

where the last integral is estimated as

rg M\ (26° + 4KN(bJv+^N+2)(iKN)| a I"

( ^ \^\-1\U\»N\V\'tN+1d8 (by (9.1))

(by (9.10), (9.12))

SKN\v?\»NIv°\'«N+1 (by (9.18)) .

Hence, the inequality (9.18) implies that |2)(x0, u\ v°)\ < KN\u0\uN\v°\μN+1.
Thus the constant 2KN appearing in (9.19) has been halved. Applying
this procedure repeatedly, we have an inequality of the form \^}(xOfu

o

9 v°)\^
(^/2ι)|^0|^b°|/<iNΓ+1 for each integer I, which implies 2)(α, u, v) = 0,
because (x0, u°, v°) is an arbitrary point of the domain (7.1). Similarly,
we can prove that Q(xf u, v) = 0. This completes the proof of the
fundamental lemma conditional on Propositions A and B.

We want to show how to determine various constants in order to
obtain a unique solution of the fundamental lemma for the domain (7.1).
For any fixed positive integer N, there exist positive constants (aNf bNf cN)
and (M, LN) which are associated with the domain (5.7) and the inequali-
ties (5.9), (5.10). Take the value of α° small enough to have α°/sinε <
aN. The positive constant K is to be defined by the formula (8.3).
Choose the value of 6° so that the inequalities 6° < 6̂  and (9.18) are
both satisfied. Finally we determine the positive constant KN as a solu-
tion of the equation (9.13). Since KN is considered as an increasing
function of 6°, if the value of 6° is sufficiently small, the second inequality
of (9.1) certainly holds together with 6° < bN. Then the first of (9.1) is
automatically satisfied. Thus we have a unique solution of the funda-
mental lemma for the domain (7.1).

Chapter IV. Verification of Propositions A and B.

10. Verification of Proposition A. Conditional on Propositions A
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and B which are the conditions imposed on our curve ΓXQ, the fundamental
lemma has been established. These two propositions will be proved in
the rest of this paper (also, refer to Iwano [9]). But, since Proposition
A is geometrically understandable except for Property (iv), we are
satisfied with verifying that \x\ is a monotone decreasing function in
the parameter σ.

Since the start point Ao + ίB0 of the curve Γ' always is in the set
Du we have the inequalities

(10.1) \A01 £ Bo < {(α°/sin ε)2 - A2}ί/2 , | AQ | ^ αo/(τ/T sin ε) .

On the curve Γ'f \x\~2 is a function of σ, say L(σ),

(10.2) L(σ) = (σ + A)2 + B2e2κa .

Hence it is sufficient to prove that the derivative L'(σ) is positive valued
for 0 ^ σ < co.

Since L\σ) = 2{σ + A) + 2/cB2e2κσ, we have

L'(0) = 2A + 2/c£2 > 2A + 2B (by (9.11))

^ 0 (by (10.1)) .

Moreover, it is obvious that the second order derivative L"(σ) satisfies

L'\σ) = 2 + 4:/c2B2e2κσ > 0 .

Hence, it follows that L'{σ) •> 0, which is our required inequality.

11. Verification of the inequalities (8.12) and (8.13). In this section,
we write U and V in place of U(x) and V(x). One notes that

(11.1) I U\-ιd I U\/ds = (d/ds) log | U\ = (d/ds) Re (log U)

= Re {(d/ds) log U) = Re (U-'dU/ds)

= ReiU'dU/ds - dx/ds) = Re {(/« + αx)χ-2dx/ds} .

In view of (8.9) and (8.10), it is verified that

(11.2) x~2dx/ds = x~2dx/dσ dσ/ds = |α |- 2 ( l - itcBeκa){l + /c2£V™}-1/: .

Hence, we have

(11.3) lEΓI- ÎETΊ/ck - |a?|-2{l + ιc2B2e2κa}-1/2

x Re [{μ + α{(σ +. A)2 + B2e2κaY\σ + A + iJ5eίσ)}(l - itcBe™)}

= {(ica + i«)J?Vcσ + μ(σ + A)2 + a(σ + A)}{1 + /c25VΛσ}"1/2 .

If we can prove that the last expression is bounded from below by
μ\x\~2{l + κ2B2e2κa}-1/2, namely the function H(σ) defined by

(11.4) H(σ) = fcaB2e2κσ + a(σ + A)
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is positive valued for 0 ^ σ < °°, the inequality (8.12) will be established.
To prove this, we observe first that there holds a trivial inequality
#'(0) = 2κ2aB2e2"' + a ^ 0 for 0 £ σ < °o. On the other hand, we have

H(0) = κaB2 + aA = {a/(Al + B0

2)}(κBϊ/(Al + B0

2) + Ao)

^ {a/(Al + Bl)}{φ - α°/(i/Tβin e)} (by (10.1))

= {a/(Al + Bo2)}(2v//3) (by (8.3)) .

This implies that we have H(σ) ^ 0 for 0 sS σ < oo. Thus the inequality
(8.12) holds.

By a similar consideration, we can derive the relation

(11.5) |7|- ιd|7|/(ίβ

= {(*£ - w)B le iw - v(σ + A)2 + β(σ + A)){1 + κ2B2e2"}~in •

In order to have the inequality (8.13), it will be sufficient to prove that
the function K{σ) defined by

(11.6) Kip) = (Kβ - 2v)B2e2'° - 2v(σ + A)2 + β(σ + A)

is positive valued for 0 ^ σ < <χ>. We notice first that ϋΓ(O) 2; 0. Indeed,

K(0) = {Kβ - 2v)B2 - 2vA2 + βA

= κβB2 - 2v/(A2

0 + B0

2) + βA (by (8.5))

= {β/(Al + Bξ)}{κB}/(A} + Bϊ) - 2v/β + Ao)

^ {β/(Al + B$)}{φ - 2v/β - ao/(VΎ sin e)} (by (10.1))

= 0 (by (8.3)) .

Since K'(0) = 2κ(κβ - 2v)B2e2'° - 4υ(σ + A) + β, we have K'(0) > 0.
Because,

JΓ(0) = 2κ(κβ - 2v)B* - 4vA + β

> 2(κβ - 2v)B - 4υA + β (by (9.11))

2Ϊ 2(κβ - iv)B + β (by (10.1))

= 2VΊΓ /3(α°/sin ε)B + β (by (8.3))

> 0 .

Moreover, we have K"(σ) = Aκ\κβ - 2v)B2e2κ° - 4y > 0. Indeed,

K"(σ) ^ K"(fi) = 4κ2(κβ - 2v)B2 - 4v

> 4(/CyS - 2v) - 4v (by (9.11))

= 4(«/3 - 3v) > 0 (by (8.3)) .

Thus we have proved that K\σ) > 0 holds for 0 ^ σ < oo. Consequently,
the inequality K{σ) > 0 is satisfied in the same σ-interval. This proves
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the inequality (8.13).

12. Verification of the inequality (8.11). The functions U(x) and
V(x) are expressed by

U(x) = u°(x/xo)
a exp (μ/a?0 - μ/x) ,

F ( ) =r v°(x/xo)
β e x p (v/a? — v/a?0)

Thanks to the inequalities (8.12) and (8.13), the functions \U{x)\ and
V(x) I are monotone decreasing functions in the parameter σ. So, we have

(12.2) I U(x) I £ I U(Xl) I , I V(x) \ £ \ V(xJ I on Γ ,

where ίcx denotes the start point of the curve Γ\
First of all we will prove that

(12.3) Re (I/a?) = Re (I/O on Γ" .

Indeed, in view of (8.7) and (8.8), we have

x = (Ixo\ cos τ/cos 0)eίΓ on Γ" ,

d s = -(|#o |/cos0)dτ on Γ" .

A direct calculation gives dx/dτ = (|#0|/cos#)( — sinτ + icos τ)βir =
(I £0 I/cos θ)(ieiT)eiT = (| a:0 |/cos ^)iei2r. Hence, (d/ώ) Re a;"1 = Re (dx-'/ds) =
- R e (x~2dx/ds) = - R e (x~*dx/dτ dr/ds) = - R e {(cos 0/(|αo| cos τ))2<rΐ2r

(|α?o|/cos^)ieί2r ( — cos0/|#o|)} = 0. This proves that the function Re(l/#)
is constant as x travels on the curve Γ" and conseqμently the assertion

(12.3) holds.
We consider the case when x0 e D^ By virtue of Property (ii) in

Proposition B, we have, for example, \U{x)\ ̂  |i7(ίCo)l = \u°\ < b°Xa(argx0)
on Γ'. But, by the definition of %α(arg x), we have Zα(arg x) = l constantly
when xeΓ'. Thus we have

(12.4) \U(x)\ < ¥Xa(2irgx) on Γ .

This proves that the first inequality in (8.11) holds on the curve Γ'. In
quite a similar way we can prove that the second one in (8.11) does on
the same curve.

We consider the case when x0eD2. By virtue of (12.3), we have,
for example,

(12.5) \U(x)\ < | u ° | | ^ o | α on Γ"

= u° I (cos τ/cos θ)a θ ^ τ ^ r/4 .

But,
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(12.6) |« | < r a { 6° i f '" " *» ' S "».)={
(&o|cos0|α if π/2< | ^ - π / 2 | < π - ε .

Suppose that 0 ^ 0 < τr/4. Then, | U(x) | satisfies the inequality | U(x) | <
6°(cos r/cos θ)a for a r-interval [θ, ττ/4]. Since # is on Γ", we have 0 <;
r < τr/4, and

(12.7) 0 < cos r/cos 0 ^ 1

for the r-interval [θ, π/4]. Hence, it holds that | £/(#) | < 6°%α(arg x) on
Γ", because, in the r-interval under consideration, we have Xα(arg x) == 1
identically.

Suppose that -π/2 + ε < θ < 0. Then, owing to (12.5) and (12.6),
we have the inequality \U(x)\ < 6°|cosr|α for θ <: τ ^ π/4. Thus, by the
definition of %α(arg#), we have |I7(a?)| < δ°Zα(argίc) on Γ".

In any case, we obtain | U(x) \ < &°Zα(arg x) on Γ". At the end point
of Γ", say xl9 we have | U{xx) \ < δ°Zα(arg x,) = 6°. Hence, by virtue of
(12.2), it follows that \U(x)\ < b° = δ°Zα(arga;) on Γ'f because %α(argα) = 1
for xeΓ'. Thus we have proved that | U(x) \ < 6°Zα(arg x) on ΓXo.
Similarly, we can prove that | V(x) \ < 6°% (̂arg x) on ΓXo.

The case when x0eD3 can be treated in almost the same way. Thus
the inequality (8.11) has now been verified.

13. Verification of the inequalities (8.14). By virtue of (12.1) and
(12.3), we have \U(x)\ ̂  \uo\\x/xQ\% \V(x)\ ̂  \v°\\x/x^ on Γ". The
relations (8.6) and (8.7) imply that \x/xo\ ̂  (sins)"1. Hence, we have
\U(x)\ ̂  |w°|(sinε)-α, |V(x)\ ^ |v°\(sine)-^ on Γ". But, the inequalities
(8.12) and (8.13) show that \U{x)\ ̂  \U{xλ)\9 \V{x)\ ̂  |Ffe)|, where xx is
the start point of the curve Γf or the end point of the curve Γ". Thus
we have the inequalities

IU{x)I ^ max {|u°|, |u°\(sin e)~a} = \u°\(sin ε)~a on ΓXQ ,

|F(α:) |^ | t ; 0 | (s inε)^ on ΓXQ,

because, ε is supposed to be sufficiently small. Thus we have the
inequalities (8.14).
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