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Introduction. Let L*T) be the Hilbert space consisting of square
integrable functions f = f(¢**) defined on the unit circle T, and based on
the measure do(x) = dx/2xr. We put e, = e,(e**) = ¢™** for each n in Z (Z
means the set of all integers). Then L*T) is the direct sum 3,., @ [e.]
of the one-dimensional subspaces [e¢,] generated by e¢,. We say that a
unitary operator U on L*T) is a shift operator or a shift for short if
Ule,] = [€n41] for all » in Z. Since each [e,] is a one-dimensional subspace,
each shift U corresponds to a sequence {z,}..; of complex numbers with
absolute value 1 by the relation:

Uen = zn+len+1 (n eZ) .

Especially, throughout this paper, we denote by S a shift operator
defined by

Se, =¢,., (neZ).

Our purpose is to analyze the structure of invariant subspaces for
a given family & of shift operators on L*T). It is reduced to the
works of Beurling [1] and Helson [3] when & consists of a single shift,
because each shift U is unitarily equivalent to the shift S. For a shift
operator U, we put W =US*. Then U= WS and W is a unitary operator
on L¥T) such that Wle,] = [¢,] for all n in Z. For a given family ./, we
put W(&°) = {W;W =US*, Ue &”}. In this paper, it is assumed that
W(.&”) satisfies the following condition (*):

(1) W(%) is a group.

(+) (2) S*W()S =W(S).

The author [4, §1] has shown, in the case of arbiratry multiplicity, that
under the condition (x) the invariant subspaces for . have two funda-
mental properties for decomposition, that is, (i) every simply invariant
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subspace is decomposed into the pure simply invariant part and the
reducing part; (ii) every pure simply invariant subspace is decomposed
into the wandering subspaces. If we drop either of the condition (),
the invariant subspaces for & seem to be complicated (cf. [4, Example
1.5 and 1.6]). However, it is expected that the structure of those spaces
for an arbitrary & is deeply related to that for the smallest family [.&”]
which contains & and satisfies the condition (x). In fact, the sets of
reducing subspaces for & and [%”] coincide.

In the paper, we denote by M(S”) (resp. D(.%”)) the von Neumann
algebra generated by &7 (resp. W(.5)) and by A(S”) the algebra generated
by D(&”) and {S"};—. Theorem 2.12 in [4] says that if every pure simply
invariant subspace for A(S”) is of Beurling type then M(.$”) must be
the crossed product (see [5, P. 364]) of a von Neumann algebra D(5”),
on the one-dimensional space [¢,] by Z with respect to a spatial auto-
morphism of D(%”),. Since the trivial algebra C1 is the only von Neumann
algebra on [e,], there is no crossed product of the above form on L*T)
except the von Neumann algebra M, of all the multiplication operators
M; on L¥T) by f in L=(T), which is generated by the shift S. Hence
there are many of those invariant subspaces for A(.%”) which are not of
Beurling type, if M($”) is distinct from M, .

We obtain the characterization of invariant subspaces for those .&
which satisfy the condition (), in terms of the commutant M(%”) and
the shift S. We here note that these subspaces are also invariant under
A(S”) since the multiplicity is one. For the theory of von Neumann
algebras, we refer to the books of Dixmier [2] and Takesaki [5].

1. The von Neumann algebras generated by shift operators. Let
G = [l.czT,, where each T, is the unit circle in the complex plane.
For each g = (z,) in G, we define a unitary operator W, on L*T) such
that Wle,] = [e.] (n € Z) by the relation W,e, = 2,6, (n€Z). For each
natural number %k, we denote by G, the subgroup of G consisting of all
periodic sequences g= (z,) in G with period & (i.e., z, = 2,,, for all = in Z).
For k in N (N means the set of all natural numbers) or &k = o, let .&4 =
{U,U=W,S, ge@G,} where G, means G. Since each G, is invariant under
the shift (i.e., if g = (z,) belongs to G,, then ¢’ = (z,,,) and ¢" = (z,_,)
belong to G,), each .&; satisfies the condition (x) and especially .57 is
the family of all shift operators on L*(T) with respect to the decomposi-
tion >},.z@®[e.]. For each k in N, D(%) is the von Neumann algebra
generated by the finitely many projections {P, }o<i<,.. Where P, is the
projection of L*(T) onto the subspace 3...; @ [¢..+:]- Therefore, for each
k in N, M(.%4) is the von Neumann algebra generated by {P, },;-,_, and
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the algebra M,«,,. Moreover, we find that M(<%) is the full operator
algebra on L*T) because M(S%) contains the projections {P,},.z and
{S"},.z where P, is the projection of L*T) onto [e,]. In this paper, we
say that f = f(¢**) is a periodic function with period x, if the equality
f(e®) = f(e'***") holds for almost all  in [0, 27). Then, P,, is the pro-
jection onto the subspace of the periodic functions in L*T) with period
2n/k. Moreover, for each k in N, the commutant M(.54) is the algebra
of all the multiplication operators M, by a periodic function f in L>(T)
with period 2z/k and the commutant M(.5%) is the algebra C(L*T)) of
all the scalar multiples of the identity on L*T).

LEMMA 1.1. Suppose that & contains the shift S and S* W(S)S =
W(S). Then D(&”) = D(S4) for some k in N U {oo}.

Proor. For .&; we denote by G(&”) the subset {geG; W,e W(&)}
of G. Let N, be the set of all numbers j in N such that G(&)CG;.
Let k& be the minimum number in N, if NV, is non-empty, and &k = o
otherwise. If k¥ = 1, the von Neumann algebra D(S”) is obviously the
algebra C(LXT)).

Next, we consider the case where 1 <k < . Let m be a natural
number such that 1 < m < k — 1. Then, there exists an element g = (z,)
of G(&) such that z,,, # 2, for some number 7 in Z. Since S**W,S*
belongs to W(.%”), we may assume that 4 = 0. Moreover, multiplying
g by a suitable complex number z with absolute value 1, zg = (2z,)
becomes an element zg = (y,) of G such that y,;\,, = ¥. =1 but ¥,, =
Y,#1 for all » in Z. We put R, =TI —2W,)/1—y,). Then R, becomes
an operator in D(%°) such that R,P,,,, =0 and R,P,, = P,, for all »
in Z. Thus, the product of these ¥ — 1 operators {R,},<n<x_. is the pro-
jection P,,. Hence P,, belongs to D(%”) and the projections {P, ,}1<m<i—
also belongs to D(S”) because of the hypothesis S*W(S”)S = W(.&).
Namely we have D(%) < D(S”). Since D(S”) is a subalgebra of D(%4)
by the definition of %, it follows that D(.%”) = D(%4).

Finally, we consider the case where N, is empty. Similarly as in
the second case, for each m = 0, there exists an element h = (z,) of
G(%”) such that z, # 2,. This time, for some complex number z with
absolute value 1, 2k = (22,) is an element zh = (y,) of G such that y, =1
and y, #1. We put S,, = + z2W,)/2. Then S, is an operator in D(%)
such that S,P, = P,, || S.P.]| <1 and || S,P;|| <1 for all ¢+ 0, m where
|l || means the norm of a bounded linear operator on L*T). If we put

Q. =S_,--S.,8 -8,
for each %k in N, then we have that Q,P, = P, and ||Q,P,.|]| <1 for m =
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—k,---,—1,1, ---, k. Since the sequence
Q)P+ -+ + P+ P+ - + P,

converges uniformly to 0, we get an operator T, in D(%%) such that
T.P,=P,|TP,| <1k for m=—k, ---,—1,1, ---, k and ||T.P| =1
foralli+ —k, ---,0, ---, k. Since the sequence {T,},-, converges strongly
to P,, the von Neumann algebra D(5) contains P,. Hence D(5°) contains
the projections {P,}..z by the hypothesis S* W()S = W(.&*). Therefore,
it follows that D($%) c D(S”). Since G(&) is a subset of G = G.., we
have the conclusion. q.e.d.

PROPOSITION 1.2. Suppose that & contains the shift S. Then
M(S) = M(%4) for some k in N U {c}.

PRrROOF. Since . contains the shift S, M(S”) contains the operators
W(&”), so that it contains the operators S*"W(<”)S" for all n in Z. We
put W(&), = Unez S*"W(&)S" and & = {U:U = WS, We W(&),}. Then
we have M(S”) = M(.%;), and .&; satisfies the hypothesis of Lemma 1.1.
Hence M() coincides with the von Neumann algebra M(<4), which is
generated by D(54) and S, for some k in N U {c}. g.e.d.

THEOREM 1.2. Let & be a family of shift operators. Then M(S”)
18 spatially isomorphic to M(S4,) for some k im N U {} and k is uniquely
determined by &

PROOF. We take a shift operator U in &2 Then U =W,S for some

g = (2,) in G(&). For this sequence, we define a unitary operator W
such that Wle,] = [e,] (n€ Z) as follows; We, = 2,2,_, - - z¢, if n =1,
We, = ¢, and We, = 2,,,2,4s -+ * 2, if n < —1. Then WS W* is a family
of shift operators containing S. Hence, by Proposition 1.2, WM(S”)W* =
MW W*) = M(<,) for some k in NU{«}. For each n in N, M(%) is
spatially isomorphic to the von Neumann algebra M-, ® B(H,) on
LXT)® H, where H, is an m-dimensional Hilbert space. Namely, for
each n in NU {«}, M(.%) is a von Neumann algebra of type I,, so that
{M(S)}nenyio; are mutually non-isomorphic von Neumann algebras [2,
Chapter III, §3, Proposition 1]. Hence k is uniquely determined by .~
g.e.d.

2. The structure of invariant subspaces. Let & be a family of
shift operators which satisfies the condition (). Then the structure of
non-reducing invariant subspaces for & is essentially the same as that
of non-reducing invariant subspaces for A(.S”) (ef. [4, Proposition 1.7]).
Hence, Lemma 1.1 reduces the study of these subspaces to that of non-
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reducing invariant subspaces for .&4’s. For an arbitrary & of shift
operators, each reducing subspace for .&” corresponds to a projection in
the commutant M(.5”). Hence, Theorem 1.2 reduces the study of these
subspaces to that of reducing subspaces for .%4’s. Since the structure
of M(54) is plain, we easily get the following theorem.

THEOREM 2.1. (1) A1 £k < ). A subspace R of L¥T) reduces &
if and only if R is of the form R = M, LNT) where X; is a periodic
characteristic function in L=(T) with period 2m/k.

(2) (k= o). LXT) is the only non-zero reducing subspace for ...

For a subset N of L¥T), [N] means the closed linear span of N. A
subspace IN is said to be simply invariant if I is invariant under &
and [“IM] is a proper subspace of M. Moreover, a simply invariant
subspace M is said to be pure if N, [.F"M] = {0}. If & satisfies the
condition (x), then every non-reducing invariant subspace for . is
simply invariant [4, Proposition 1.12]. We now show the following main
theorem, in which H*T) means the Hardy space in L¥T) (i.e., H¥T) =
S @®[e.]). Though the assertion (2) of the theorem is well-known in
the general theory of operators, we give a proof for the sake of com-
pleteness.

THEOREM 2.2. (1) A1 £k < ). A subspace M of L*(T) is a non-
reducing invariant subspace for &, if and only if I is of the form
M = M,S"H¥T) where u = u(e*®) is a periodic unitary function in L=(T)
with period 27/k and m is an integer such that 0 =m <k — 1.

(2) (k= ). The subspaces {S"H*T); neZ} are the set of all non-
trivial non-reducing invariant subspaces for .

PrRooF. (1) The subspaces M of the form M = M, S"H*(T) are
invariant under .&4 because M, commute with A(%4) and S™HXT) is
obviously invariant under all shift operators. Moreover I is simply
invariant because M O [.FIM] = [ue,] where [ue,] is the one-dimensional
subspace generated by the vector ue, in L*T). Hence I does not reduce
.

We conversely assume that IR is a pure simply invariant subspace.
We put M, = MO [.&4M]. By Proposition 1.7 in [4], M has a decom-
position

M = M, @ S[W(A)M] D STW(F)W] D - - .

The subspace i = M O M, is also an invariant subspace for the shift S
such that N,=N S [SN]=S[W(;)M,]. By Beurling’s theorem [3, Lecture
II, Theorem 3], we find that the wandering subspace 9, for S is one-
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dimensional. Then [W(S4)M,] is one-dimensional since S is a unitary
operator, and it contains the subspace IM,. Hence we have [D(S)I,] =
[W(A)M,] = M,. Thus M, is invariant under the mutually orthogonal
projections {P, ;Jo<i<x_1, Whose sum equals the identity. Hence I, = P, M,
for some m, 0 <m <k —1, and P, M, = {0} for all 7 = m. We now
consider the invariant subspace & = S™™IM for .5 and we put &, =
[“"R1O[<*8] (n =0,1,2, ---). Then we have that & = P, .2 and
P, % ={0forall:=1,2 ---,k—1. For each?,0=<=7=<Fk — 1, we put
R = 32,0 S™2,. Then each & is a subspace of P, LXT) = >.,c2D [€n1+:]
respectively. Moreover, we have € = '@ R; and & = S’®, for each
1,01k — 1.

Let V be the canonical isometric isomorphism from P,,L*T) onto
LXT), that is, Ve,, = e, for each n in Z. Since & is invariant under
S*, V&, is invariant under S on L*T). We apply Beurling’s theorem
again to find a unitary function » = v(e*®) in L*(T) such that V&, =
M,H*T). Thus, for each 7, 0 <1<k —1. We have

R, = S'®, = S*V*M,HNT) = SV*M,VV*HT) = S'V*M, VP, HXT) .
We put u(e®) = v(e***). Then it follows that V*M,V = M, and % is a

periodic function in L>(T) with period 2z/k. Thus we have &, =
M,S‘P, H(T) = M,P, HXT). Therefore we have

= RoGBSRoEB e @Sk_lﬂo
= M,P, . H¥T)® M, P..H(T)®D --- © M,P,,,.H¥T)
= M ,HYT) .

Consequently, MM is of the form IM = S8 = S™M, H*(T).

Next we shall show that every simply invariant subspace It for &
is pure. By Theorem 1.7 in [4], I has a decomposition M = M, P M,
where I%, is a pure simply invariant subspace and M, reduces .&;. By
what we have shown above, the subspace I, contains a unitary function
w (=ue,) in L(T) and M, = M, L T) for some characteristic function X,
(Theorem 2.1, (1)). Hence two vectors w and wX, are mutually orthogonal.
But this phenomenon does not occur except the case where the measure
of E is zero.

(2) For a pure simply invariant subspace I, the wandering subspace
M, is invariant under the projections {P,}..; in D(SZ). As we showed
in the preceding case, M, is one-dimensionl, so that M, = [e¢,] for some
integer n. In this case, M is of the form M = S"HXT). Similarly we
find that every simply invariant subspace has no reducing part. q.e.d.

REMARK. Let @ be the canonical spatial isomorphism of M(.%4) onto
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M, @ B(H,), which is implemented by the isometry V defined by the
relation Ve,,., = ¢, Qe meZ, 0<1 <k —1). The author described the
structure of invariant subspaces for the non-commutative Hardy space
My @ B(H,) [4, Corollary 2.13]. However we cannot apply this result
to the case of A(%4), because @(A(S4)) is a non-self adjoint algebra
which is distinet from My, ® B(H,). Indeed, we have the following
inclusion:

My=q) Q Ji & O(A(A) & Mpeiy ® B(H,)
where J, is the lower triangular algebra on H, with respect to the base

{eozizi1-
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