INVARIANT SUBSPACES FOR SHIFT OPERATORS OF MULTIPLICITY ONE

Shinzō Kawamura*

(Received January 9, 1981)

Introduction. Let $L^{2}(T)$ be the Hilbert space consisting of square integrable functions $f=f\left(e^{i x}\right)$ defined on the unit circle T, and based on the measure $d \sigma(x)=d x / 2 \pi$. We put $e_{n}=e_{n}\left(e^{i x}\right)=e^{i n x}$ for each n in $\boldsymbol{Z}(\boldsymbol{Z}$ means the set of all integers). Then $L^{2}(T)$ is the direct sum $\sum_{n \in \mathcal{Z}} \oplus\left[e_{n}\right]$ of the one-dimensional subspaces [e_{n}] generated by e_{n}. We say that a unitary operator U on $L^{2}(T)$ is a shift operator or a shift for short if $U\left[e_{n}\right]=\left[e_{n+1}\right]$ for all n in \boldsymbol{Z}. Since each $\left[e_{n}\right]$ is a one-dimensional subspace, each shift U corresponds to a sequence $\left\{z_{n}\right\}_{n \in Z}$ of complex numbers with absolute value 1 by the relation:

$$
U e_{n}=z_{n+1} e_{n+1} \quad(n \in \boldsymbol{Z}) .
$$

Especially, throughout this paper, we denote by S a shift operator defined by

$$
S e_{n}=e_{n+1} \quad(n \in \boldsymbol{Z}) .
$$

Our purpose is to analyze the structure of invariant subspaces for a given family \mathscr{S} of shift operators on $L^{2}(T)$. It is reduced to the works of Beurling [1] and Helson [3] when \mathscr{S} consists of a single shift, because each shift U is unitarily equivalent to the shift S. For a shift operator U, we put $W=U S^{*}$. Then $U=W S$ and W is a unitary operator on $L^{2}(T)$ such that $W\left[e_{n}\right]=\left[e_{n}\right]$ for all n in \boldsymbol{Z}. For a given family \mathscr{S}, we put $W(\mathscr{S})=\left\{W ; W=U S^{*}, U \in \mathscr{S}\right\}$. In this paper, it is assumed that $W(\mathscr{S})$ satisfies the following condition (*):
$\left\{\begin{array}{l}(1) \quad W(\mathscr{S}) \text { is a group } . \\ (2) \quad S^{*} W(\mathscr{S}) S=W(\mathscr{S}) .\end{array}\right.$
The author [4, §1] has shown, in the case of arbiratry multiplicity, that under the condition (*) the invariant subspaces for \mathscr{S} have two fundamental properties for decomposition, that is, (i) every simply invariant

[^0]subspace is decomposed into the pure simply invariant part and the reducing part; (ii) every pure simply invariant subspace is decomposed into the wandering subspaces. If we drop either of the condition (*), the invariant subspaces for \mathscr{S} seem to be complicated (cf. [4, Example 1.5 and 1.6]). However, it is expected that the structure of those spaces for an arbitrary \mathscr{S} is deeply related to that for the smallest family [\mathscr{S}] which contains \mathscr{S} and satisfies the condition (*). In fact, the sets of reducing subspaces for \mathscr{S} and [\mathscr{S}] coincide.

In the paper, we denote by $M(\mathscr{S})$ (resp. $D(\mathscr{S})$) the von Neumann algebra generated by \mathscr{S} (resp. $W(\mathscr{S})$) and by $A(\mathscr{S})$ the algebra generated by $D(\mathscr{S})$ and $\left\{S^{n}\right\}_{n=0}^{\infty}$. Theorem 2.12 in [4] says that if every pure simply invariant subspace for $A(\mathscr{S})$ is of Beurling type then $M(\mathscr{S})$ must be the crossed product (see [5, P. 364]) of a von Neumann algebra $D(\mathscr{S})_{0}$ on the one-dimensional space $\left[e_{0}\right]$ by Z with respect to a spatial automorphism of $D(\mathscr{S})_{0}$. Since the trivial algebra $C 1$ is the only von Neumann algebra on [e_{0}], there is no crossed product of the above form on $L^{2}(T)$ except the von Neumann algebra $M_{L^{\infty}(T)}$ of all the multiplication operators M_{f} on $L^{2}(T)$ by f in $L^{\infty}(T)$, which is generated by the shift S. Hence there are many of those invariant subspaces for $A(\mathscr{S})$ which are not of Beurling type, if $M(\mathscr{S})$ is distinct from $M_{L^{\infty}(T)}$.

We obtain the characterization of invariant subspaces for those \mathscr{S} which satisfy the condition (*), in terms of the commutant $M(\mathscr{S})^{\prime}$ and the shift S. We here note that these subspaces are also invariant under $A(\mathscr{S})$ since the multiplicity is one. For the theory of von Neumann algebras, we refer to the books of Dixmier [2] and Takesaki [5].

1. The von Neumann algebras generated by shift operators. Let $G=\prod_{n \in Z} T_{n}$, where each T_{n} is the unit circle in the complex plane. For each $g=\left(z_{n}\right)$ in G, we define a unitary operator W_{g} on $L^{2}(T)$ such that $W_{g}\left[e_{n}\right]=\left[e_{n}\right](n \in \boldsymbol{Z})$ by the relation $W_{g} e_{n}=z_{n} e_{n}(n \in \boldsymbol{Z})$. For each natural number k, we denote by G_{k} the subgroup of G consisting of all periodic sequences $g=\left(z_{n}\right)$ in G with period k (i.e., $z_{n}=z_{n+k}$ for all n in \boldsymbol{Z}). For k in \boldsymbol{N} (\boldsymbol{N} means the set of all natural numbers) or $k=\infty$, let $\mathscr{S}_{k}=$ $\left\{U ; U=W_{g} S, g \in G_{k}\right\}$ where G_{∞} means G. Since each G_{k} is invariant under the shift (i.e., if $g=\left(z_{n}\right)$ belongs to G_{k}, then $g^{\prime}=\left(z_{n+1}\right)$ and $g^{\prime \prime}=\left(z_{n-1}\right)$ belong to G_{k}), each \mathscr{S}_{k} satisfies the condition (*) and especially \mathscr{S}_{∞} is the family of all shift operators on $L^{2}(T)$ with respect to the decomposition $\sum_{n \in Z} \oplus\left[e_{n}\right]$. For each k in $N, D\left(\mathscr{S}_{k}\right)$ is the von Neumann algebra generated by the finitely many projections $\left\{P_{k, i}\right\}_{0 \leq i \leq k-1}$ where $P_{k, i}$ is the projection of $L^{2}(T)$ onto the subspace $\sum_{n \in Z} \oplus\left[e_{n k+i}\right]$. Therefore, for each k in $N, M\left(. \mathscr{S}_{k}\right)$ is the von Neumann algebra generated by $\left\{P_{k, i}\right\}_{0 \leq i \leqq k-1}$ and
the algebra $M_{L^{\infty}(T)}$. Moreover, we find that $M\left(\mathscr{S}_{\infty}\right)$ is the full operator algebra on $L^{2}(T)$ because $M\left(\mathscr{S}_{\infty}\right)$ contains the projections $\left\{P_{n}\right\}_{n \in \mathcal{Z}}$ and $\left\{S^{n}\right\}_{n \in Z}$ where P_{n} is the projection of $L^{2}(T)$ onto $\left[e_{n}\right]$. In this paper, we say that $f=f\left(e^{i x}\right)$ is a periodic function with period x_{0} if the equality $f\left(e^{i x}\right)=f\left(e^{i\left(x+x_{0}\right)}\right)$ holds for almost all x in [0, 2 π). Then, $P_{k, 0}$ is the projection onto the subspace of the periodic functions in $L^{2}(T)$ with period $2 \pi / k$. Moreover, for each k in N, the commutant $M\left(\mathscr{S}_{k}\right)^{\prime}$ is the algebra of all the multiplication operators M_{f} by a periodic function f in $L^{\infty}(T)$ with period $2 \pi / k$ and the commutant $M\left(\mathscr{S}_{\infty}\right)^{\prime}$ is the algebra $\boldsymbol{C}\left(L^{2}(T)\right)$ of all the scalar multiples of the identity on $L^{2}(T)$.

Lemma 1.1. Suppose that \mathscr{S} contains the shift S and $S^{*} W(\mathscr{S}) S=$ $W(\mathscr{S})$. Then $D(\mathscr{S})=D\left(\mathscr{S}_{k}\right)$ for some k in $N \cup\{\infty\}$.

Proof. For \mathscr{S}, we denote by $G(\mathscr{S})$ the subset $\left\{g \in G ; W_{g} \in W(\mathscr{S})\right\}$ of G. Let N_{p} be the set of all numbers j in N such that $G(\mathscr{S}) \subset G_{j}$. Let k be the minimum number in N_{p} if N_{p} is non-empty, and $k=\infty$ otherwise. If $k=1$, the von Neumann algebra $D(\mathscr{S})$ is obviously the algebra $C\left(L^{2}(T)\right)$.

Next, we consider the case where $1<k<\infty$. Let m be a natural number such that $1 \leqq m \leqq k-1$. Then, there exists an element $g=\left(z_{n}\right)$ of $G(\mathscr{S})$ such that $z_{i+m} \neq z_{i}$ for some number i in Z. Since $S^{* i} W_{g} S^{i}$ belongs to $W(\mathscr{S})$, we may assume that $i=0$. Moreover, multiplying g by a suitable complex number z with absolute value $1, z g=\left(z z_{n}\right)$ becomes an element $z g=\left(y_{n}\right)$ of G such that $y_{n k+m}=y_{m}=1$ but $y_{n k}=$ $y_{0} \neq 1$ for all n in Z. We put $R_{m}=\left(I-z W_{g}\right) /\left(1-y_{0}\right)$. Then R_{m} becomes an operator in $D(\mathscr{S})$ such that $R_{m} P_{n k+m}=0$ and $R_{m} P_{n k}=P_{n k}$ for all n in Z. Thus, the product of these $k-1$ operators $\left\{R_{m}\right\}_{1 \leq m \leq k-1}$ is the projection $P_{k, 0}$. Hence $P_{k, 0}$ belongs to $D(\mathscr{S})$ and the projections $\left\{P_{k, m}\right\}_{1 \leq m \leq k-1}$ also belongs to $D(\mathscr{S})$ because of the hypothesis $S^{*} W(\mathscr{S}) S=W(\mathscr{S})$. Namely we have $D\left(\mathscr{S}_{k}\right) \subset D(\mathscr{S})$. Since $D(\mathscr{S})$ is a subalgebra of $D\left(\mathscr{S}_{k}\right)$ by the definition of k, it follows that $D(\mathscr{S})=D\left(\mathscr{S}_{k}\right)$.

Finally, we consider the case where \boldsymbol{N}_{p} is empty. Similarly as in the second case, for each $m \neq 0$, there exists an element $h=\left(z_{n}\right)$ of $G(\mathscr{S})$ such that $z_{0} \neq z_{m}$. This time, for some complex number z with absolute value $1, z h=\left(z z_{n}\right)$ is an element $z h=\left(y_{n}\right)$ of G such that $y_{0}=1$ and $y_{m} \neq 1$. We put $S_{m}=\left(I+z W_{h}\right) / 2$. Then S_{m} is an operator in $D(\mathscr{S})$ such that $S_{m} P_{0}=P_{0},\left\|S_{m} P_{m}\right\|<1$ and $\left\|S_{m} P_{i}\right\| \leqq 1$ for all $i \neq 0$, m where $\|\cdot\|$ means the norm of a bounded linear operator on $L^{2}(T)$. If we put

$$
Q_{k}=S_{-k} \cdots S_{-1} S_{1} \cdots S_{k}
$$

for each k in N, then we have that $Q_{k} P_{0}=P_{0}$ and $\left\|Q_{k} P_{m}\right\|<1$ for $m=$
$-k, \cdots,-1,1, \cdots, k$. Since the sequence

$$
\left\{\left(Q_{k}\right)^{n}\left(P_{-k}+\cdots+P_{-1}+P_{1}+\cdots+P_{k}\right)\right\}_{n=1}^{\infty}
$$

converges uniformly to 0 , we get an operator T_{k} in $D\left(\mathscr{S}_{\infty}\right)$ such that $T_{k} P_{0}=P_{0},\left\|T_{k} P_{m}\right\|<1 / k$ for $m=-k, \cdots,-1,1, \cdots, k$ and $\left\|T_{k} P_{i}\right\| \leqq 1$ for all $i \neq-k, \cdots, 0, \cdots, k$. Since the sequence $\left\{T_{k}\right\}_{k=1}$ converges strongly to P_{0}, the von Neumann algebra $D(\mathscr{S})$ contains P_{0}. Hence $D(\mathscr{S})$ contains the projections $\left\{P_{n}\right\}_{n \in Z}$ by the hypothesis $S^{*} W(\mathscr{S}) S=W(\mathscr{S})$. Therefore, it follows that $D\left(\mathscr{S}_{\infty}\right) \subset D(\mathscr{S})$. Since $G(\mathscr{S})$ is a subset of $G=G_{\infty}$, we have the conclusion.

Proposition 1.2. Suppose that \mathscr{S} contains the shift S. Then $M(\mathscr{S})=M\left(\mathscr{S}_{k}\right)$ for some k in $N \cup\{\infty\}$.

Proof. Since \mathscr{S} contains the shift $S, M(\mathscr{S})$ contains the operators $W(\mathscr{S})$, so that it contains the operators $S^{* n} W(\mathscr{S}) S^{n}$ for all n in \boldsymbol{Z}. We put $W(\mathscr{S})_{0}=\bigcup_{n \in Z} S^{* n} W(\mathscr{S}) S^{n}$ and $\mathscr{S}_{0}=\left\{U: U=W S, W \in W(\mathscr{S})_{0}\right\}$. Then we have $M(\mathscr{S})=M\left(\mathscr{S}_{0}\right)$, and \mathscr{S}_{0} satisfies the hypothesis of Lemma 1.1. Hence $M(\mathscr{S})$ coincides with the von Neumann algebra $M\left(\mathscr{S}_{k}\right)$, which is generated by $D\left(\mathscr{S}_{k}\right)$ and S, for some k in $N \cup\{\infty\}$.
q.e.d.

Theorem 1.2. Let \mathscr{S} be a family of shift operators. Then $M(\mathscr{S})$ is spatially isomorphic to $M\left(\mathscr{S}_{k}\right)$ for some k in $N \cup\{\infty\}$ and k is uniquely determined by \mathscr{S}.

Proof. We take a shift operator U in \mathscr{S}. Then $U=W_{g} S$ for some $g=\left(z_{n}\right)$ in $G(\mathscr{S})$. For this sequence, we define a unitary operator W such that $W\left[e_{n}\right]=\left[e_{n}\right](n \in \boldsymbol{Z})$ as follows; $W e_{n}=\overline{z_{n} z_{n-1} \cdots z_{1}} e_{n}$ if $n \geqq 1$, $W e_{0}=e_{0}$ and $W e_{n}=z_{n+1} z_{n+2} \cdots z_{0} e_{n}$ if $n \leqq-1$. Then $W \mathscr{S} W^{*}$ is a family of shift operators containing S. Hence, by Proposition 1.2, $W M(\mathscr{S}) W^{*}=$ $M\left(W \mathscr{S} W^{*}\right)=M\left(\mathscr{S}_{k}\right)$ for some k in $N \cup\{\infty\}$. For each n in $N, M\left(\mathscr{S}_{n}\right)$ is spatially isomorphic to the von Neumann algebra $M_{L^{\infty}(T)} \otimes B\left(H_{n}\right)$ on $L^{2}(T) \otimes H_{n}$ where H_{n} is an n-dimensional Hilbert space. Namely, for each n in $N \cup\{\infty\}, M\left(\mathscr{S}_{n}\right)$ is a von Neumann algebra of type I_{n}, so that $\left\{M\left(\mathscr{S}_{n}\right)\right\}_{n \in N \cup\{\infty\}}$ are mutually non-isomorphic von Neumann algebras [2, Chapter III, §3, Proposition 1]. Hence k is uniquely determined by \mathscr{S}.
q.e.d.
2. The structure of invariant subspaces. Let \mathscr{S} be a family of shift operators which satisfies the condition (*). Then the structure of non-reducing invariant subspaces for \mathscr{S} is essentially the same as that of non-reducing invariant subspaces for $A(\mathscr{S})$ (cf. [4, Proposition 1.7]). Hence, Lemma 1.1 reduces the study of these subspaces to that of non-
reducing invariant subspaces for \mathscr{S}_{k}^{\prime} 's. For an arbitrary \mathscr{S} of shift operators, each reducing subspace for \mathscr{S} corresponds to a projection in the commutant $M(\mathscr{S})^{\prime}$. Hence, Theorem 1.2 reduces the study of these subspaces to that of reducing subspaces for \mathscr{S}_{k} 's. Since the structure of $M\left(\mathscr{S}_{k}\right)^{\prime}$ is plain, we easily get the following theorem.

Theorem 2.1. (1) $(1 \leqq k<\infty)$. A subspace \Re of $L^{2}(T)$ reduces \mathscr{S}_{k} if and only if \mathfrak{R} is of the form $\mathfrak{R}=M_{X_{E}} L^{2}(T)$ where χ_{E} is a periodic characteristic function in $L^{\infty}(T)$ with period $2 \pi / k$.
(2) $\quad(k=\infty) . \quad L^{2}(T)$ is the only non-zero reducing subspace for \mathscr{S}_{∞}.

For a subset \mathfrak{R} of $L^{2}(T)$, [$\left.\mathbb{R}\right]$ means the closed linear span of \mathfrak{R}. A subspace \mathfrak{M} is said to be simply invariant if \mathfrak{M} is invariant under \mathscr{S} and $[\mathscr{S} \mathbb{M}]$ is a proper subspace of \mathfrak{M}. Moreover, a simply invariant subspace \mathfrak{M} is said to be pure if $\bigcap_{n=1}^{\infty}\left[\mathscr{S}^{n} \mathfrak{M}\right]=\{0\}$. If \mathscr{S} satisfies the condition (*), then every non-reducing invariant subspace for \mathscr{S} is simply invariant [4, Proposition 1.12]. We now show the following main theorem, in which $H^{2}(T)$ means the Hardy space in $L^{2}(T)$ (i.e., $H^{2}(T)=$ $\sum_{n=0}^{\infty} \oplus\left[e_{n}\right]$. Though the assertion (2) of the theorem is well-known in the general theory of operators, we give a proof for the sake of completeness.

Theorem 2.2. (1) $(1 \leqq k<\infty)$. A subspace \mathfrak{M} of $L^{2}(T)$ is a nonreducing invariant subspace for \mathscr{S}_{k} if and only if \mathfrak{M} is of the form $\mathfrak{M}=M_{u} S^{m} H^{2}(T)$ where $u=u\left(e^{i x}\right)$ is a periodic unitary function in $L^{\infty}(T)$ with period $2 \pi / k$ and m is an integer such that $0 \leqq m \leqq k-1$.
(2) $(k=\infty)$. The subspaces $\left\{S^{n} H^{2}(T) ; n \in Z\right\}$ are the set of all nontrivial non-reducing invariant subspaces for \mathscr{S}_{∞}.

Proof. (1) The subspaces \mathfrak{M} of the form $\mathfrak{M}=M_{u} S^{m} H^{2}(T)$ are invariant under \mathscr{S}_{k} because M_{u} commute with $A\left(\mathscr{S}_{k}\right)$ and $S^{m} H^{2}(T)$ is obviously invariant under all shift operators. Moreover \mathfrak{M} is simply invariant because $\mathfrak{M l} \ominus\left[\mathscr{S}_{k} \mathfrak{M}\right]=\left[u e_{m}\right]$ where $\left[u e_{m}\right]$ is the one-dimensional subspace generated by the vector $u e_{m}$ in $L^{2}(T)$. Hence \mathfrak{M} does not reduce \mathscr{S}_{k}.

We conversely assume that \mathfrak{M} is a pure simply invariant subspace. We put $\mathfrak{M}_{0}=\mathfrak{M} \Theta\left[\mathscr{S}_{k} \mathfrak{M}\right]$. By Proposition 1.7 in [4], \mathfrak{M} has a decomposition

$$
\mathfrak{M}=\mathfrak{M}_{0} \oplus S\left[W\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}\right] \oplus S^{2}\left[W\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}\right] \oplus \cdots
$$

The subspace $\mathfrak{N}=\mathfrak{M} \ominus \mathfrak{M}_{0}$ is also an invariant subspace for the shift S such that $\mathfrak{R}_{0}=\mathfrak{N} \ominus[S \mathfrak{N}]=S\left[W\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}\right]$. By Beurling's theorem [3, Lecture II, Theorem 3], we find that the wandering subspace \mathfrak{N}_{0} for S is one-
dimensional. Then $\left[W\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}\right]$ is one-dimensional since S is a unitary operator, and it contains the subspace \mathfrak{M}_{0}. Hence we have $\left[D\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}\right]=$ [$W\left(\mathscr{S}_{k}\right) \mathfrak{M}_{0}$] $=\mathfrak{M}_{0}$. Thus \mathfrak{M}_{0} is invariant under the mutually orthogonal projections $\left\{P_{k, r}\right\}_{0 \leq i \leq k-1}$, whose sum equals the identity. Hence $\mathfrak{M}_{0}=P_{k, m} \mathfrak{M}_{0}$ for some $m, 0 \leqq m \leqq k-1$, and $P_{k, i} \mathfrak{M}_{0}=\{0\}$ for all $i \neq m$. We now consider the invariant subspace $\mathfrak{Z}=S^{-m} \mathfrak{M}$ for \mathscr{S}_{k} and we put $\mathfrak{R}_{n}=$ $\left[\mathscr{S}_{k}{ }^{n} \mathbb{Z}\right] \ominus\left[\mathscr{S}_{k}{ }^{n+1} \mathbb{Q}\right](n=0,1,2, \cdots)$. Then we have that $\Omega_{0}=P_{k, 0} \mathscr{R}_{0}$ and $P_{k, i} \mathscr{R}_{0}=\{0\}$ for all $i=1,2, \cdots, k-1$. For each $i, 0 \leqq i \leqq k-1$, we put $\Re_{i}=\sum_{n=0}^{\infty} \oplus S^{n k} \mathfrak{R}_{i}$. Then each \Re_{i} is a subspace of $P_{k, i} L^{2}(T)=\sum_{n \in Z} \oplus\left[e_{n k+i}\right]$ respectively. Moreover, we have $\mathbb{R}=\sum_{i=0}^{k-1} \oplus \Re_{i}$ and $\Re_{i}=S^{i} \Re_{0}$ for each $i, 0 \leqq i \leqq k-1$.

Let V be the canonical isometric isomorphism from $P_{k, 0} L^{2}(T)$ onto $L^{2}(T)$, that is, $V e_{n k}=e_{n}$ for each n in \boldsymbol{Z}. Since \Re_{0} is invariant under $S^{k}, V \Omega_{0}$ is invariant under S on $L^{2}(T)$. We apply Beurling's theorem again to find a unitary function $v=v\left(e^{i x}\right)$ in $L^{\infty}(T)$ such that $V \Omega_{0}=$ $M_{v} H^{2}(T)$. Thus, for each $i, 0 \leqq i \leqq k-1$. We have

$$
\Re_{i}=S^{i} \Re_{0}=S^{i} V^{*} M_{v} H^{2}(T)=S^{i} V^{*} M_{v} V V^{*} H^{2}(T)=S^{i} V^{*} M_{v} V P_{k, 0} H^{2}(T) .
$$

We put $u\left(e^{i x}\right)=v\left(e^{i k x}\right)$. Then it follows that $V^{*} M_{v} V=M_{u}$ and u is a periodic function in $L^{\infty}(T)$ with period $2 \pi / k$. Thus we have $\AA_{i}=$ $M_{u} S^{i} P_{k, 0} H^{2}(T)=M_{u} P_{k, i} H^{2}(T)$. Therefore we have

$$
\begin{aligned}
\mathbb{R} & =\Re_{0} \oplus S_{\Omega_{0}} \oplus \cdots \oplus S^{k-1} \Re_{0} \\
& =M_{u} P_{k, 0} H^{2}(T) \oplus M_{u} P_{k, 1} H^{2}(T) \oplus \cdots \oplus M_{\cdot u} P_{k, k-1} H^{2}(T) \\
& =M_{u} H^{2}(T) .
\end{aligned}
$$

Consequently, \mathfrak{M} is of the form $\mathfrak{M}=S^{m} \mathbb{Z}=S^{m} M_{u} H^{2}(T)$.
Next we shall show that every simply invariant subspace \mathfrak{M} for \mathscr{S}_{k} is pure. By Theorem 1.7 in [4], \mathfrak{M} has a decomposition $\mathfrak{M}=\mathfrak{M}_{p} \oplus \mathfrak{M}_{r}$ where \mathfrak{M}_{p} is a pure simply invariant subspace and \mathfrak{M}_{r} reduces \mathscr{S}_{k}. By what we have shown above, the subspace \mathfrak{M}_{p} contains a unitary function $w\left(=u e_{m}\right)$ in $L^{2}(T)$ and $\mathfrak{M}_{r}=\mathfrak{M}_{\chi_{E}} L^{2}(T)$ for some characteristic function χ_{E} (Theorem 2.1, (1)). Hence two vectors w and $w \chi_{E}$ are mutually orthogonal. But this phenomenon does not occur except the case where the measure of E is zero.
(2) For a pure simply invariant subspace \mathfrak{M}, the wandering subspace \mathfrak{M}_{0} is invariant under the projections $\left\{P_{n}\right\}_{n \in \mathcal{Z}}$ in $D\left(\mathscr{S}_{\infty}\right)$. As we showed in the preceding case, \mathfrak{M}_{0} is one-dimensionl, so that $\mathfrak{M}_{0}=\left[e_{n}\right]$ for some integer n. In this case, \mathfrak{M} is of the form $\mathfrak{M}=S^{n} H^{2}(T)$. Similarly we find that every simply invariant subspace has no reducing part. q.e.d.

Remark. Let Φ be the canonical spatial isomorphism of $M\left(\mathscr{S}_{k}\right)$ onto
$M_{L^{\infty}(T)} \otimes B\left(H_{k}\right)$, which is implemented by the isometry V defined by the relation $V e_{n k+i}=e_{n} \otimes e_{i}(n \in Z, 0 \leqq i \leqq k-1)$. The author described the structure of invariant subspaces for the non-commutative Hardy space $M_{H^{\infty}(T)} \otimes B\left(H_{k}\right)$ [4, Corollary 2.13]. However we cannot apply this result to the case of $A\left(\mathscr{S}_{k}\right)$, because $\Phi\left(A\left(\mathscr{S}_{k}\right)\right)$ is a non-self adjoint algebra which is distinct from $M_{H^{\infty}(T)} \otimes B\left(H_{k}\right)$. Indeed, we have the following inclusion:

$$
M_{H^{\infty}(T)} \otimes J_{k} \varsubsetneqq \Phi\left(A\left(\mathscr{S}_{k}\right)\right) \varsubsetneqq M_{H^{\infty}(T)} \otimes B\left(H_{k}\right)
$$

where J_{k} is the lower triangular algebra on H_{k} with respect to the base $\left\{e_{i}\right\}_{0 \leqq i \leqq k-1}$.

References

[1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.
[2] J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
[3] H. Helson, Lectures on Invariant Subspaces, Academic Press, London, New York, 1964.
[4] S. Kawamura, Invariant subspaces of shift operators of arbitrary multiplicity, to appear in J. Math. Soc. Japan 34 (1982).
[5] M. Takesari, Theory of Operator Algebras I, Springer-Verlag, New York, Heidelberg, Berlin, 1979.

Department of Mathematics
Faculty of Science
Yamagata University
Yamagata, 990
Japan

[^0]: * Partly supported by the Grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

