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Introduction. Let L\T) be the Hubert space consisting of square
integrable functions / = f(eίx) defined on the unit circle T, and based on
the measure dσ(x) = dx/2π. We put en = en(eix) = einx for each n in Z (Z
means the set of all integers). Then L\T) is the direct sum ^nez®[en]
of the one-dimensional subspaces [en] generated by en. We say that a
unitary operator U on L\T) is a shift operator or a shift for short if
U[en] = [en+1] for all n in Z. Since each [en] is a one-dimensional subspace,
each shift U corresponds to a sequence {zn}neZ of complex numbers with
absolute value 1 by the relation:

Uen = zn+1en+1 (neZ) .

Especially, throughout this paper, we denote by S a shift operator
defined by

Sen = βn+1 (neZ) .

Our purpose is to analyze the structure of invariant subspaces for
a given family £f of shift operators on L\T). It is reduced to the
works of Beurling [1] and Helson [3] when Sf consists of a single shift,
because each shift U is unitarily equivalent to the shift S. For a shift
operator U, we put W= US*. Then U = WS and W is a unitary operator
on L\T) such that T7[en] = [en] for all w in Z. For a given family £f we
put T7(^) = {W;W = US*, Ue<9*}. In this paper, it is assumed that

satisfies the following condition (*):

( 1) W(Sη is a group
(2) S

The author [4, § 1] has shown, in the case of arbiratry multiplicity, that
under the condition (*) the invariant subspaces for Sf have two funda-
mental properties for decomposition, that is, (i) every simply invariant
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subspace is decomposed into the pure simply invariant part and the
reducing part; (ii) every pure simply invariant subspace is decomposed
into the wandering subspaces. If we drop either of the condition (*),
the invariant subspaces for £f seem to be complicated (cf. [4, Example
1.5 and 1.6]). However, it is expected that the structure of those spaces
for an arbitrary S? is deeply related to that for the smallest family \Sf\
which contains Sf and satisfies the condition (*). In fact, the sets of
reducing subspaces for £f and [&*] coincide.

In the paper, we denote by M{£f) (resp. D(S^)) the von Neumann
algebra generated by £f (resp. W{S^)) and by A(£f) the algebra generated
by D(<9*) and {Sn}£=0. Theorem 2.12 in [4] says that if every pure simply
invariant subspace for A(£f) is of Beurling type then M(S?) must be
the crossed product (see [5, P. 364]) of a von Neumann algebra D(S^)0

on the one-dimensional space [e0] by Z with respect to a spatial auto-
morphism of D(£f)0. Since the trivial algebra Cl is the only von Neumann
algebra on [e0], there is no crossed product of the above form on L\T)
except the von Neumann algebra ML<»ιτ) of all the multiplication operators
Mf on L\T) by / in L°°(T), which is generated by the shift S. Hence
there are many of those invariant subspaces for A(S^) which are not of
Beurling type, if M{S^) is distinct from MLoo{τ).

We obtain the characterization of invariant subspaces for those £f
which satisfy the condition (*), in terms of the commutant M(S^Y and
the shift S. We here note that these subspaces are also invariant under
A(£f) since the multiplicity is one. For the theory of von Neumann
algebras, we refer to the books of Dixmier [2] and Takesaki [5].

1. The von Neumann algebras generated by shift operators. Let
G = ΐlnez Tn, where each Tn is the unit circle in the complex plane.
For each g — (zn) in G, we define a unitary operator Wg on L\T) such
that Wg[en] = [en] (neZ) by the relation Wgen = znen (neZ). For each
natural number k, we denote by Gk the subgroup of G consisting of all
periodic sequences g= (zn) in G with period k (i.e., zn = zn+k for all n in Z).
For k in N (N means the set of all natural numbers) or k = oo f let S^k =
{U U = WgS, g e Gk] where (?«> means G. Since each Gk is invariant under
the shift (i.e., if g = (sj belongs to Gk, then g' = (zn+1) and g" = (̂ n_1)
belong to Gk), each 6^k satisfies the condition (*) and especially S^ is
the family of all shift operators on U{T) with respect to the decomposi-
tion ΣπezΘI>n]. For each & in N, D(S%) is the von Neumann algebra
generated by the finitely many projections {Pk,i}osi£k-i where Pki is the
projection of L\T) onto the subspace Y,n^z®[enk+i\ Therefore, for each
k in N, M(.9*k) is the von Neumann algebra generated by {Pk>i}^isk-i and
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the algebra MLoolτ). Moreover, we find that M(SC) is the full operator
algebra on L\T) because M(S^) contains the projections {Pn}neZ and
{Sn}neZ where Pn is the projection of L\T) onto [en]. In this paper, we
say that / = f(eίx) is a periodic function with period x0 if the equality
f(eix)•= f(ei{x+x^) holds for almost all x in [0, 2π). Then, Pkf0 is the pro-
jection onto the subspace of the periodic functions in L\T) with period
2π/k. Moreover, for each k in N, the commutant M(S^kY is the algebra
of all the multiplication operators Mf by a periodic function / in L°°(T)
with period 2π/k and the commutant M(<9Z,Y is the algebra C(L\T)) of
all the scalar multiples of the identity on L2(Γ).

LEMMA 1.1. Suppose that 6^ contains the shift S and S*W(£^)S =
W(£f). Then Ό{6^) = D{S^k) for some k in NO {oo}.

PROOF. For ̂  we denote by G{S^) the subset {g eG;Wge W{^)}
of G. Let Np be the set of all numbers j in N such that G{S^) c Gό.
Let k be the minimum number in Nv if Np is non-empty, and k = °°
otherwise. If k — 1, the von Neumann algebra D(S^) is obviously the
algebra C(L2(Γ)).

Next, we consider the case where 1 < k < ©o. Let m be a natural
number such that 1 <Ξ m <; & — 1. Then, there exists an element g = (sn)
of G ( ^ ) such that zi+m ^ ^ for some number i in Z. Since S* iΐFyS

ί

belongs to W(£f)9 we may assume that i — 0. Moreover, multiplying
<7 by a suitable complex number z with absolute value 1, zg = (zzn)
becomes an element zg = (yn) of G such that ynk+m — ym — \ but ynk =
2/o ^ 1 for all w in Z. We put # m = (I-zWg)/(l - y0). Then Rm becomes
an operator in D(S^) such that RmPnk+m •= 0 and RmPnk = -P̂fc for all ^
in Z. Thus, the product of these k — 1 operators {i?TO}î m̂ fc_i is the pro-
jection Pfc>0. Hence Pk>0 belongs to D(Sf) and the projections {Pk,m}i^m^k-i
also belongs to D(Sf) because of the hypothesis S*W(<5*)S =
Namely we have D ^ c ^ y ) . Since D{S^) is a subalgebra of
by the definition of k, it follows that D(£S) = J D ( ^ ) .

Finally, we consider the case where Np is empty. Similarly as in
the second case, for each m Φ 0, there exists an element fc = (zn) of
G ( ^ ) such that z0 Φ zm. This time, for some complex number z with
absolute value 1, zh = (zzn) is an element zh = (yn) of G such that y0 = 1
and ym ^ 1. We put Sm = (I + ZΪ7J/2. Then Sw is an operator in D{^)
such that SmP0 = Po, \\SmPm\\ < 1 and | |SmP4 | | ^ 1 for all i Φ 0, m where
|| II means the norm of a bounded linear operator on L\T). If we put

Qk = o_fc S_1S1 Sk

for each k in N, then we have that QkP0 = Po and ||QfcPm|| < 1 for m =
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—k, , —1,1, , k. Since the sequence

{(Qk)
n(P-k + + P.! + Pι + + Pk))Ui

converges uniformly to 0, we get an operator Tk in D(SΊ) such that
TkP0 = Po, || TkPm\\ < 1/k for m = -fc, -, - 1 , 1, , fc and || TfcP,|| ^ 1
f or alii ^ — k, , 0, •••,&. Since the sequence {Tfc}fc=1 converges strongly
to Po, the von Neumann algebra D{*9*) contains Po Hence D(£f) contains
the projections {Pn}nez by the hypothesis S*W(£S)S = TF(«$O. Therefore,
it follows that ΰ ( y j c ΰ ( y ) . Since G ( ^ ) is a subset of G = Goo, we
have the conclusion. q.e.d.

PROPOSITION 1.2. Suppose that S? contains the shift S. Then
/or some kin NU {<*>}.

PROOF. Since S? contains the shift S, M(£f) contains the operators
), so that it contains the operators S*nW(<9*)Sn for all n in Z. We

put W(^)o = UnβzS*nW(S^)Sn and ^0 = {U:U = WS, We W(^)Q}. Then
we have M(S^) = M(Sζ), and S^o satisfies the hypothesis of Lemma 1.1.
Hence M(S^) coincides with the von Neumann algebra M(£^)f which is
generated by D(S^k) and S, for some k in Nl) {oo}. q.e.d.

THEOREM 1.2. Let S? he α family of shift operators. Then
is spatially isomorphic to M{S^k) for some k in N U {°°} and k is uniquely
determined by S^.

PROOF. We take a shift operator U in £f. Then U = WgS for some
g = («n) in G ( ^ ) . For this sequence, we define a unitary operator Tϊ̂
such that W[en] = [en] (n e Z) as follows; Wen = znzn_x - - zten if w ^ 1,
We, = e0 and Wen = zn+1zn+2 - - zoen if n ^ - 1 . Then PF^TF* is a family
of shift operators containing S. Hence, by Proposition 1.2, WM{<9*)W* =
M(WS*W*) = M(S%) for some k in iVU{°o}. For each n in iV, M(SSn) is
spatially isomorphic to the von Neumann algebra MLco{τ)®B(Hn) on
L2(T)®Hn where iίn is an ^-dimensional Hubert space. Namely, for
each n in JVU {<*>}, ΛfGSO is a von Neumann algebra of type In, so that
{M(S^)}neN[j{O0} are mutually non-isomorphic von Neumann algebras [2,
Chapter III, §3, Proposition 1]. Hence k is uniquely determined by Sf.

q.e.d.

2. The structure of invariant subspaces. Let y be a family of
shift operators which satisfies the condition (*). Then the structure of
non-reducing invariant subspaces for Sf is essentially the same as that
of non-reducing invariant subspaces for A(S^) (cf. [4, Proposition 1.7]).
Hence, Lemma 1.1 reduces the study of these subspaces to that of non-
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reducing invariant subspaces for ^ ' s . For an arbitrary Sf of shift
operators, each reducing subspace for £f corresponds to a projection in
the commutant M(S^)'. Hence, Theorem 1.2 reduces the study of these
subspaces to that of reducing subspaces for *$ί's. Since the structure
of Md&uf is plain, we easily get the following theorem.

THEOREM 2.1. (1) (1 ^ ft < oo). A subspace 3ΐ of L\T) reduces SΊ
if and only if 3ΐ is of the form 9ΐ = MXEL\T) where XE is a periodic
characteristic function in L°°(Γ) with period 2π/k.

(2) (k = oo). L\T) is the only non-zero reducing subspace for £C.

For a subset 31 of L\T), [31] means the closed linear span of 31. A
subspace 3ft is said to be simply invariant if 3ft is invariant under Sf
and [^3ft] is a proper subspace of 3ft. Moreover, a simply invariant
subspace 3ft is said to be pure if f|»=i [^3ft] = {0}. If Sf satisfies the
condition (*), then every non-reducing invariant subspace for S? is
simply invariant [4, Proposition 1.12]. We now show the following main
theorem, in which H\T) means the Hardy space in L\T) (i.e., H\T) =
Σ Γ = o θ k ] ) . Though the assertion (2) of the theorem is well-known in
the general theory of operators, we give a proof for the sake of com-
pleteness.

THEOREM 2.2. (1) (1 <; ft < oo). A subspace SK of L\T) is a non-
reducing invariant subspace for 6^k if and only if Tt is of the form
3ft = MuS

mH2(T) where u = u(eix) is a periodic unitary function in L°°(T)
with period 2π/k and m is an integer such that 0 ^ m ^ ft — 1.

( 2) (ft = oo). The subspaces {SnH2(T); neZ) are the set of all non-
trivial non-reducing invariant subspaces for £^.

PROOF. (1) The subspaces Wl of the form m = MuS
mH2(T) are

invariant under Si because Mu commute with A(S^k) and SmH\T) is
obviously invariant under all shift operators. Moreover 2ft is simply
invariant because 3K θ [^M] = [uem] where [uem] is the one-dimensional
subspace generated by the vector uem in L\T). Hence 3ft does not reduce

We conversely assume that 3ft is a pure simply invariant subspace.
We put 3ft0 = 3ft θ [^3ft] By Proposition 1.7 in [4], 3ft has a decom-
position

3ft - m S

The subspace 31 = TIQ3RO is also an invariant subspace for the shift S
such that 9ϊo=9ΐ θ [S%1] = S[W(SΊWQ]. By Beurling's theorem [3, Lecture
II, Theorem 3], we find that the wandering subspace %l0 for S is one-
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dimensional. Then [W(S^k)Wt0] is one-dimensional since S is a unitary
operator, and it contains the subspace 3ft0. Hence we have [D(&ί)$R0] =
[WiSQfDlo] = 3ft0. Thus 3ft0 is invariant under the mutually orthogonal
projections {PJM}0^*-I, whose sum equals the identity. Hence 3ft0 = Pfc,m3ft0

for some m, 0 <̂  m <; & — 1, and PM2R0 = {0} for all i Φ m. We now
consider the invariant subspace 8 = S~w3ft for ^ and we put 2n =
[.PΓS] θ [<^T+1%] in = 0, 1, 2, •). Then we have that 80 = PkβQ and
PΛ .So = {0} for all i = 1, 2, , k - 1. For each i, 0 ^ i ^ k - 1, we put
Λi = Σ*=o θ SnJbS,. Then each φ is a subspace of PkΛL\T) = Σ»ezφ [enfc+i]
respectively. Moreover, we have S = Σϊ=t θ $t and $tt = S^ o for each
i, 0 ^ ΐ ^ k - 1.

Let V be the canonical isometric isomorphism from Pkt0L
2(T) onto

L\T)t that is, Venk = en for each n in Z. Since 5£0 is invariant under
Sk, V$ΐQ is invariant under S on L\T). We apply Beurling's theorem
again to find a unitary function v = v(eix) in L°°(T) such that VS?0 =
MVH\T). Thus, for each i, 0 ^ i ^ k - 1. We have

Λ, = S^o = S'VMMXT) = SίV*MυVV*H\T) = SiV*MwVPk,JS\T) .

We put u(eix) = v(eifcx). Then it follows that F*MVF = Mu and u is a
periodic function in L°°(T) with period 2ττ/fc. Thus we have ^ =

= MuPkΛH\T). Therefore we have

= MuPk>0H\T) 0 MuPkΛH\T) φ θ M^P

= MUH\T) .

Consequently, 9K is of the form 3ft = SW8 = SmMuH\T).
Next we shall show that every simply invariant subspace Sft for ^

is pure. By Theorem 1.7 in [4], W has a decomposition SK = SPΪ̂  0 Sftr

where Sftp is a pure simply invariant subspace and Wlr reduces £%. By
what we have shown above, the subspace ffllp contains a unitary function
w ( = uej in L\T) and SPΪr = miEL\T) for some characteristic function 1E

(Theorem 2.1, (1)). Hence two vectors w and wlE are mutually orthogonal.
But this phenomenon does not occur except the case where the measure
of E is zero.

(2) For a pure simply invariant subspace SK, the wandering subspace
SOΪ0 is invariant under the projections {Pn}nez in D(&ζ,). As we showed
in the preceding case, Wl0 is one-dimensionl, so that SPΐ0 = [en] for some
integer n. In this case, 3ft is of the form 3ft = SΉ\T). Similarly we
find that every simply invariant subspace has no reducing part, q.e.d.

REMARK. Let Φ be the canonical spatial isomorphism of M{£^k) onto
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M.Loo{τ) (g) B(Hk), which is implemented by the isometry V defined by the
relation Venk+i — en ® ef (n e Z, 0 <i i ^ k — 1). The author described the
structure of invariant subspaces for the non-commutative Hardy space
MHoom (x) B(Hk) [4, Corollary 2.13]. However we cannot apply this result
to the case of A ( ^ ) , because Φ{A{S^k)) is a non-self adjoint algebra
which is distinct from MHoo{τ) (x) B(Hk). Indeed, we have the following
inclusion:

MH-m ® Λ S Φ(A(SΊ)) £ MH~{T) (x) B{Hk)

where Jk is the lower triangular algebra on Hk with respect to the base
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