Tôhoku Math. Journ. 34 (1982), 15-21.

INVARIANT SUBSPACES FOR SHIFT OPERATORS OF MULTIPLICITY ONE

SHINZŌ KAWAMURA*

(Received January 9, 1981)

Introduction. Let $L^2(T)$ be the Hilbert space consisting of square integrable functions $f = f(e^{ix})$ defined on the unit circle T, and based on the measure $d\sigma(x) = dx/2\pi$. We put $e_n = e_n(e^{ix}) = e^{inx}$ for each n in Z (Zmeans the set of all integers). Then $L^2(T)$ is the direct sum $\sum_{n \in Z} \bigoplus [e_n]$ of the one-dimensional subspaces $[e_n]$ generated by e_n . We say that a unitary operator U on $L^2(T)$ is a *shift operator* or a shift for short if $U[e_n] = [e_{n+1}]$ for all n in Z. Since each $[e_n]$ is a one-dimensional subspace, each shift U corresponds to a sequence $\{z_n\}_{n \in Z}$ of complex numbers with absolute value 1 by the relation:

$$Ue_n = \mathbf{z}_{n+1}e_{n+1} \quad (n \in \mathbf{Z})$$
.

Especially, throughout this paper, we denote by S a shift operator defined by

$$Se_n = e_{n+1}$$
 $(n \in \mathbb{Z})$.

Our purpose is to analyze the structure of invariant subspaces for a given family \mathscr{S} of shift operators on $L^2(T)$. It is reduced to the works of Beurling [1] and Helson [3] when \mathscr{S} consists of a single shift, because each shift U is unitarily equivalent to the shift S. For a shift operator U, we put $W = US^*$. Then U = WS and W is a unitary operator on $L^2(T)$ such that $W[e_n] = [e_n]$ for all n in Z. For a given family \mathscr{S} , we put $W(\mathscr{S}) = \{W; W = US^*, U \in \mathscr{S}\}$. In this paper, it is assumed that $W(\mathscr{S})$ satisfies the following condition (*):

(*)
$$\begin{cases} (1) & W(\mathscr{S}) \text{ is a group.} \\ (2) & S^*W(\mathscr{S})S = W(\mathscr{S}) \\ \end{cases}$$

The author [4, §1] has shown, in the case of arbitrary multiplicity, that under the condition (*) the invariant subspaces for \mathcal{S} have two fundamental properties for decomposition, that is, (i) every simply invariant

^{*} Partly supported by the Grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

subspace is decomposed into the pure simply invariant part and the reducing part; (ii) every pure simply invariant subspace is decomposed into the wandering subspaces. If we drop either of the condition (*), the invariant subspaces for \mathscr{S} seem to be complicated (cf. [4, Example 1.5 and 1.6]). However, it is expected that the structure of those spaces for an arbitrary \mathscr{S} is deeply related to that for the smallest family [\mathscr{S}] which contains \mathscr{S} and satisfies the condition (*). In fact, the sets of reducing subspaces for \mathscr{S} and [\mathscr{S}] coincide.

In the paper, we denote by $M(\mathscr{S})$ (resp. $D(\mathscr{S})$) the von Neumann algebra generated by \mathscr{S} (resp. $W(\mathscr{S})$) and by $A(\mathscr{S})$ the algebra generated by $D(\mathscr{S})$ and $\{S^n\}_{n=0}^{\infty}$. Theorem 2.12 in [4] says that if every pure simply invariant subspace for $A(\mathscr{S})$ is of Beurling type then $M(\mathscr{S})$ must be the crossed product (see [5, P. 364]) of a von Neumann algebra $D(\mathscr{S})_0$ on the one-dimensional space $[e_0]$ by Z with respect to a spatial automorphism of $D(\mathscr{S})_0$. Since the trivial algebra C1 is the only von Neumann algebra on $[e_0]$, there is no crossed product of the above form on $L^2(T)$ except the von Neumann algebra $M_{L^{\infty}(T)}$ of all the multiplication operators M_f on $L^2(T)$ by f in $L^{\infty}(T)$, which is generated by the shift S. Hence there are many of those invariant subspaces for $A(\mathscr{S})$ which are not of Beurling type, if $M(\mathscr{S})$ is distinct from $M_{L^{\infty}(T)}$.

We obtain the characterization of invariant subspaces for those \mathscr{S} which satisfy the condition (*), in terms of the commutant $M(\mathscr{S})'$ and the shift S. We here note that these subspaces are also invariant under $A(\mathscr{S})$ since the multiplicity is one. For the theory of von Neumann algebras, we refer to the books of Dixmier [2] and Takesaki [5].

1. The von Neumann algebras generated by shift operators. Let $G = \prod_{n \in \mathbb{Z}} T_n$, where each T_n is the unit circle in the complex plane. For each $g = (z_n)$ in G, we define a unitary operator W_g on $L^2(T)$ such that $W_g[e_n] = [e_n]$ $(n \in \mathbb{Z})$ by the relation $W_g e_n = z_n e_n$ $(n \in \mathbb{Z})$. For each natural number k, we denote by G_k the subgroup of G consisting of all periodic sequences $g = (z_n)$ in G with period k (i.e., $z_n = z_{n+k}$ for all n in \mathbb{Z}). For k in N (N means the set of all natural numbers) or $k = \infty$, let $\mathscr{S}_k = \{U; U = W_g S, g \in G_k\}$ where G_∞ means G. Since each G_k is invariant under the shift (i.e., if $g = (z_n)$ belongs to G_k , then $g' = (z_{n+1})$ and $g'' = (z_{n-1})$ belong to G_k), each \mathscr{S}_k satisfies the condition (*) and especially \mathscr{S}_∞ is the family of all shift operators on $L^2(T)$ with respect to the decomposition $\sum_{n \in \mathbb{Z}} \bigoplus [e_n]$. For each k in $N, D(\mathscr{S}_k)$ is the von Neumann algebra generated by the finitely many projections $\{P_{k,i}\}_{0 \leq i \leq k-1}$ where $P_{k,i}$ is the projection of $L^2(T)$ onto the subspace $\sum_{n \in \mathbb{Z}} \bigoplus [e_{nk+i}]$. Therefore, for each k in $N, M(\mathscr{S}_k)$ is the von Neumann algebra generated by $\{P_{k,i}\}_{0 \leq i \leq k-1}$ and

SHIFT OPERATORS

the algebra $M_{L^{\infty}(T)}$. Moreover, we find that $M(\mathscr{S}_{\infty})$ is the full operator algebra on $L^{2}(T)$ because $M(\mathscr{S}_{\infty})$ contains the projections $\{P_{n}\}_{n \in \mathbb{Z}}$ and $\{S^{n}\}_{n \in \mathbb{Z}}$ where P_{n} is the projection of $L^{2}(T)$ onto $[e_{n}]$. In this paper, we say that $f = f(e^{ix})$ is a periodic function with period x_{0} if the equality $f(e^{ix}) = f(e^{i(x+x_{0})})$ holds for almost all x in $[0, 2\pi)$. Then, $P_{k,0}$ is the projection onto the subspace of the periodic functions in $L^{2}(T)$ with period $2\pi/k$. Moreover, for each k in N, the commutant $M(\mathscr{S}_{k})'$ is the algebra of all the multiplication operators M_{f} by a periodic function f in $L^{\infty}(T)$ with period $2\pi/k$ and the commutant $M(\mathscr{S}_{\infty})'$ is the algebra $C(L^{2}(T))$ of all the scalar multiples of the identity on $L^{2}(T)$.

LEMMA 1.1. Suppose that \mathscr{S} contains the shift S and $S^*W(\mathscr{S})S = W(\mathscr{S})$. Then $D(\mathscr{S}) = D(\mathscr{S}_k)$ for some k in $N \cup \{\infty\}$.

PROOF. For \mathscr{S} , we denote by $G(\mathscr{S})$ the subset $\{g \in G; W_g \in W(\mathscr{S})\}$ of G. Let N_p be the set of all numbers j in N such that $G(\mathscr{S}) \subset G_j$. Let k be the minimum number in N_p if N_p is non-empty, and $k = \infty$ otherwise. If k = 1, the von Neumann algebra $D(\mathscr{S})$ is obviously the algebra $C(L^2(T))$.

Next, we consider the case where $1 < k < \infty$. Let m be a natural number such that $1 \leq m \leq k - 1$. Then, there exists an element $g = (z_n)$ of $G(\mathscr{S})$ such that $z_{i+m} \neq z_i$ for some number i in Z. Since $S^{*i}W_gS^i$ belongs to $W(\mathscr{S})$, we may assume that i = 0. Moreover, multiplying g by a suitable complex number z with absolute value 1, $zg = (zz_n)$ becomes an element $zg = (y_n)$ of G such that $y_{nk+m} = y_m = 1$ but $y_{nk} = y_0 \neq 1$ for all n in Z. We put $R_m = (I - zW_g)/(1 - y_0)$. Then R_m becomes an operator in $D(\mathscr{S})$ such that $R_m P_{nk+m} = 0$ and $R_m P_{nk} = P_{nk}$ for all n in Z. Thus, the product of these k - 1 operators $\{R_m\}_{1\leq m\leq k-1}$ is the projection $P_{k,0}$. Hence $P_{k,0}$ belongs to $D(\mathscr{S})$ and the projections $\{P_{k,m}\}_{1\leq m\leq k-1}$ also belongs to $D(\mathscr{S})$. Since $D(\mathscr{S})$ is a subalgebra of $D(\mathscr{S}_k)$ by the definition of k, it follows that $D(\mathscr{S}) = D(\mathscr{S}_k)$.

Finally, we consider the case where N_p is empty. Similarly as in the second case, for each $m \neq 0$, there exists an element $h = (z_n)$ of $G(\mathscr{S})$ such that $z_0 \neq z_m$. This time, for some complex number z with absolute value 1, $zh = (zz_n)$ is an element $zh = (y_n)$ of G such that $y_0 = 1$ and $y_m \neq 1$. We put $S_m = (I + zW_h)/2$. Then S_m is an operator in $D(\mathscr{S})$ such that $S_m P_0 = P_0$, $||S_m P_m|| < 1$ and $||S_m P_i|| \leq 1$ for all $i \neq 0$, m where $|| \cdot ||$ means the norm of a bounded linear operator on $L^2(T)$. If we put

$$Q_k = S_{-k} \cdots S_{-1} S_1 \cdots S_k$$

for each k in N, then we have that $Q_k P_0 = P_0$ and $||Q_k P_m|| < 1$ for m =

 $-k, \dots, -1, 1, \dots, k$. Since the sequence

$$\{(Q_k)^n(P_{-k} + \cdots + P_{-1} + P_1 + \cdots + P_k)\}_{n=1}^{\infty}$$

converges uniformly to 0, we get an operator T_k in $D(\mathscr{S}_{\infty})$ such that $T_k P_0 = P_0$, $||T_k P_m|| < 1/k$ for $m = -k, \dots, -1, 1, \dots, k$ and $||T_k P_i|| \leq 1$ for all $i \neq -k, \dots, 0, \dots, k$. Since the sequence $\{T_k\}_{k=1}$ converges strongly to P_0 , the von Neumann algebra $D(\mathscr{S})$ contains P_0 . Hence $D(\mathscr{S})$ contains the projections $\{P_n\}_{n \in \mathbb{Z}}$ by the hypothesis $S^*W(\mathscr{S})S = W(\mathscr{S})$. Therefore, it follows that $D(\mathscr{S}_{\infty}) \subset D(\mathscr{S})$. Since $G(\mathscr{S})$ is a subset of $G = G_{\infty}$, we have the conclusion.

PROPOSITION 1.2. Suppose that \mathscr{S} contains the shift S. Then $M(\mathscr{S}) = M(\mathscr{S}_k)$ for some k in $N \cup \{\infty\}$.

PROOF. Since \mathscr{S} contains the shift $S, M(\mathscr{S})$ contains the operators $W(\mathscr{S})$, so that it contains the operators $S^{*n}W(\mathscr{S})S^n$ for all n in \mathbb{Z} . We put $W(\mathscr{S})_0 = \bigcup_{n \in \mathbb{Z}} S^{*n}W(\mathscr{S})S^n$ and $\mathscr{S}_0 = \{U: U = WS, W \in W(\mathscr{S})_0\}$. Then we have $M(\mathscr{S}) = M(\mathscr{S}_0)$, and \mathscr{S}_0 satisfies the hypothesis of Lemma 1.1. Hence $M(\mathscr{S})$ coincides with the von Neumann algebra $M(\mathscr{S}_k)$, which is generated by $D(\mathscr{S}_k)$ and S, for some k in $N \cup \{\infty\}$.

THEOREM 1.2. Let \mathscr{S} be a family of shift operators. Then $M(\mathscr{S})$ is spatially isomorphic to $M(\mathscr{S}_k)$ for some k in $N \cup \{\infty\}$ and k is uniquely determined by \mathscr{S} .

PROOF. We take a shift operator U in \mathscr{S} . Then $U = W_g S$ for some $g = (z_n)$ in $G(\mathscr{S})$. For this sequence, we define a unitary operator W such that $W[e_n] = [e_n]$ $(n \in \mathbb{Z})$ as follows; $We_n = \overline{z_n z_{n-1} \cdots z_1} e_n$ if $n \ge 1$, $We_0 = e_0$ and $We_n = z_{n+1} z_{n+2} \cdots z_0 e_n$ if $n \le -1$. Then $W \mathscr{S} W^*$ is a family of shift operators containing S. Hence, by Proposition 1.2, $WM(\mathscr{S}) W^* = M(\mathscr{W} \mathscr{S} W^*) = M(\mathscr{S}_k)$ for some k in $N \cup \{\infty\}$. For each n in $N, M(\mathscr{S}_n)$ is spatially isomorphic to the von Neumann algebra $M_{L^{\infty}(T)} \otimes B(H_n)$ on $L^2(T) \otimes H_n$ where H_n is an n-dimensional Hilbert space. Namely, for each n in $N \cup \{\infty\}$, $M(\mathscr{S}_n)$ is a von Neumann algebra of type I_n , so that $\{M(\mathscr{S}_n)\}_{n \in N \cup \{\infty\}}$ are mutually non-isomorphic von Neumann algebras [2, Chapter III, §3, Proposition 1]. Hence k is uniquely determined by \mathscr{S} . q.e.d.

2. The structure of invariant subspaces. Let \mathscr{S} be a family of shift operators which satisfies the condition (*). Then the structure of non-reducing invariant subspaces for \mathscr{S} is essentially the same as that of non-reducing invariant subspaces for $A(\mathscr{S})$ (cf. [4, Proposition 1.7]). Hence, Lemma 1.1 reduces the study of these subspaces to that of non-

18

SHIFT OPERATORS

reducing invariant subspaces for \mathscr{S}_k 's. For an arbitrary \mathscr{S} of shift operators, each reducing subspace for \mathscr{S} corresponds to a projection in the commutant $M(\mathscr{S})'$. Hence, Theorem 1.2 reduces the study of these subspaces to that of reducing subspaces for \mathscr{S}_k 's. Since the structure of $M(\mathscr{S}_k)'$ is plain, we easily get the following theorem.

THEOREM 2.1. (1) $(1 \leq k < \infty)$. A subspace \Re of $L^2(T)$ reduces \mathscr{S}_k if and only if \Re is of the form $\Re = M_{\chi_E} L^2(T)$ where χ_E is a periodic characteristic function in $L^{\infty}(T)$ with period $2\pi/k$.

(2) $(k = \infty)$. $L^2(T)$ is the only non-zero reducing subspace for \mathscr{S}_{∞} .

For a subset \mathfrak{N} of $L^2(T)$, $[\mathfrak{N}]$ means the closed linear span of \mathfrak{N} . A subspace \mathfrak{M} is said to be simply invariant if \mathfrak{M} is invariant under \mathscr{S} and $[\mathscr{S}\mathfrak{M}]$ is a proper subspace of \mathfrak{M} . Moreover, a simply invariant subspace \mathfrak{M} is said to be pure if $\bigcap_{n=1}^{\infty} [\mathscr{S}^n \mathfrak{M}] = \{0\}$. If \mathscr{S} satisfies the condition (*), then every non-reducing invariant subspace for \mathscr{S} is simply invariant [4, Proposition 1.12]. We now show the following main theorem, in which $H^2(T)$ means the Hardy space in $L^2(T)$ (i.e., $H^2(T) = \sum_{n=0}^{\infty} \bigoplus [e_n]$). Though the assertion (2) of the theorem is well-known in the general theory of operators, we give a proof for the sake of completeness.

THEOREM 2.2. (1) $(1 \leq k < \infty)$. A subspace \mathfrak{M} of $L^2(T)$ is a nonreducing invariant subspace for \mathscr{S}_k if and only if \mathfrak{M} is of the form $\mathfrak{M} = M_u S^m H^2(T)$ where $u = u(e^{ix})$ is a periodic unitary function in $L^{\infty}(T)$ with period $2\pi/k$ and m is an integer such that $0 \leq m \leq k - 1$.

(2) $(k = \infty)$. The subspaces $\{S^n H^2(T); n \in \mathbb{Z}\}$ are the set of all non-trivial non-reducing invariant subspaces for \mathscr{S}_{∞} .

PROOF. (1) The subspaces \mathfrak{M} of the form $\mathfrak{M} = M_u S^m H^2(T)$ are invariant under \mathscr{S}_k because M_u commute with $A(\mathscr{S}_k)$ and $S^m H^2(T)$ is obviously invariant under all shift operators. Moreover \mathfrak{M} is simply invariant because $\mathfrak{M} \ominus [\mathscr{S}_k \mathfrak{M}] = [ue_m]$ where $[ue_m]$ is the one-dimensional subspace generated by the vector ue_m in $L^2(T)$. Hence \mathfrak{M} does not reduce \mathscr{S}_k .

We conversely assume that \mathfrak{M} is a pure simply invariant subspace. We put $\mathfrak{M}_0 = \mathfrak{M} \bigcirc [\mathscr{S}_k \mathfrak{M}]$. By Proposition 1.7 in [4], \mathfrak{M} has a decomposition

 $\mathfrak{M} = \mathfrak{M}_0 \bigoplus S[W(\mathscr{S}_k)\mathfrak{M}_0] \bigoplus S^2[W(\mathscr{S}_k)\mathfrak{M}_0] \bigoplus \cdots$

The subspace $\mathfrak{N} = \mathfrak{M} \bigoplus \mathfrak{M}_0$ is also an invariant subspace for the shift S such that $\mathfrak{N}_0 = \mathfrak{N} \bigoplus [S\mathfrak{N}] = S[W(\mathscr{S}_k)\mathfrak{M}_0]$. By Beurling's theorem [3, Lecture II, Theorem 3], we find that the wandering subspace \mathfrak{N}_0 for S is one-

dimensional. Then $[W(\mathscr{S}_k)\mathfrak{M}_0]$ is one-dimensional since S is a unitary operator, and it contains the subspace \mathfrak{M}_0 . Hence we have $[D(\mathscr{S}_k)\mathfrak{M}_0] =$ $[W(\mathscr{S}_k)\mathfrak{M}_0] = \mathfrak{M}_0$. Thus \mathfrak{M}_0 is invariant under the mutually orthogonal projections $\{P_{k,i}\}_{0 \le i \le k-1}$, whose sum equals the identity. Hence $\mathfrak{M}_0 = P_{k,m}\mathfrak{M}_0$ for some m, $0 \le m \le k-1$, and $P_{k,i}\mathfrak{M}_0 = \{0\}$ for all $i \ne m$. We now consider the invariant subspace $\mathfrak{L} = S^{-m}\mathfrak{M}$ for \mathscr{S}_k and we put $\mathfrak{L}_n =$ $[\mathscr{S}_k^n\mathfrak{Q}] \bigoplus [\mathscr{S}_k^{n+1}\mathfrak{Q}]$ $(n = 0, 1, 2, \cdots)$. Then we have that $\mathfrak{L}_0 = P_{k,0}\mathfrak{Q}_0$ and $P_{k,i}\mathfrak{Q}_0 = \{0\}$ for all $i = 1, 2, \cdots, k-1$. For each $i, 0 \le i \le k-1$, we put $\mathfrak{R}_i = \sum_{n=0}^{\infty} \bigoplus S^{nk}\mathfrak{Q}_i$. Then each \mathfrak{R}_i is a subspace of $P_{k,i}L^2(T) = \sum_{n \in \mathbb{Z}} \bigoplus [e_{nk+i}]$ respectively. Moreover, we have $\mathfrak{Q} = \sum_{i=0}^{k-1} \bigoplus \mathfrak{R}_i$ and $\mathfrak{R}_i = S^i\mathfrak{R}_0$ for each $i, 0 \le i \le k-1$.

Let V be the canonical isometric isomorphism from $P_{k,0}L^2(T)$ onto $L^2(T)$, that is, $Ve_{nk} = e_n$ for each n in Z. Since \Re_0 is invariant under S^k , $V\Re_0$ is invariant under S on $L^2(T)$. We apply Beurling's theorem again to find a unitary function $v = v(e^{ix})$ in $L^{\infty}(T)$ such that $V\Re_0 = M_v H^2(T)$. Thus, for each $i, 0 \leq i \leq k-1$. We have

$$\Re_i = S^i \Re_0 = S^i V^* M_v H^2(T) = S^i V^* M_v V V^* H^2(T) = S^i V^* M_v V P_{k,0} H^2(T) \;.$$

We put $u(e^{ix}) = v(e^{ikx})$. Then it follows that $V^*M_vV = M_u$ and u is a periodic function in $L^{\infty}(T)$ with period $2\pi/k$. Thus we have $\Re_i = M_uS^iP_{k,0}H^2(T) = M_uP_{k,i}H^2(T)$. Therefore we have

$$egin{aligned} &\mathfrak{X}=\mathfrak{R}_0 \bigoplus \mathfrak{S}\mathfrak{R}_0 \bigoplus \cdots \bigoplus S^{k-1}\mathfrak{R}_0 \ &= M_u P_{k,0} H^2(T) \bigoplus M_u P_{k,1} H^2(T) \bigoplus \cdots \bigoplus M_u P_{k,k-1} H^2(T) \ &= M_u H^2(T) \;. \end{aligned}$$

Consequently, \mathfrak{M} is of the form $\mathfrak{M} = S^m \mathfrak{L} = S^m M_u H^2(T)$.

Next we shall show that every simply invariant subspace \mathfrak{M} for \mathscr{S}_k is pure. By Theorem 1.7 in [4], \mathfrak{M} has a decomposition $\mathfrak{M} = \mathfrak{M}_p \bigoplus \mathfrak{M}_r$ where \mathfrak{M}_p is a pure simply invariant subspace and \mathfrak{M}_r reduces \mathscr{S}_k . By what we have shown above, the subspace \mathfrak{M}_p contains a unitary function $w (=ue_m)$ in $L^2(T)$ and $\mathfrak{M}_r = \mathfrak{M}_{\chi_E}L^2(T)$ for some characteristic function χ_E (Theorem 2.1, (1)). Hence two vectors w and $w\chi_E$ are mutually orthogonal. But this phenomenon does not occur except the case where the measure of E is zero.

(2) For a pure simply invariant subspace \mathfrak{M} , the wandering subspace \mathfrak{M}_0 is invariant under the projections $\{P_n\}_{n \in \mathbb{Z}}$ in $D(\mathscr{S}_{\infty})$. As we showed in the preceding case, \mathfrak{M}_0 is one-dimensionl, so that $\mathfrak{M}_0 = [e_n]$ for some integer n. In this case, \mathfrak{M} is of the form $\mathfrak{M} = S^n H^2(T)$. Similarly we find that every simply invariant subspace has no reducing part. q.e.d.

REMARK. Let Φ be the canonical spatial isomorphism of $M(\mathscr{S}_k)$ onto

SHIFT OPERATORS

 $M_{L^{\infty}(T)} \otimes B(H_k)$, which is implemented by the isometry V defined by the relation $Ve_{nk+i} = e_n \otimes e_i$ $(n \in \mathbb{Z}, 0 \leq i \leq k-1)$. The author described the structure of invariant subspaces for the non-commutative Hardy space $M_{H^{\infty}(T)} \otimes B(H_k)$ [4, Corollary 2.13]. However we cannot apply this result to the case of $A(\mathscr{S}_k)$, because $\Phi(A(\mathscr{S}_k))$ is a non-self adjoint algebra which is distinct from $M_{H^{\infty}(T)} \otimes B(H_k)$. Indeed, we have the following inclusion:

$$M_{H^{\infty}(T)} \bigotimes J_k \subsetneq \varPhi(A(\mathscr{S}_k)) \subsetneq M_{H^{\infty}(T)} \bigotimes B(H_k)$$

where J_k is the lower triangular algebra on H_k with respect to the base $\{e_i\}_{0 \le i \le k-1}$.

References

- A. BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.
- [2] J. DIXMIER, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
- [3] H. HELSON, Lectures on Invariant Subspaces, Academic Press, London, New York, 1964.
- [4] S. KAWAMURA, Invariant subspaces of shift operators of arbitrary multiplicity, to appear in J. Math. Soc. Japan 34 (1982).
- [5] M. TAKESAKI, Theory of Operator Algebras I, Springer-Verlag, New York, Heidelberg, Berlin, 1979.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN