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A CHARACTERIZATION OF DECOMPOSABLE OPERATORS
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Abstract. An operator T means a bounded linear transformation on a
complex Banach space X. For an operator T and for a closed subset F of
the complex plane C, we let Xp(F)={x€ X: there exists an analytic function
fICNF— X such that (2—T)f(z)=x}, and if E is an arbitrary subset of C,
we let Xp(E)=U{Xy(F): FCFE and F is closed}. If X;(F) is closed for all
closed subsets F' of C, we say that T satisfies the closure condition (C). In
this paper, we show that an operator T is decomposable if and only if (1)
T satisfies the closure condition (C) and (2) Xr(GyUGy)=X7(Gy)+ Xr(G,) for
any pair of open subsets G; and G; of C. This is a generalization of Plafker’s
result in [5] for strongly decomposable operators. And we show some
applications of this result.
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1. Preliminaries. For an operator T, we denote by (T') its spectrum
and by o(T) its resolvent set. Lat(T) is the lattice of all invariant
subspaces of T, and T'|Y denotes the restriction of T to YeLat(T). An
invariant subspace Y of T is called a spectral maximal space of T if
ZeLat(T) and o(T|Z)co(T|Y) imply ZCY. We denote by SM(T) the
family of all spectral maximal spaces of T.

For n = 2, an operator T is called strongly #n-decomposable (resp.
strongly m-quasidecomposable) if for any open covering {G, ---, G,} of
o(T) there exists a system {Y,, ---, Y,} € SM(T') such that

(1) Y=YnY,+---+YNY, (resp. (1)’ Y is the closure of {Y N Y, +
--++YNY, and T|Y satisfies the closure condition (C)) for all Y e SM(T)
and that

(2) o(T|Y,)cG, for every 1 =1, ---,n. An operator T is called
n-decomposable (resp. n-quasidecomposable) if we postulate (1) (resp. (1))
only for Y = X. An operator T is called strongly decomposable (resp.
decomposable) if T is strongly n-decomposable (resp. n-decomposable) for
all #=2. An operator T is called strongly quasidecomposable (resp-
quasidecomposable) if T is strongly n-quasidecomposable (resp. m-quasi-
decomposable) for all » = 2.
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An operator T is said to have the single-valued extension property
or the property (A) if there exists no non-zero X-valued analytic function
S such that (z — T')f(2) = 0. If an operator T has the property (A),
then for any fixed x# € X there exists a maximal analytic extension f,(z)
of (z — T) '« such that (z — T)f,(2) = x. We denote by p,(x) the domain
of f,(z) and o,(x) = C\py(x). If an operator T has the property (A),
then it is easy to show that X,(E) = {x € X: 0,(x) C E) for an arbitrary
subset E of C.

2. Main results. The proof of the following lemma is a modification
of Radjabalipour [6, Theorem 1], and this plays an important role in our
discussions.

LEMMA 1. If an operator T is 2-decomposable, then X,(F)c X, (G,) +
X(Gy) for any closed subset F' of C and for any open covering {G,, G.}
of F, where G denotes the closure of G in the complex plane C.

ProOF. Let D, and D, be open subsets such that D,cG,, =1, 2.
Then {G,NG,, C\(D,ND,)"}is an open covering of o(T), where (D,ND,)~
denotes the closure of D,ND, Hence there exist Y, and Y, in SM(T) such
that 1) X=Y,+7Y, and that 2) o(T|Y,)CcG., NG, o(T|Y,)cC\(D,ND,)".
Hence we have Y,c X, (o(T|Y,))c X,(J), where J = (G, NG,)” and D,ND,C
o(T|Y,). Since T is 2-decomposable, T' has the property (A) and satisfies
the closure condition (C) and X,(J) e SM(T) by [2, Chap. 2, Corollary 1.4
and Theorem 1.5]. For any 2 € X, there exist #;€ Y;, 1 = 1, 2, such that
x=a, +x by (1). And since

r=x+ 2. =0+ & —T)z—T|Y,) 'z,
for all z€ o(T'Y,), we have
T=84+8==508=—T)F-T|Y) %"

for all ze D,ND,, where 4§ or y~ ¢ X/X,(J) is the canonical image of y € X
and T’ is the operator on X/Y,(J) induced by 7. Since the canonical
map " is continuous, we have #e X,,(C\(D,N D,)) for all xe X. And
since T’ has the property (A) by [3, Corollary], we have o(T7) Cc C\
(D, N D,). Hence if e X, (F), then we have % e X,s(F"), and so

& e Xp(F 0 (C\(D, N DY) = Xp(FND) U (F\D,) .

Since FI\ D, and F\ D, are disjoint closed subsets, by Riesz’s theorem
we have % = ¢, + ¥,, where §,€ X;o(F\D,), 1 =1,2. Hence we have
@ =y, + ¥, + u, where u e X,(J) and y, € X,(F\D,)U(G.NGy)") < Xi(G))
for i = j by [6, Lemma 1]. Hence we have z ¢ X,(G,) + X(G,).
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LEMMA 2. For an operator T, the following assertions are equiva-
lent.

(1) X (F)c X,(G)) + X(G,) for any closed subset F of C and for
any open covering {G,, G,} of F.

(2) X,(G,UG,) = X,(G) + X(G,) for any pair of open subsets G,
and G, of C.

PrROOF. The implication (2) = (1) is obvious by X,(F)cCX,(G,UG,) =
X:(G) + Xn(G,)c X,(G) + X4(G,). To prove the implication (1) = (2), let
G, and G, be and open subsets of C. Then for any closed subset FC
G,UG,, we can choose open subsets D, and D, such that D,cG,;, i =1, 2,
and that Fc D,UD, Hence by (1), we have X,(F)cC X,(D,) + X(D),
and so X (F)CX,(G,) + X(G,). Since F is any closed subset contained
in G,UG,, we have X,(G,UG,cCX,(G,) + X,(G,). Conversely since
X/ (G,UGy)D X, (G), X,(G,) is clear, we have X,(G,UG,)DX,(G,) + X,(G>).

REMARK 1. We can prove that the following assertions are equiva-
lent for an operator T by the same arguement as above.

(1) X,(F) is contained in the closure of {X,(G, + X(G,)} for any
closed subset F' of C and for any open covering {G, G,} of F.

(2) The closure of X,(G,UG,) equals the closure of {X,(G,) + X,(G,)}
for any pair of open subsets G, and G, of C.

THEOREM 1 (cf. [6]). For an operator T, the following assertions
are equivalent.

(1) T is 2-decomposable.

(2) T satisfies the closure condition (C) and X (G,UG,) = X,(G) +
X/(G,) for any pair of open subsets G, and G, of C.

(3) T is decomposable.

ProOF. The implication (1) = (2) is clear by Lemmas 1 and 2. To
prove the implication (2)= (8), for any »n = 2, let {G,, ---, G,} be any
open covering of ¢o(T). Then we can choose open subsets D, such that
D,cG, i=1,---,m, and that o(T)cD,U---UD,. Hence by (2), we
have X=X,(o(T))CXy(D,U---UD)=X(D)+- -+ X,(D,)CXp(D)+ -+
X,(D,), and so X = Xp(D)+---+Xy(D,). Since T satisfies the closure
condition (C), T has the property (A) by [7, Theorem 2.13]. Hence we
have X,(D, e SM(T) and o(T|X,(D,)cD;cG, for every i =1, ---,n by
[2, Chap. 1, Proposition 8.8]. Hence T is decomposable. The implication
3) = (1) is clear.

Since an operator T is strongly n-decomposable if and only if T|Y
is m-decomposable for all Y e SM(T) (see [1, Theorem 1.7]), we have the



298 K. TANAHASHI

following:

CorOLLARY (cf. Plafker [5]). For an operator T, the following as-
sertions are equivalent.

(1) T s strongly 2-decomposable.

(2) T|Y satisfies the closure condition (C) and X,;y(G,UG,) =
X, x(G) + X0y (Gy) for any Y eSM(T) and for any pair of open subsets
G, and G, of C.

(8) T s strongly decomposable.

THEOREM 2 (cf. Jafarian [4, Corollary 8.4]). For an operator T, the
Jollowing assertions are equivalent. ‘

(1) T is strongly 2-quasidecomposable.

(2) T|Y satisfies the closure condition (C) and the closure of
X v(G,UG,) equals the closure of {X,;y(G) + X5 r(G,)} for any Y e SM(T)
and for any pair of open subsets G, and G, of C.

(8) T s strongly quasidecomposable.

Proor. To prove the implication (1) = (2), we show first that X (F")
is contained in the closure of {X,(G, + X,(G,)} for any closed subset F'
of C and for any open covering {G, G,} of F. Since T has the closure
condition (C), we have that X, (F') is closed and belongs to SM(T). Let
D, and D, be open subsets such that D,cG,, i =1, 2, and that Fc D, U D,.
Then {G, N G,, C\(D,N D,)"} is an open covering of ¢(T), and so there
exist Y, and Y, in SM(T) such that (1) X,(F) is the closure of
(X,(F)NY, + X, (F)NY,} and that (2) o(T|Y)CG, NG, oT|Y,)cC\
(D,ND,)~. Then for any x¢c X, (F), there exist 27 X (F)NY, and
e X (F)NY, for every m, such that z,=of + 27 -2 as n— .
Then by the same arguement as in the proof of Lemma 1, we have
&, e X (FN(C\(D,NDy))) and so x,ec X;(G,) + X,(G,). Hence x belongs
to the closure of {X,(G,) + X,(G,)}. Since if an operator T is strongly
n-quasidecomposable, then so is T'|Y for all Y e SM(T) (see [4, Proposition
5.2]), the implication (1) = (2) is proved by Remark 1.

It is easy to show that (2) implies that the closure of X, (G,U---UG,)
equals the closure of {X, (G, + -+ X;y(G,)} for any Y e SM(T) and for
any pair of open subsets G,, ---, G, of C. Hence T'|Y is quasidecomposable
for any Y e SM(T) by the same argument as in the proof of Theorem 1.
Hence T is strongly quasidecomposable by [4, Theorem 5.3]. The im-
plication (8) = (1) is clear.

REMARK 2. It is an interesting problem to know whether for a
2-qua;sidecomp_c_>sab1e operator, (#) X,(F) is contained in the closure of
{X(G,) + X,(G,)} for any closed subset F' of C and for any open covering
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{G, G,} of F. If the answer is affirmative, then we can get a char-
acterization of quasidecomposable operators similar to Theorem 1 by
Remark 1.

The following lemma and theorem are inspired by the proof of
Lemma 1.

LemMMA 3. If an operator T s 2-quasidecomposable and if the
operator T¢ on X/X,(G) induced by T satisfies the closure condition (C)
for some open subset G of C, them we have o(T%) c C\G.

PrROOF. Let FFCG be any closed subset. Then {G, C\.F'} is an open
covering of o(T). Hence there exist Y, and Y, in SM(T) such that (1)
X is the closure of Y, + Y, and that (2) ¢(T|Y)C@, o(T|Y, CC\F.
Therefore we have Y,c X,(G) and Y,c X,(6(T|Y,)). Then for any vector
* =2x, + x, where 2,€Y;, 1 =1, 2, we have

=10+ 2 =2 ¢eXe(o(T|Y,)

where % ¢ X/X,(G) is the canonical image of x. Since X,3(c(T|Y,) is
closed by assumption and since the canonical map ~ is continuous, we
have Ze X,2(o(T|Y,) for all & in the closure of Y, + Y,. Hence by
1), we have X/X,(G)cC Xe(0(T|Y,), and so X/X,(G) = X;a(o(T|Y,)).
Hence we have

o(T% = o(T? X,a(¢(T|Y,) co(T|Y,) cC\F .
Since F' is any closed subset contained in G, we have o(T% cC\G.

THEOREM 3. If an operator T is 2-quasidecomposable and if the
operator T¢ on X/X,(G) induced by T satisfies the closure condition (C)
for all open subsets G of C, then T is decomposable.

PrROOF. By Theorem 1 and Lemma 2, we have only to show that
X, (F) c X,(G,) + X;(G,) for any closed subset F' of C and for any open
covering {G,, G,} of F. By Lemma 3, we have ¢(T7)cC\.(G,NG,), where
J=(G,NG,)” and T’ is the operator on X/X,(J) induced by T. Let
x € X,(F') be given. Then we have
£eXp(FN(CN\NGNGY) = Xp(FNG) U (F\G)) ,

and the rest of the proof is the same as that of Lemma 1.
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