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Abstract. An operator T means a bounded linear transformation on a
complex Banach space X. For an operator T and for a closed subset F of
the complex plane C, we let Xτ(F)={xeX: there exists an analytic function
f\C\F-^X such that (z-T)f(z)=x), and if E is an arbitrary subset of C,
we let Xτ(E) = \J{Xτ(F) : FczE and F is closed}. If XT(F) is closed for all
closed subsets F of C, we say that T satisfies the closure condition (C). In
this paper, we show that an operator T is decomposable if and only if (1)
T satisfies the closure condition (C) and (2) Xτ{G1ΌG2)=Xτ{G1)+Xτ{G2) for
any pair of open subsets Gi and G2 of C. This is a generalization of Plafker's
result in [5] for strongly decomposable operators. And we show some
applications of this result.
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1. Preliminaries. For an operator T, we denote by σ(T) its spectrum
and by p(T) its resolvent set. Lat(Γ) is the lattice of all invariant
subspaces of T, and T\Y denotes the restriction of Γto YeLat(T). An
invariant subspace Y of T is called a spectral maximal space of T if
ZeLat(Γ) and σ(T\Z)aσ(T\Y) imply ZczY. We denote by SM(Γ) the
family of all spectral maximal spaces of T.

For n ^ 2, an operator T is called strongly ^-decomposable (resp.
strongly %-quasidecomposable) if for any open covering {Glf , Gn} of
σ(T) there exists a system {Ylf ••-, ΓJcSM(T) such that

(1) Y= Yf] Y,+ + YΓ\ Yn (resp. (1)' Y is the closure of {Yf\ Y,+
• + Γn Yn) and T\Ysatisfies the closure condition (C)) for all Ye SM(Γ)
and that

(2) σiTlY^czGi for every i = l, •• ,τι. An operator T is called
^-decomposable (resp. w-quasidecomposable) if we postulate (1) (resp. (1)')
only for Y = X. An operator T is called strongly decomposable (resp.
decomposable) if T is strongly ^-decomposable (resp. ^-decomposable) for
all n ^ 2. An operator T is called strongly quasidecomposable (resp-
quasidecomposable) if T is strongly ^-quasidecomposable (resp. ^-quasi-
decomposable) for all n ^ 2.
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An operator T is said to have the single-valued extension property
or the property (A) if there exists no non-zero X-valued analytic function
/ such that (z - T)f(z) = 0. If an operator T has the property (A),
then for any fixed xeX there exists a maximal analytic extension fx(z)
of (z - Ty'x such that (z - T)fx(z) = x. We denote by pτ(x) the domain
of fx(z) and στ(x) = C\ρτ(x). If an operator T has the property (A),
then it is easy to show that XT{E) = {x e X: στ(x) c E) for an arbitrary
subset E of C.

2. Main results. The proof of the following lemma is a modification
of Radjabalipour [6, Theorem 1], and this plays an important role in our
discussions.

LEMMA 1. // an operator T is 2-decomposable, then Xτ(F)czXτ(G1) +
Xτ(G2) for any closed subset F of C and for any open covering {Glt G2)
of F, where G denotes the closure of G in the complex plane C.

PROOF. Let A and A be open subsets such that DiCiGi9 i = 1, 2.
Then {GiΠGz, C\(AΠ A)"} is an open covering of σ(T), where ( A n A Γ
denotes the closure of D1Γ\D2. Hence there exist Yt and Y2 in SM(Γ) such
that (1) X=Y1 + Y2 and that (2) σ^Y^dG^G^ σ ( Γ | F 2 ) c C \ ( A n A ) "
Hence we have Y.aX^σiTlY^dX^J), where J=(G1nG2)~ and An Ac:
p(T\Y2). Since T is 2-decomposable, T has the property (A) and satisfies
the closure condition (C) and XT(J) e SM(T) by [2, Chap. 2, Corollary 1.4
and Theorem 1.5]. For any xeX, there exist xte Yif i = 1, 2, such that
x = α?! + ίc2 by (1). And since

a; = x1 + x2 = Xi + (z - T)(z - T\Y2Y'x2

for all ze/0(ΪΊΓ2), we have

x = ^ + £2 = ί2 = (2 - T'){(z -

for all z e AΠ A, where y or y~ e X/XT(J) is the canonical image oίy eX
and T J is the operator on X/YT(J) induced by T. Since the canonical
map ~ is continuous, we have £ e XTJ(C\(D1 Π A)) for ^H #6-X\ And
since Γ 7 has the property (A) by [3, Corollary], we have σ(TJ)(zC\
( A n A). Hence if xeXτ(F), then we have xeXτj(F), and so

x e XTJ(F n (C\(A n A))) - XΓ/((F\A) U (F\A)) -

Since F\Dλ and F\D2 are disjoint closed subsets, by Riesz's theorem
we have x — yx + ^2, where yt e Xτj(F\Dt), i = 1, 2. Hence we have
α = 0i + 2/2 + u, where % e XT(J) and ^ e XT((F\ A)_U (Gi Π G2Γ) c Xτ(Gά)
for i ^ i by [6, Lemma 1]. Hence we have xeXτ(G^) + XT(G2).
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LEMMA 2. For an operator T, the following assertions are equiva-
lent.

(1) XT(F) c -Xr(Gri) + XT{G2) for any closed subset F of C and for
any open covering {Gu G2) of F.

(2) XT{G1 U G2) — Xτ((τi) + XT(G2) for any pair of open subsets Gx

and G2 of C.

PROOF. The implication (2) => (1) is obvious by Xτ(F)dXτ(G1ljG2) =
Xτ(Gλ) + Xτ(G2)cXτ(G1) + XT(G2). To prove the implication (1) => (2), let
Gx and G2 be and open subsets of C. Then for any closed subset Fa
GiUGg, we can choose open subsets Dλ and D2 such that DiC:Gi9 i = 1, 2,
and that f c A U A Hence by (1), we have I Γ ( f ) c I r ( A ) + I Γ ( A ) ,
and so Xτ(F)czXτ(G1) + XT{G2). Since F is any closed subset contained
in Gλ U G2, we have X ^ U G2) c Xτ(Gλ) + XΓ(G2). Conversely since

), XτiG2) is clear, we have XT(GX U G2) => Xτ(Gλ) + Xτ(Gt).

REMARK 1. We can prove that the following assertions are equiva-
lent for an operator T by the same arguement as above.

(1) XT{F) is contained in the closure of {X^G,) + XT(G2)} for any
closed subset F of C and for any open covering {Glf G2} of F.

( 2) The closure of XT{GX U G2) equals the closure of {XT{GX) + XT(G2)}
for any pair of open subsets Gx and G2 of C.

THEOREM 1 (cf. [6]). For an operator T, the following assertions
are equivalent.

(1) T is ̂ .-decomposable.
( 2 ) T satisfies the closure condition (C) and Xτ(Gγ U G2) = XT(G^) +

Xτ(G2) for any pair of open subsets Gλ and G2 of C.
( 3 ) T is decomposable.

PROOF. The implication (1) => (2) is clear by Lemmas 1 and 2. To
prove the implication (2) => (3), for any n ^ 2, let {Gl9 —-,Gn} be any
open covering of σ(T). Then we can choose open subsets Dt such that
A c G , , ϊ = 1, ...,w, and that ( j(Γ)cAU ϋDn. Hence by (2), we
have X=Xτ(σ(T))(zXτ(D1{J - . [jDn) = X_τ(D1)+ . -. + I Γ ( D n ) c X Γ ( A ) + +
Xτ(Dn), and so X = X Γ ( A ) + h X Γ φ J . Since Γ satisfies the closure
condition (C), T has the property (A) by [7, Theorem 2.13]. Hence we
have Xτφi) e SM(Γ) and σ(Γ|XΓ(A))<=#,<=<?, for every ΐ = 1, •••, w by
[2, Chap. 1, Proposition 3.8]. Hence T is decomposable. The implication
(3) => (1) is clear.

Since an operator T is strongly ^-decomposable if and only if T\Y
is ^-decomposable for all ΓeSM(T) (see [1, Theorem 1.7]), we have the
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following:

COROLLARY (cf. Plafker [5]). For an operator T, the following as-
sertions are equivalent.

(1) T is strongly 2-decomposable.
(2) T\Y satisfies the closure condition (C) and XτlY(G1\J G2) =

Xτ\γ(G^) + XτlY(G2) for any FeSM(T) and for any pair of open subsets
(?! and G2 of C.

(3) T is strongly decomposable.

THEOREM 2 (cf. Jafarian [4, Corollary 8.4]). For an operator T, the
following assertions are equivalent.

(1) T is strongly 2-quasidecomposable.
(2) T\Y satisfies the closure condition (C) and the closure of

XT\Y(G1\JG2) equals the closure of {X^iG^ + XτlY(G2)} for any YeSM(T)
and for any pair of open subsets G1 and G2 of C.

(3) T is strongly quasidecomposable.

PROOF. TO prove the implication (1) => (2), we show first that XT(F)
is contained in the closure of {XT(G^ + XT(G2)} for any closed subset F
of C and for any open covering {Glf G2} of F. Since T has the closure
condition (C), we have that XT(F) is closed and belongs to SM(T). Let
A and D2 be open subsets such that AcG*, i — 1, 2, and that F c A U A
Then {Gx n G2, C\(A Π A)"} is an open covering of σ(T), and so there
exist Yx and Y2 in SM(T) such that (1) XT(F) is the closure of
{XT(F) n Yi + XT(F) n Y2} and that (2) σ{T\Y^<=.Gx Π G2J σ(T\Y2)aC\
( A n A)". Then for any xeXτ(F), there exist x^eXT(F)nYi and
x* e XT{F) Π Y2f for every n, such that xn = x? + x* —• x as n —> oo.
Then by the same arguement as in the proof of Lemma 1, we have
ί n e I Γ j ( F n ( C \ ( A ί l A ) ) ) and so xneXτ(G1) + XT{G2). Hence a? belongs
to the closure of {XT{G^) + XT(G2)}. Since if an operator T is strongly
^-quasidecomposable, then so is T\Y for all yeSM(Γ) (see [4, Proposition
5.2]), the implication (1) => (2) is proved by Remark 1.

It is easy to show that (2) implies that the closure of XT]Y{G1 U U Gn)
equals the closure of {X^AG,) H h XτlY(Gn)} for any Ye SM(Γ) and for
any pair of open subsets Glf , Gn of C. Hence Γ | Y is quasidecomposable
for any YeSM(T) by the same argument as in the proof of Theorem 1.
Hence T is strongly quasidecomposable by [4, Theorem 5.3]. The im-
plication (3) => (1) is clear.

REMARK 2. It is an interesting problem to know whether for a
2-quasidecomposable operator, (#) XT(F) is contained in the closure of
{XT(G^ + XT(G2)} for any closed subset F of C and for any open covering
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{(?!, G2} of F. If the answer is affirmative, then we can get a char-
acterization of quasidecomposable operators similar to Theorem 1 by-
Remark 1.

The following lemma and theorem are inspired by the proof of
Lemma 1.

LEMMA 3. If an operator T is 2-quasίdecomposable and if the
operator TG on X/XT(G) induced by T satisfies the closure condition (C)
for some open subset G of C, then we have σ(TG) c C \ G .

PROOF. Let FaG be any closed subset. Then {G, C\F} is an open
covering of σ{T). Hence there exist Yλ and Y2 in SM(Γ) such that (1)
X is the closure of Y, + Y_2 and that (2) cr(T| YΊ) c G, σ(T\Y2)c:C\F.
Therefore we have YλaXτ{G) and Y2aXτ(σ(T\Y2)). Then for any vector
x = xx + x2 where Xi e Yi9 i = 1, 2, we have

x = xλ + x2 = x2 e XTG(O(T IΓ2))

where xeX/Xτ(G) is the canonical image of x. Since XTe(a(T\Y2)) is
closed by assumption and since the canonical map " is continuous, we
have xeXτa(σ(T\Y2)) for all x in the closure of Y1 + Γ2. Hence by
(1), we have X/XT(G) czXTG(σ(T\Y2)), and so X/XT(G) = Xτβ(σ(T\Y2)).
Hence we have

σ(Tδ) = σ(Tδ\ XTG(<J{T \ Y2)) c σ(T | Γ2) <= C\ F .

Since F is any closed subset contained in G, we have σ{TG)aC\G.

THEOREM 3. If an operator T is 2-quasidecomposable and if the
operator TG on X/XT(G) induced by T satisfies the closure condition (C)
for all open subsets G of C, then T is decomposable.

PROOF. By Theorem 1 and Lemma 2, we have only to show that
XT(F) c Xτ(Gi) + XT(G2) for any closed subset F of C and for any open
covering {Gl9 G2} of F. By Lemma 3, we have (/(T^cCXί^nGλ where
J = (Gx Π G2)" and TJ is the operator on X/XT(J) induced by T. Let
x 6 XT(F) be given. Then we have

x e XTJ{Fn {C\(G, n G2))) = XTJ((F\GX) U (F\G2)) ,

and the rest of the proof is the same as that of Lemma 1.
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