NONSELFADJOINT SUBALGEBRAS ASSOCIATED WITH COMPACT ABELIAN GROUP ACTIONS ON FINITE VON NEUMANN ALGEBRAS

Kichi-Suke Saito

(Received May 11, 1981)

1. Introduction. Let G be a compact abelian group whose dual Γ has a total order. Suppose that M is a von Neumann algebra with a faithful normal tracial state τ and $\left\{\alpha_{g}\right\}_{g \in G}$ is a σ-weakly continuous representation of G as ${ }^{*}$-automorphisms of M such that $\tau \circ \alpha_{g}=\tau, g \in G$. Put $\Gamma_{+}=\{\gamma \in \Gamma: \gamma \geqq 0\}$ and let $H^{\infty}(\alpha)$ be the set of $x \in M$ such that $S p_{\alpha}(x) \subset \Gamma_{+}$. Recently, the structure of $H^{\circ}(\alpha)$ has been investigated by several authors (cf. [7], [8], [9], [10], [12], [13], [15]). It is well-known that $H^{\circ}(\alpha)$ is a finite maximal subdiagonal algebra of M (cf. [8]). However, $H^{\infty}(\alpha)$ is not necessarily maximal as a σ-weakly closed subalgebra of M. McAsey, Muhly and the author in [9], [10] and [15] studied the maximality of typical examples of $H^{\infty}(\alpha)$ which are called nonselfadjoint crossed products.

Our aim in this paper is to investigate the maximality of $H^{\circ}(\alpha)$ as a σ-weakly closed subalgebra of M. Our method is based on a characterization of spectral subspaces and the invariant subspace structure of the noncommutative Lebesgue space $L^{2}(M, \tau)$ associated with M and τ in the sense of Segal [16]. In §2, we give a characterization of spectral subspaces. For every $\gamma \in \Gamma$, we put $M_{\gamma}=\left\{x \in M\right.$: $\left.\alpha_{g}(x)=\langle g, \gamma\rangle x, g \in G\right\}$. Suppose that the center $\mathcal{Z}\left(M_{0}\right)$ of M_{0} is contained in the center $\mathcal{Z}(M)$ of M. If $M_{r} \neq\{0\}$, then there is a partial isometry u_{r} in M_{r} and a projection e_{r} in $\mathcal{B}\left(M_{0}\right)$ such that $M_{r}=M_{0} u_{r}$ and $u_{r}^{*} u_{r}=u_{r} u_{r}^{*}=e_{r}$. In particular, if M_{0} is a factor, then we may choose a unitary element u_{r} in M_{r} such that $M_{r}=M_{0} u_{r}$. In §3, we first define the cocycles of canonical leftinvariant subspaces of $L^{2}(M, \tau)$. If M_{0} is a factor, then every two-sided invariant subspace is left-pure and left-full. As the main result in this paper, we show that, if $\mathcal{B}\left(M_{0}\right) \subset \mathfrak{B}(M)$ and if there is no nonzero projection p of $3\left(M_{0}\right)$ with $M p=M_{0} p$, then $H^{\infty}(\alpha)$ is a maximal σ-weakly closed subalgebra of M if and only if M_{0} is a factor and $S p \alpha$ is a subgroup (of Γ) with an archimedean order.

[^0]2. A characterization of spectral subspaces. Suppose that M is a finite von Neumann algebra acting on a Hilbert space H and that $\left\{\alpha_{g}\right\}_{g \in G}$ is a σ-weakly continuous representation of a compact abelian group G as a group of *-automorphisms of M. For simplicity, such an $\left\{\alpha_{g}\right\}_{g \in G}$ is called a compact abelian group action on M in this paper. Following Arveson [3] and Loebl-Muhly [8], we define a representatin $\alpha(\cdot)$ of $L^{1}(G)$ into the algebra of bounded operators on M by
$$
\alpha(f) x=\int_{G} f(g) \alpha_{g}(x) d \mu(g)
$$
where $f \in L^{1}(G)$ and μ is the normalized Haar measure on G. Let Γ be the dual group of G. The pairing between G and Γ will be written as $\langle g, \gamma\rangle, g \in G, \gamma \in \Gamma$, hence the Fourier transform will take this form: $\hat{f}(\gamma)=\int_{G}\langle g, \gamma\rangle f(g) d \mu(g), f \in L^{1}(G)$. If $f \in L^{1}(G)$, we let $Z(f)=\{\gamma \in \Gamma: \widehat{f}(\gamma)=$ $0\}$. We let $S p \alpha$ be $\cap Z(f)$, where f runs through the set of functions in $L^{1}(G)$ such that $\alpha(f)=0$. If $x \in M$, we let $S p_{\alpha}(x)=\bigcap Z(f)$, where $\alpha(f) x=0, f \in L^{1}(G)$. If S is a subset of Γ, we denote by $M^{\alpha}(S)$ the set of $x \in M$ such that $S p_{\alpha}(x) \subset S$. For every $\gamma \in \Gamma$ we define a σ-weakly continuous linear map ε_{r} on M by the integration
$$
\varepsilon_{r}(x)=\int_{G} \overline{\langle g, \gamma\rangle} \alpha_{g}(x) d \mu(g), \quad x \in M
$$

Put $\varepsilon_{r}(M)=M_{r}$. Then it is clear that

$$
M_{r}=\left\{x \in M: \alpha_{g}(x)=\langle g, \gamma\rangle x, g \in G\right\} .
$$

The following lemma is well-known and easy to prove.
Lemma 2.1 (cf. [12], [4]). Keep the notations as above. Then
(1) $M_{r}=M^{\alpha}(\{\gamma\})$.
(2) $M_{\gamma} M_{\lambda} \subset M_{\tau+\lambda}$ and $M_{r}^{*}=M_{-r}$ for every $\gamma, \lambda \in \Gamma$.
(3) Let $x, y \in M$. If $\varepsilon_{r}(x)=\varepsilon_{r}(y)$ for each $\gamma \in \Gamma$, then $x=y$.
(4) $S p_{\alpha}(x)=\left\{\gamma \in \Gamma: \varepsilon_{r}(x) \neq 0\right\}$ for $x \in M$.
(5) $S p \alpha=\left\{\gamma \in \Gamma: M_{r} \neq\{0\}\right\}$.
(6) Let $x \in M_{r}$ and let $x=v|x|$ be the polar decomposition of x. Then $v \in M_{r}$ and $|x| \in M_{0}$.

By a result of Connes [4, Théorème 2.2.4], if M_{0} is a factor, then $S p \alpha$ is a subgroup of Γ. Thus we have the following analogue of Størmer [17, Theorem 3.2].

Lemma 2.2. Keep the notations as above. If M_{0} is a factor, then the dual $(S p \alpha)^{\wedge}$ of $S p \alpha$ is canonically isomorphic to G / N, where N is the kernel $\operatorname{ker} \alpha$ of α in G.

Our goal in this section is the following theorem whose proof is inspired by Araki [1].

Theorem 2.3. In the notations above, suppose that the center $\mathcal{Z}\left(M_{0}\right)$ of M_{0} is contained in the center $\mathcal{B}(M)$ of M. Then for every $\gamma \in S p \alpha$, there exist a partial isometry u_{r} in M_{r} and a projection e_{r} in $\mathcal{B}\left(M_{0}\right)$ such that $M_{r}=M_{0} u_{r}$ and $u_{r}^{*} u_{r}=u_{r} u_{r}^{*}=e_{r}$.

Proof. Let $\gamma \in S p \alpha$. By Lemma 2.1 (2), it is clear that the linear span S of $M_{r}^{*} M_{r}$ is a two-sided ideal of M_{0}. Then there exists a nonzero projection e_{γ} in $\mathcal{Z}\left(M_{0}\right)$ such that the σ-weak closure \bar{S} of S equals $M_{0} e_{r}$. Further, since $4 y^{*} x=(x+y)^{*}(x+y)-(x-y)^{*}(x-y)+i(x+i y)^{*}(x+i y)-$ $i(x-i y)^{*}(x-i y), x, y \in M$, we have

$$
S=\left\{\sum_{n=1}^{m} \alpha_{n} x_{n}^{*} x_{n}: x_{n} \in M, \alpha_{n} \in \boldsymbol{C}\right\}
$$

where \boldsymbol{C} is the complex field. Hence there exists a sequence $\left\{y_{\lambda}\right\}_{\lambda \in \Lambda}$ in S such that $e_{r}=\sigma$-weak limit y_{λ}. Put $p=\sup \left\{u^{*} u: u\right.$ is a partial isometry of $\left.M_{r}\right\}$. By Lemma $2.1(6), e_{T}-p=\left(e_{r}-p\right) e_{r}=\sigma$-weak limit $\left(e_{r}-p\right) y_{\lambda}=0$ and so $e_{\gamma}=p$. Since e_{r} is a central projection of M, we have $u u^{*} \leqq e_{r}$ for every partial isometry u in M_{r}. Thus we similarly have $e_{r}=\sup \left\{u u^{*}: u\right.$ is a partial isometry of M_{T} \}.

Next we show that there is a partial isometry u_{r} of M_{r} such that $u_{r}^{*} u_{r}=u_{r} u_{r}^{*}=e_{r}$. Consider a maximal family $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ of partial isometries of M_{r} such that $u_{\lambda} u_{\lambda}^{*}$ are mutually orthogonal and $u_{\lambda}^{*} u_{\lambda}$ are mutually orthogonal. Put $u_{r}=\sum_{\lambda \in \Lambda} u_{\lambda}$. Then u_{r} is a partial isometry of M_{r}. Suppose that $e_{r}-u_{r}^{*} u_{r} \neq 0$. Since $e_{T}=\sup \left\{u^{*} u: u\right.$ is a partial isometry of $\left.M_{r}\right\}$, there exists a partial isometry v in M_{r} such that $v^{*} v\left(e_{r}-u_{r}^{*} u_{r}\right) \neq$ 0 . By the comparability theorem, there are a central projection z in M_{0} and partial isometries u_{1} and u_{2} in M_{0} such that $u_{1}^{*} u_{1}=z\left(e_{r}-u_{r}^{*} u_{r}\right)$, $u_{1} u_{1}^{*} \leqq z v^{*} v, u_{2}^{*} u_{2}=(1-z) v^{*} v$ and $u_{2} u_{2}^{*} \leqq(1-z)\left(e_{r}-u_{r}^{*} u_{r}\right)$. Then we have either $u_{1} \neq 0$ or $u_{2} \neq 0$. If $u_{1} \neq 0$, then we set $v_{1}=z v u_{1}$. Thus $v_{1}^{*} v_{1}=u_{1}^{*} z v^{*} v u_{1}=u_{1}^{*} u_{1} u_{1}^{*} u_{1}=u_{1}^{*} u_{1}=z\left(e_{r}-u_{r}^{*}\right) \leqq e_{r}-u_{r}^{*} u_{r}$ and v_{1} is a nonzero partial isometry in M_{r}. If $u_{2} \neq 0$, then we set $v_{1}=(1-z) v u_{2}^{*}$. Thus $v_{1}^{*} v_{1}=u_{2} u_{2}^{*} \leqq e_{r}-u_{r}^{*} u_{r}$ and v_{1} is a nonzero partial isometry in M_{r}. Let T (resp. T_{0}) be the center valued trace of M (resp. M_{0}). Since $\mathcal{Z}\left(M_{0}\right) \subset \mathcal{B}(M)$, the restriction of T to M_{0} equals T_{0}. Hence we have

$$
\begin{aligned}
T_{0}\left(e_{r}-u_{r} u_{r}^{*}\right) & =T\left(e_{r}-u_{r} u_{r}^{*}\right)=T\left(e_{r}-u_{r}^{*} u_{r}\right) \\
& \geqq T\left(v_{1}^{*} v_{1}\right)=T\left(v_{1} v_{1}^{*}\right)=T_{0}\left(v_{1} v_{1}^{*}\right) .
\end{aligned}
$$

By [18, p. 314, Corollary 2.8], $v_{1} v_{1}^{*} \nwarrow e_{r}-u_{r} u_{r}^{*}$. Thus there is a partial isometry u in M_{0} such that $u^{*} u=v_{1} v_{1}^{*}$ and $u u^{*} \leqq e_{r}-u_{r} u_{r}^{*}$. Put $v_{2}=$
$u v_{1}$. Then

$$
v_{2}^{*} v_{2}=v_{1} u^{*} u v_{1}=v_{1}^{*} v_{1} \leqq e_{r}-u_{r}^{*} u_{r}
$$

and

$$
v_{2} v_{2}^{*}=u v_{1} v_{1}^{*} u^{*}=u u^{*} \leqq e_{r}-u_{r} u_{r}^{*} .
$$

Since v_{2} is a nonzero partial isometry in M_{r}, this contradicts the maximality of $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$. It is clear that $M_{r}=M_{0} u_{r}$. Hence we are done.

Corollary 2.4. If M_{0} is a factor, then there exists a unitary element u_{r} of M_{r} such that $M_{r}=M_{0} u_{r}$ for every $\gamma \in S p \alpha$.
3. Invariant subspaces and maximality of $H^{\circ}(\alpha)$. Let M be a von Neumann algebra with a faithful normal tracial state τ. Let $\left\{\alpha_{g}\right\}_{g \in G}$ be a compact abelian group action on M such that $\tau \circ \alpha_{g}=\tau$, $g \in G$. We suppose that the dual group Γ of G has a total order. Set $\Gamma_{+}=\{\gamma \in \Gamma: \gamma \geqq 0\}$ and $\Gamma_{+0}=\{\gamma \in \Gamma: \gamma>0\}$, respectively. Let $L^{2}(M, \tau)$ be the noncommutative Lebesgue space associated with M and τ (cf. [16]). For every $x \in M$, we define operators L_{x} and R_{x} on $L^{2}(M, \tau)$ by the formulae $L_{x} y=x y$ and $R_{x} y=y x, y \in L^{2}(M, \tau)$. For a subset S of M, we write $L(S)=\left\{L_{x}: x \in S\right\}$ and $R(S)=\left\{R_{x}: x \in S\right\}$, respectively. For a subset S of $L^{2}(M, \tau)$, we denote by $[S]_{2}$ the closed linear span of S in $L^{2}(M, \tau)$. Further, we define $H^{\infty}(\alpha)=M^{\alpha}\left(\Gamma_{+}\right)$, which is called the noncommutative Hardy space with respect to $\left\{\alpha_{g}\right\}_{g \in G}$. We also define $H_{0}^{\infty}(\alpha)=M^{\alpha}\left(\Gamma_{+0}\right), H^{2}(\alpha)=\left[H^{\infty}(\alpha)\right]_{2}$ and $H_{0}^{2}(\alpha)=\left[H_{0}^{\infty}(\alpha)\right]_{2}$. Since $\tau \circ \alpha_{g}=\tau$, there is a unitary group $\left\{W_{g}\right\}_{g \in G}$ on $L^{2}(M, \tau)$ such that $W_{g} L_{x} W_{g}^{*}=L_{\alpha_{g}(x)}$ and $W_{g} R_{x} W_{g}^{*}=R_{\alpha_{g}(x)}, g \in G, x \in M$. By Lemma 2.1 and [8], we have the following:

Proposition 3.1. (1) $H^{\infty}(\alpha)$ is a finite maximal subdiagonal algebra of M with respect to ε_{0} and τ.
(2) $H^{\infty}(\alpha)=\left\{x \in M: \varepsilon_{\gamma}(x)=0, \gamma \in \Gamma, \gamma<0\right\}$.
(3) $H_{0}^{\infty}(\alpha)=\left\{x \in H^{\infty}(\alpha): \varepsilon_{0}(x)=0\right\}$.

We first define invariant subspaces of $L^{2}(M, \tau)$ according to [9], [10] and [15].

Definition 3.2. Let \mathfrak{M} be a closed subspace of $L^{2}(M, \tau)$. We say that \mathfrak{M} is left-invariant, if $L\left(H^{\infty}(\alpha) \mathfrak{M} \subset \mathfrak{M}\right.$; left-reducing, if $L(M) \mathbb{M} \subset \mathfrak{M}$; left-pure, if \mathfrak{M} contains no left-reducing subspace; and left-full, if the smallest left-reducing subspace containing \mathfrak{M} is all of $L^{2}(M, \tau)$. The right-hand versions of these concepts are defined similarly. A closed subspace which is both left- and right- invariant will be called two-sided invariant.

Throughout this section, we suppose that M_{0} is a factor. By Corollary 2.4, there exists a family $\left\{u_{r}\right\}_{\gamma \in S_{p \alpha}}$ of unitary operators in M such that $M_{r}=M_{0} u_{r}, \gamma \in S p \alpha$.

Proposition 3.3 (cf. [15, Proposition 3.2]). Let $\mathfrak{M l}$ be a left-invariant subspace of $L^{2}(M, \tau)$. Then we have the following:
(1) \mathfrak{M} is left-reducing if and only if $u_{r} \mathfrak{M} \subset \mathfrak{M}$ for every $\gamma \in S p \alpha$.
(2) \mathfrak{M} is left-pure if and only if $\bigwedge_{r \in S p \alpha} u_{r} \mathfrak{M}=\{0\}$.
(3) \mathfrak{M} is left-full if and only if $\mathrm{V}_{r \in S_{p \alpha}} u_{r} \mathbb{M}=L^{2}(M, \tau)$.

Throughout this section, suppose that $S p \alpha$ has an Archimedean order, that is, $S p \alpha$ may be regarded as a subgroup of \boldsymbol{R} with the discrete topology ([19, Theorem 8.1.2]). Thus $S p \alpha$ is order isomorphic onto \boldsymbol{Z} or a dense subgroup of \boldsymbol{R} with the discrete topology.

Let \mathfrak{M} be a left-invariant subspace of $L^{2}(M, \tau)$. Put $\mathfrak{M}_{r}=u_{r} \mathfrak{M}, \gamma \in$ $S p \alpha$. The family of subspaces \mathfrak{M}_{r} decreases as γ increases in $S p \alpha$. If $\operatorname{Sp} \alpha$ is a dense subgroup of \boldsymbol{R} with the discrete topology, then we have

$$
\mathfrak{M}_{(+)}=\Lambda\left\{\mathfrak{M}_{-7}: \gamma \in S p \alpha \cap \Gamma_{+0}\right\} \quad \text { and } \quad \mathfrak{M}_{(-)}=\mathrm{V}\left\{\mathfrak{M}_{7}: \gamma \in S p \alpha \cap \Gamma_{+0}\right\} .
$$

Definition 3.4. Let \mathfrak{M} be a left-invariant subspace of $L^{2}(M, \tau)$. If $S p \alpha$ is a dense subgroup of \boldsymbol{R} with the discrete topology, then \mathfrak{M} is said to be left- (resp. right-) normalized in case $\mathfrak{M}=\mathfrak{M}_{(+)}$(resp. $\mathfrak{M}=$ $\left.\mathfrak{M}_{(-)}\right)$. If \mathfrak{M} is both left- and right-normalized, then \mathfrak{M} is said to be completely normalized. Further, if $S p \alpha$ is a dense subgroup of \boldsymbol{R} (resp. $S p \alpha$ is order-isomorphic onto \boldsymbol{Z}), then a left-invariant subspace \mathfrak{M} of $L^{2}(M, \tau)$ is said to be canonical in case \mathfrak{M} is left-pure, left-full and leftnormalized (resp. left-pure and left-full).

Next we define cocycles of canonical left-invariant subspaces of $L^{2}(M, \tau)$. We now fix such a subspace \mathfrak{M} of $L^{2}(M, \tau)$. For $\gamma \in S p \alpha$, we denote by P_{γ} tne projection of $L^{2}(M, \tau)$ onto \mathfrak{M}_{γ}. As γ increases in $S p \alpha$, P_{r} decreases from the identity 1 to 0 , by Proposition 3.3. For each real number λ not in $S p \alpha$, we define P_{λ} so that the family $\left\{P_{\lambda}\right\}_{\lambda \in R}$ is continuous from the left. Then $1-P_{\lambda}$ is a resolution of the identity in $L^{2}(M, \tau)$, to which by Stone's theorem is associated the unitary group $\left\{V_{t}\right\}_{t \in R}$ defined by

$$
\begin{equation*}
V_{t}=-\int_{-\infty}^{\infty} e^{i t \lambda} d P_{\lambda} \tag{3.1}
\end{equation*}
$$

Since $L\left(M_{0}\right) \mathbb{M}_{\lambda} \subset \mathfrak{M}_{\lambda}$, it is clear that P_{t} and V_{t} are in $L\left(M_{0}\right)^{\prime}$ for $t \in \boldsymbol{R}$. Hence we have $P_{\lambda+\gamma}=L_{u_{\gamma}} P_{\lambda} L_{u_{\gamma}^{*}}$ and

$$
L_{u_{r}^{*}} V_{t} L_{u_{r}}=-\int_{-\infty}^{\infty} e^{i t \lambda} d\left(L_{u_{r}^{*}} P_{\lambda} L_{u_{r}}\right)=-\int_{-\infty}^{\infty} e^{i t \lambda} d P_{\lambda-r}=e^{i t r} V_{t}
$$

Proposition 3.5 (cf. [15, Theorem 4.1]). Keep the notations and the assumptions as above. The families $\left\{P_{t}\right\}_{t \in R}$ and $\left\{V_{t}\right\}_{t \in R}$ associated with a canonical left-invariant subspace \mathfrak{M} satisfy

$$
\left\{\begin{array}{l}
P_{\lambda+r}=L_{u_{r}} P_{\lambda} L_{u_{r}^{*}}, \tag{3.2}\\
V_{t} L_{u}=e^{i t r} L_{u_{r}} V_{t}, \\
P_{t}, V_{t} \in L\left(M_{0}\right)^{\prime}, \quad t, \lambda \in \boldsymbol{R}, \quad \gamma \in S p \alpha
\end{array}\right.
$$

Conversely, every left-continuous family $\left\{P_{t}\right\}_{t \in R}$ of projections and every continuous unitary group $\left\{V_{t}\right\}_{t \in R}$ satisfying (3.2) are obtained from a unique, canonical left-invariant subspace of $L^{2}(M, \tau)$.

Put $N=\operatorname{ker} \alpha$. Since $S p \alpha$ is a subgroup of Γ, the dual $(S p \alpha)^{\wedge}$ of $S p \alpha$ is canonically isomorphic to G / N by Lemma 2.2. Since $S p \alpha$ is also a subgroup of \boldsymbol{R}, let e_{t} for each real number t be the element of G / N defined by $e_{t}(\lambda)=e^{i t \lambda}, \lambda \in S p \alpha$. It is easy to verify that the mapping ω defined by $\omega(t)=e_{t}$ is a continuous homomorphism of \boldsymbol{R} into G / N and the image $\omega(\boldsymbol{R})$ is a dense subgroup of G / N. Now $\left\{\alpha_{g}\right\}_{g \in G}$ (resp. $\left\{W_{g}\right\}_{g \in G}$) induces a σ-weakly continuous representation of $\left\{\tilde{\alpha}_{[g]}\right\}_{[g] \in G / N}$ (resp. $\left.\left\{\widetilde{W}_{[g]}\right\}_{[g] \in G / N}\right)$ of *-automorphisms of M (resp. unitary operators on $L^{2}(M, \tau)$), where $\tilde{\alpha}_{[g]}=\alpha_{g}$ (resp. $\widetilde{W}_{[g]}=W_{g}$), with the coset $[g]$ of g in G / N. It is clear that $L_{\tilde{\alpha}_{[g]}}(x)=\widetilde{W}_{[g]} L_{x} \widetilde{W}_{[g]}^{*},[g] \in G / N$. Put $S_{t}=\widetilde{W}_{\omega(t)}, t \in R$. Then $\left\{S_{t}\right\}_{t \in R}$ is a continuous unitary group on $L^{2}(M, \tau)$ and we have the following:

Theorem 3.6. Keep the notations and the assumptions as above. Then each continuous unitary group $\left\{V_{t}\right\}_{t \in R}$ on $L^{2}(M, \tau)$ satisfying (3.2) has the form $V_{t}=R_{a_{t}} S_{t}$, where $\left\{a_{t}\right\}_{t \in R}$ is a continuous unitary family of M such that

$$
\begin{equation*}
a_{t+u}=\tilde{\alpha}_{\omega(t)}\left(a_{u}\right) a_{t}, \quad t, u \in \boldsymbol{R} \tag{3.3}
\end{equation*}
$$

Conversely, if $\left\{a_{t}\right\}_{t \in R}$ is any such unitary family of M, then $V_{t}=R_{a_{t}} S_{t}$ defines a continuous unitary group on $L^{2}(M, \tau)$ which satisfies (3.2).

Proof. Put $A_{t}=V_{t} S_{t}^{*}$. Since $(S p \alpha)^{\wedge}$ is canonically isomorphic to $G / N, S p \alpha$ is the annihilator of N, that is, $S p \alpha=\{\gamma \in \Gamma:\langle g, \gamma\rangle=1$ for all $g \in N\}$. Thus we have

$$
\begin{aligned}
S_{t} L_{u_{r}} S_{t}^{*} & =\widetilde{W}_{\omega(t)} L_{u_{r}} \widetilde{W}_{\omega(t)}^{*}=L_{\tilde{\alpha}_{\omega(t)}\left(u_{\gamma}\right)}=L_{\alpha_{g}\left(u_{\gamma}\right)} \\
& =\langle g, \gamma\rangle L_{u_{r}}=\langle\omega(t), \gamma\rangle L_{u_{r}}=e^{i t r} L_{u_{r}}
\end{aligned}
$$

where $t \in \boldsymbol{R}, \gamma \in S p \alpha$ and $g \in \omega(t)$. Thus

$$
A_{t}^{*} L_{u_{r}} A_{t}=\left(V_{t} S_{t}^{*}\right)^{*} L_{u_{r}}\left(V_{t} S_{t}^{*}\right)=S_{t} V_{t}^{*} L_{u_{r}} V_{t} S_{t}^{*}=e^{-i t r} S_{t} L_{u_{r}} S_{t}^{*}=L_{u_{r}}
$$

Since V_{t} and S_{t} are elements in $L\left(M_{0}\right)^{\prime}$ and $L(M)$ is generated by $L\left(M_{0}\right)$ and $\left\{L_{u_{r}}\right\}_{\gamma \in S p \alpha}$, we have $A_{t} \in L(M)^{\prime}=R(M)$. Thus there is a unitary family $\left\{a_{t}\right\}_{t \in R}$ of M such that $A_{t}=R_{a_{t}}$. Further, we have

$$
\begin{aligned}
\mathrm{A}_{t+u} & =V_{t+u} S_{t+u}^{*}=V_{t} S_{t}^{*} S_{t} V_{u} S_{u}^{*} S_{t}^{*}=A_{t} S_{t} A_{u} S_{t}^{*} \\
& =R_{a_{t}} S_{t} R_{a_{u}} S_{t}^{*}=R_{a_{t}} R_{\alpha_{\omega}(t)}\left(a_{u}\right)=R_{\tilde{\alpha}_{\omega}(t)}\left(a_{u}\right) a_{t}
\end{aligned}
$$

Thus $a_{t+u}=\tilde{\alpha}_{\omega(t)}\left(a_{u}\right) a_{t}$.
Conversely, put $V_{t}=R_{a_{t}} S_{t}$. By (3.3), $\left\{V_{t}\right\}_{t \in R}$ is a continuous unitary group of $L\left(M_{0}\right)^{\prime}$. By Stone's Theorem, there is a left-continuous family $\left\{P_{t}\right\}_{t \in R}$ of projections of $L\left(M_{0}\right)^{\prime}$ such that $V_{t}=-\int_{-\infty}^{\infty} e^{i t \lambda} d P_{\lambda}$. Now, for $\gamma \in$ $\operatorname{Sp\alpha } \alpha$ and $t \in \boldsymbol{R}$, we have

$$
\begin{aligned}
L_{u_{r}} V_{t} L_{u_{\gamma}}^{*} & =L_{u_{r}} R_{a_{t}} S_{t} L_{u_{r}}^{*}=R_{a_{t}} S_{t} S_{t}^{*} L_{u_{r}} S_{t} L_{u_{\gamma}}^{*} \\
& =R_{a_{t}} S_{t} L_{\tilde{\alpha}_{\omega(-t)}\left(u_{r}\right)} L_{u_{\gamma}}^{*}=e^{-i t r_{r}} R_{a_{t}} S_{t}=e^{-i t t_{r}} V_{t} .
\end{aligned}
$$

Therefore $\left\{P_{t}\right\}_{t \in R}$ and $\left\{V_{t}\right\}_{t \in \boldsymbol{R}}$ satisfy (3.2). This completes the proof.
Definition 3.7. A unitary family $\left\{a_{t}\right\}_{t \in R}$ of M satisfying the conditions of Theorem 3.6 is called a cocycle determined by a canonical leftinvariant subspace of $L^{2}(M, \tau)$.

Next we show that, if M_{0} is a factor, then every two-sided invariant subspace of $L^{2}(M, \tau)$ which is not left-reducing is left-pure and left-full. To prove this, we need the following lemmas.

Lemma 3.8. Suppose that M_{0} is a factor and Spo has an Archimedean order. If B is an $\left\{\alpha_{g}\right\}_{g \in G}$-invariant σ-weakly closed subalgebra of M containing $H^{\infty}(\alpha)$, then either $B=H^{\infty}(\alpha)$ or $B=M$.

Proof. Since B is $\left\{\alpha_{g}\right\}_{g \in G}$-invariant and σ-weakly closed, $\varepsilon_{r}(x)$ lies in B for all $x \in B$. Hence, if $H^{\infty}(\alpha) \neq B$, then there is an $x \in B$ and a $\gamma(<0) \in S p \alpha$ such that $\varepsilon_{r}(x) \neq 0$. For this x, we may write $\varepsilon_{r}(x)=a u_{r}$ for some $a \in M_{0}$. But, since $M_{0} \subset H^{\infty}(\alpha) \subset B$, we have $M_{0} a M_{0} u_{r}=M_{0} a u_{r} M_{0} \subset$ B. Since finite factors are algebraically simple ([3, p. 257]), $M_{0} a M_{0}=M_{0}$, and $u_{r} \in B$. For every $\gamma^{\prime}(<0) \in S p \alpha$, if $\gamma^{\prime}>\gamma$, then $M_{0} u_{\gamma^{\prime}}=M_{0} u_{r^{\prime}-r} u_{r} \subset$ B. On the other hand, if $\gamma^{\prime}<\gamma$, then there exists an $n>0$ such that $n \gamma \leqq \gamma^{\prime}$. Thus $M_{0} u_{\gamma^{\prime}}=M_{0} u_{\gamma^{\prime}-n \eta} u_{\gamma}^{n} \subset B$ and $B=M$. This completes the proof.

Lemma 3.9. Suppose that M_{0} is a factor, M is not a factor and $S p \alpha$ has an Archimedean order. Then $\mathcal{Z}(M) \cap H^{\infty}(\alpha)$ is a maximal σ weakly closed subalgebra of $\mathfrak{Z}(M)$.

Proof. Set $\mathcal{Z}(M) \cap H^{\infty}(\alpha)=\mathfrak{A}$ and $[\mathcal{Z}(M)]_{2}=K$. Let x be a nonzero element in \mathfrak{A}. We now consider the closed subspace $[\mathfrak{H} x]_{2}(=\mathfrak{M})$ of $[\mathfrak{A}]_{2}$. Since $\tilde{\alpha}_{[g]}(\mathcal{B}(M))=\mathfrak{B}(M)$, we put $\beta_{[g]}=\left.\tilde{\alpha}_{[g]}\right|_{8(M)},[g] \in G / N$. Since $\left\{\beta_{[g]}\right\}_{[g] \in G / N}$ acts ergodically on $\mathcal{B}(M), S p \beta$ is a subgroup of $S p \alpha$ by Lemma 2.1. Let E be the support projection of x. As in the proof of [15, Proposition 5.2], we have $\beta_{\omega(t)}(E)=E$. Since $\omega(\boldsymbol{R})$ is dense in G / N, we have $\beta_{[g]}(E)=E$ for every $[g] \in G / N$, hence $E=1$. By [11, Theorem], \mathfrak{A} is a maximal σ weakly closed subalgebra of $3(M)$ and the proof is completed.

Since M is generated by M_{0} and $\left\{u_{r}\right\}_{\gamma_{\in S p \alpha}}$, we have the following theorem by Lemmas 3.8 and 3.9 as in the proof of [15, Theorem 5.3].

TheOrem 3.10. Suppose that M_{0} is a factor and $S p \alpha$ has an Archimedean order. Then every-sided invariant subspace of $L^{2}(M, \tau)$ which is not left-reducing is left-pure and left-full.

Finally we study the maximality of $H^{\infty}(\alpha)$ as a σ-weakly closed subalgebra of M.

Theorem 3.11. Suppose that M_{0} is a factor and $S p \alpha$ has an Archimedean order. Let \mathfrak{M} be a canonical left-invariant subspace of $L^{2}(M, \tau)$. If $B=\left\{x \in M: L_{x} \mathfrak{M} \subset \mathfrak{M}\right\}$, then $B=H^{\infty}(\alpha)$.

Proof. Let $\left\{V_{t}\right\}_{t \in R}$ be a continuous unitary group associated with \mathfrak{M}. Since $L_{\tilde{\alpha}_{\omega(t)}(x)}=S_{t} L_{x} S_{t}^{*}=V_{t} L_{x} V_{t}^{*}$ by Theorem 3.6, we have

$$
L_{\tilde{\alpha}_{\omega(t)}(x)} \mathfrak{M}=V_{t} L_{x} V_{t}^{*} \mathfrak{M} \subset V_{t} L_{x} \mathfrak{M} \subset V_{t} \mathfrak{M} \subset \mathfrak{M}
$$

for $x \in B$. Thus $\tilde{\alpha}_{\omega(t)}(x) \in B$. Since $\omega(\boldsymbol{R})$ is dense in G / N, we have $\tilde{\alpha}_{[g]}(x) \in B$ for every $[g] \in G / N$ and so $\alpha_{g}(x) \in B, g \in G$. Therefore B is $\left\{\alpha_{g}\right\}_{g \in G}$-invariant. Since B is a σ-weakly closed subalgebra of M containing $H^{\infty}(\alpha)$, we have $B=H^{\infty}(\alpha)$ by Lemma 3.8. This completes the proof.

Theorem 3.12. Suppose that M_{0} is a factor and $S p \alpha$ has an Archimedean order. Then $H^{\circ}(\alpha)$ is a maximal σ-weakly closed subalgebra of M.

To prove this theorem, we need the following lemma as in the proof of [15, Theorem 6.3] if $S p \alpha$ is a dense subgroup of \boldsymbol{R}.

Lemma 3.13. Suppose that M_{0} is a factor and $S p \alpha$ is a dense subgroup of \boldsymbol{R} with the discrete topology. Let \mathfrak{M} be a left-invariant subspace of $L^{2}(M, \tau)$. If \mathfrak{M} is not left-reducing, then so is $\mathfrak{M}_{(+)}$.

Proof. Suppose that $\mathfrak{N}_{(+)}$is left-reducing. For every $x \in \mathfrak{M}$, we have $u_{-2 \rho} x \in \mathfrak{M}_{(+)}$for each $\rho \in S p \alpha \cap \Gamma_{+0}$. Hence $u_{r} u_{-2 \rho} x \in \mathfrak{M}$ for each $\gamma \in S p \alpha \cap \Gamma_{+0}$. Since there is an element $\gamma \in S p \alpha \cap \Gamma_{+0}$ such that $\gamma<\rho$,
we see that $M_{0} u_{-\rho} x=M_{0} u_{\rho_{-r}} u_{\tau} u_{-2 \rho} x \subset \mathfrak{M}$. Thus $u_{-\rho} x \in \mathbb{M}$ and so \mathfrak{M} is left-reducing. This is a contradiction and completes the proof.

Proof of Theorem 3.12. Let B be a proper σ-weakly closed subalgebra of M containing $H^{\infty}(\alpha)$. Let $[B]_{2}$ be the closed linear span of B in $L^{2}(M, \tau)$. By [9, Corollary 1.5], we have $[B]_{2} \neq L^{2}(M, \tau)$. It is clear that $[B]_{2}$ is a two-sided invariant subspace of $L^{2}(M, \tau)$ which is not leftreducing. If $S p \alpha$ is a dense subgroup of \boldsymbol{R} (resp. isomrphic onto \boldsymbol{Z}), let \mathfrak{M} be the two-sided invariant subspace $\left([B]_{2}\right)_{(+)}$(resp. $\left.[B]_{2}\right)$ of $L^{2}(M, \tau)$. By Lemma 3.11, \mathfrak{M} is not left-reducing. Hence, by Theorem $3.10, \mathfrak{M}$ is left-full and left-pure and so \mathfrak{M} is canonical. As in the proof of [15, Theorem 6.3], we have Theorem 3.12 by Theorem 3.11. This completes the proof.

It is attractive to conjecture that the converse of Theorem 3.12 is true. As a partial answer, we have the following:

ThEOREM 3.14. Suppose that $\mathcal{Z}\left(M_{0}\right) \subset \mathfrak{Z}(M)$ and there is no nonzero projection $p \in \mathcal{Z}\left(M_{0}\right)$ such that $M_{0} p=M p$. Then $H^{\circ}(\alpha)$ is a maximal σ-weakly closed subalgebra of M if and only if M_{0} is a factor and $S p \alpha$ is a subgroup (of Γ) with an Archimedean order.

Proof. (\Leftarrow) is trivial by Theorem 3.12.
(\Rightarrow). First we suppose that M_{0} is not a factor. Then there exists a nonzero projection $p \in \mathcal{Z}\left(M_{0}\right)$ such that $M_{0} p \neq M p$. Considering a σ weakly closed subalgebra B generated by $H^{\circ}(\alpha) p$ and $M(1-p)$, this is clearly a contradiction. Therefore M_{0} is a factor. Hence $S p \alpha$ is a subgroup of Γ. Next we suppose that $S p \alpha$ does not have an Archimedean order. Then there are $\lambda, \gamma \in S p \alpha \cap \Gamma_{+0}$ such that $n \lambda \leqq \gamma, n=1,2$, $3, \cdots$. Let B be the σ-weakly closed subalgebra of M generated by u_{λ}^{*} and $H^{\infty}(\alpha)$. Then $B \neq H^{\infty}(\alpha)$. Since $u_{\lambda}^{*^{n}} u_{2} \in H_{0}^{\infty}(\alpha), n=1,2,3, \cdots$, we have $\tau\left(x u_{\lambda}^{*^{n}} u_{\lambda}\right)=0$ for every $x \in H^{\infty}(\alpha)$. Hence it is clear that $\tau\left(y u_{\lambda}\right)=$ 0 for every $y \in B$. This implies that $B \neq M$, a contradiction.

Remark 3.15. Suppose that $\mathcal{Z}\left(M_{0}\right) \subset \mathfrak{Z}(M)$. By Theorem 2.3, for every $\gamma \in S p \alpha$ there are a partial isometry u_{r} in M_{r} and a projection e_{r} in $\mathcal{Z}\left(M_{0}\right)$ such that $M_{r}=M_{0} u_{r}$ and $u_{r}^{*} u_{r}=u_{r} u_{r}^{*}=e_{r}$. Put $e=\sup \left\{e_{r}: \gamma \in\right.$ $\left.S p \alpha \cap \Gamma_{+0}\right\}$. Then $M_{0}(1-e)=M(1-e)$ and $M_{0} p \neq M p$ for every projection $p \in \mathcal{Z}\left(M_{0}\right)$ such that $0<p \leqq e$. Thus $H^{\infty}(\alpha)=H^{\circ}(\alpha) e \bigoplus M_{0}(1-e)$. To prove the maximality of $H^{\infty}(\alpha)$, it is sufficient to consider the part of $H^{\circ}(\alpha) e$. Therefore, by Theorem 3.14, $H^{\infty}(\alpha)$ is a maximal σ-weakly closed subalgebra of M if and only if $M_{0} e$ is a factor and $S p \alpha$ has an Archimedean order.

References

[1] H. Araki, Structure of some von Neumann algebras with isolated discrete modular spectrum, Publ. RIMS Kyoto Univ. 9 (1973), 1-44.
[2] W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642.
[3] W. B. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
[4] A. Connes, Une classification des facteurs de type III, Ann. Ec. Norm. Sup. 6 (1973), 135-252.
[5] J. Dixmier, Les algebres d'operateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
[6] H. Helson, Analyticity on compact abelian groups, in Algebras in Analysis, Academic Press, New York, 1975.
[7] S. Kawamura and J. Tomiyama, On subdiagonal algebas associated with flows in operator algebras, J. Math. Soc. Japan 29 (1977), 73-90.
[8] R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252.
[9] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409.
[10] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products, II, J. Math. Soc. Japan 33 (1981), 485-495.
[11] P. S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111-121.
[12] K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tôhoku Math. J. 29 (1977), 69-75.
[13] K.-S. Saito, On non-commutative Hardy spaces associated with flows in finite von Neumann algebras, Tôhoku Math. J. 29 (1977), 585-595.
[14] K.-S. Saito, Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. Math. 93 (1981), 431-434.
[15] K.-S. Saito, Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal. 45 (1982), 177-193.
[16] I. E. SEgAL, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.
[17] E. Stormer, Spectra of ergodic tranformations, J. Funct. Anal. 15 (1974), 202-215.
[18] M. Takesaki, Theory of operator algebras, I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[19] W. Rudin, Fourier analysis on groups, Interscience Publishers, New York, 1962.
Department of Mathematics
Faculty of Science
Nigata University
Nifgata, 950-21
JAPAN

[^0]: Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

