NONSELFADJOINT SUBALGEBRAS ASSOCIATED WITH COMPACT ABELIAN GROUP ACTIONS ON FINITE VON NEUMANN ALGEBRAS

KICHI-SUKE SAITO

(Received May 11, 1981)

1. Introduction. Let G be a compact abelian group whose dual Γ has a total order. Suppose that M is a von Neumann algebra with a faithful normal tracial state τ and $\{\alpha_g\}_{g\in G}$ is a σ -weakly continuous representation of G as *-automorphisms of M such that $\tau \circ \alpha_g = \tau$, $g \in G$. Put $\Gamma_+ = \{\gamma \in \Gamma \colon \gamma \geq 0\}$ and let $H^\infty(\alpha)$ be the set of $x \in M$ such that $Sp_\alpha(x) \subset \Gamma_+$. Recently, the structure of $H^\infty(\alpha)$ has been investigated by several authors (cf. [7], [8], [9], [10], [12], [13], [15]). It is well-known that $H^\infty(\alpha)$ is a finite maximal subdiagonal algebra of M (cf. [8]). However, $H^\infty(\alpha)$ is not necessarily maximal as a σ -weakly closed subalgebra of M. McAsey, Muhly and the author in [9], [10] and [15] studied the maximality of typical examples of $H^\infty(\alpha)$ which are called nonselfadjoint crossed products.

Our aim in this paper is to investigate the maximality of $H^{\infty}(\alpha)$ as a σ -weakly closed subalgebra of M. Our method is based on a characterization of spectral subspaces and the invariant subspace structure of the noncommutative Lebesgue space $L^2(M, \tau)$ associated with M and τ in the sense of Segal [16]. In §2, we give a characterization of spectral subspaces. For every $\gamma \in \Gamma$, we put $M_{\gamma} = \{x \in M: \alpha_{g}(x) = \langle g, \gamma \rangle x, g \in G\}$. Suppose that the center $\mathfrak{Z}(M_0)$ of M_0 is contained in the center $\mathfrak{Z}(M)$ of M. If $M_r \neq \{0\}$, then there is a partial isometry u_r in M_r and a projection e_r in $\mathfrak{Z}(M_0)$ such that $M_r = M_0 u_r$ and $u_r^* u_r = u_r u_r^* = e_r$. In particular, if M_0 is a factor, then we may choose a unitary element u_7 in M_7 such that $M_{\tau} = M_0 u_{\tau}$. In §3, we first define the cocycles of canonical leftinvariant subspaces of $L^2(M, \tau)$. If M_0 is a factor, then every two-sided invariant subspace is left-pure and left-full. As the main result in this paper, we show that, if $\Im(M_0) \subset \Im(M)$ and if there is no nonzero projection p of $\mathfrak{Z}(M_0)$ with $Mp = M_0p$, then $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M if and only if M_0 is a factor and $Sp\alpha$ is a subgroup (of Γ) with an archimedean order.

Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

2. A characterization of spectral subspaces. Suppose that M is a finite von Neumann algebra acting on a Hilbert space H and that $\{\alpha_{\mathfrak{g}}\}_{\mathfrak{g}\in G}$ is a σ -weakly continuous representation of a compact abelian group G as a group of *-automorphisms of M. For simplicity, such an $\{\alpha_{\mathfrak{g}}\}_{\mathfrak{g}\in G}$ is called a compact abelian group action on M in this paper. Following Arveson [3] and Loebl-Muhly [8], we define a representatin $\alpha(\cdot)$ of $L^1(G)$ into the algebra of bounded operators on M by

$$lpha(f)x=\int_{G}f(g)lpha_{g}(x)d\mu(g)$$
 ,

where $f \in L^1(G)$ and μ is the normalized Haar measure on G. Let Γ be the dual group of G. The pairing between G and Γ will be written as $\langle g, \gamma \rangle$, $g \in G$, $\gamma \in \Gamma$, hence the Fourier transform will take this form: $\widehat{f}(\gamma) = \int_G \langle g, \gamma \rangle f(g) d\mu(g)$, $f \in L^1(G)$. If $f \in L^1(G)$, we let $Z(f) = \{\gamma \in \Gamma : \widehat{f}(\gamma) = 0\}$. We let $Sp\alpha$ be $\bigcap Z(f)$, where f runs through the set of functions in $L^1(G)$ such that $\alpha(f) = 0$. If $x \in M$, we let $Sp_\alpha(x) = \bigcap Z(f)$, where $\alpha(f)x = 0$, $f \in L^1(G)$. If S is a subset of Γ , we denote by $M^\alpha(S)$ the set of $x \in M$ such that $Sp_\alpha(x) \subset S$. For every $\gamma \in \Gamma$ we define a σ -weakly continuous linear map ε_Γ on M by the integration

Put $\varepsilon_{\gamma}(M) = M_{\gamma}$. Then it is clear that

$$M_{\gamma} = \{x \in M: \alpha_{\sigma}(x) = \langle g, \gamma \rangle x, g \in G\}$$
.

The following lemma is well-known and easy to prove.

LEMMA 2.1 (cf. [12], [4]). Keep the notations as above. Then

- $(1) \quad M_{\tau} = M^{\alpha}(\{\gamma\}).$
- (2) $M_{r}M_{\lambda} \subset M_{r+\lambda}$ and $M_{r}^{*} = M_{-r}$ for every $\gamma, \lambda \in \Gamma$.
- (3) Let $x, y \in M$. If $\varepsilon_r(x) = \varepsilon_r(y)$ for each $\gamma \in \Gamma$, then x = y.
- $(4) \quad Sp_{\alpha}(x) = \{ \gamma \in \Gamma \colon \varepsilon_{\gamma}(x) \neq 0 \} \text{ for } x \in M.$
- $(5) \quad Sp\alpha = \{ \gamma \in \Gamma \colon M_{\tau} \neq \{0\} \}.$
- (6) Let $x \in M_7$ and let x = v|x| be the polar decomposition of x. Then $v \in M_7$ and $|x| \in M_0$.

By a result of Connes [4, Théorème 2.2.4], if M_0 is a factor, then $Sp\alpha$ is a subgroup of Γ . Thus we have the following analogue of Størmer [17, Theorem 3.2].

LEMMA 2.2. Keep the notations as above. If M_0 is a factor, then the dual $(Sp\alpha)^{\hat{}}$ of $Sp\alpha$ is canonically isomorphic to G/N, where N is the kernel ker α of α in G.

Our goal in this section is the following theorem whose proof is inspired by Araki [1].

THEOREM 2.3. In the notations above, suppose that the center $\mathfrak{Z}(M_0)$ of M_0 is contained in the center $\mathfrak{Z}(M)$ of M. Then for every $\gamma \in Sp\alpha$, there exist a partial isometry u_{τ} in M_{τ} and a projection e_{τ} in $\mathfrak{Z}(M_0)$ such that $M_{\tau} = M_0u_{\tau}$ and $u_{\tau}^*u_{\tau} = u_{\tau}u_{\tau}^* = e_{\tau}$.

PROOF. Let $\gamma \in Sp\alpha$. By Lemma 2.1 (2), it is clear that the linear span S of $M_r^*M_r$ is a two-sided ideal of M_o . Then there exists a nonzero projection e_r in $\mathfrak{Z}(M_o)$ such that the σ -weak closure \overline{S} of S equals M_oe_r . Further, since $4y^*x = (x+y)^*(x+y) - (x-y)^*(x-y) + i(x+iy)^*(x+iy) - i(x-iy)^*(x-iy)$, $x, y \in M$, we have

$$S = \left\{\sum_{n=1}^m lpha_n x_n^* x_n \colon x_n \in M, \ lpha_n \in C
ight\}$$
 ,

where C is the complex field. Hence there exists a sequence $\{y_{\lambda}\}_{{\lambda}\in\Lambda}$ in S such that $e_{\gamma}=\sigma$ -weak limit y_{λ} . Put $p=\sup\{u^*u\colon u\text{ is a partial isometry of }M_{\gamma}\}$. By Lemma 2.1 (6), $e_{\gamma}-p=(e_{\gamma}-p)e_{\gamma}=\sigma$ -weak limit $(e_{\gamma}-p)y_{\lambda}=0$ and so $e_{\gamma}=p$. Since e_{γ} is a central projection of M, we have $uu^*\leq e_{\gamma}$ for every partial isometry u in M_{γ} . Thus we similarly have $e_{\gamma}=\sup\{uu^*:u\}$ is a partial isometry of $M_{\gamma}\}$.

Next we show that there is a partial isometry u_{τ} of M_{τ} such that $u_{\tau}^*u_{\tau} = u_{\tau}u_{\tau}^* = e_{\tau}$. Consider a maximal family $\{u_{\lambda}\}_{\lambda \in \Lambda}$ of partial isometries of M_{τ} such that $u_{\lambda}u_{\lambda}^*$ are mutually orthogonal and $u_{\lambda}^*u_{\lambda}$ are mutually orthogonal. Put $u_{\tau} = \sum_{\lambda \in \Lambda} u_{\lambda}$. Then u_{τ} is a partial isometry of M_{τ} . Suppose that $e_{\tau} - u_{\tau}^*u_{\tau} \neq 0$. Since $e_{\tau} = \sup\{u^*u: u \text{ is a partial isometry of } M_{\tau}\}$, there exists a partial isometry v in M_{τ} such that $v^*v(e_{\tau} - u_{\tau}^*u_{\tau}) \neq 0$. By the comparability theorem, there are a central projection z in M_0 and partial isometries u_1 and u_2 in M_0 such that $u_1^*u_1 = z(e_{\tau} - u_{\tau}^*u_{\tau})$, $u_1u_1^* \leq zv^*v$, $u_2^*u_2 = (1-z)v^*v$ and $u_2u_2^* \leq (1-z)(e_{\tau} - u_{\tau}^*u_{\tau})$. Then we have either $u_1 \neq 0$ or $u_2 \neq 0$. If $u_1 \neq 0$, then we set $v_1 = zvu_1$. Thus $v_1^*v_1 = u_1^*zv^*vu_1 = u_1^*u_1u_1^*u_1 = u_1^*u_1 = z(e_{\tau} - u_{\tau}^*) \leq e_{\tau} - u_{\tau}^*u_{\tau}$ and v_1 is a nonzero partial isometry in M_{τ} . If $u_2 \neq 0$, then we set $v_1 = (1-z)vu_2^*$. Thus $v_1^*v_1 = u_2u_2^* \leq e_{\tau} - u_{\tau}^*u_{\tau}$ and v_1 is a nonzero partial isometry in M_{τ} . Let T (resp. T_0) be the center valued trace of T_0 (resp. T_0). Since T_0 (T_0) have the valued trace of T_0 (resp. T_0). Since T_0 (T_0) have the valued trace of T_0 0. Hence we have

$$T_{0}(e_{r}-u_{r}u_{r}^{*})=T(e_{r}-u_{r}u_{r}^{*})=T(e_{r}-u_{r}^{*}u_{r})\ \geqq T(v_{1}^{*}v_{1})=T(v_{1}v_{1}^{*})=T_{0}(v_{1}v_{1}^{*}).$$

By [18, p. 314, Corollary 2.8], $v_1v_1^* \lesssim e_7 - u_7u_7^*$. Thus there is a partial isometry u in M_0 such that $u^*u = v_1v_1^*$ and $uu^* \leq e_7 - u_7u_7^*$. Put $v_2 =$

 uv_1 . Then

$$v_2^*v_2 = v_1u^*uv_1 = v_1^*v_1 \le e_r - u_r^*u_r$$

and

$$v_2v_2^* = uv_1v_1^*u^* = uu^* \le e_r - u_ru_r^*$$
.

Since v_2 is a nonzero partial isometry in M_7 , this contradicts the maximality of $\{u_{\lambda}\}_{{\lambda}\in A}$. It is clear that $M_7=M_0u_7$. Hence we are done.

COROLLARY 2.4. If M_0 is a factor, then there exists a unitary element u_r of M_r such that $M_r = M_0 u_r$ for every $\gamma \in Sp\alpha$.

3. Invariant subspaces and maximality of $H^{\infty}(\alpha)$. Let M be a von Neumann algebra with a faithful normal tracial state τ . $\{\alpha_g\}_{g\in G}$ be a compact abelian group action on M such that $\tau\circ\alpha_g=\tau$, $g \in G$. We suppose that the dual group Γ of G has a total order. Set $\Gamma_+ = \{ \gamma \in \Gamma : \gamma \ge 0 \}$ and $\Gamma_{+0} = \{ \gamma \in \Gamma : \gamma > 0 \}$, respectively. Let $L^2(M, \tau)$ be the noncommutative Lebesgue space associated with M and τ (cf. [16]). For every $x \in M$, we define operators L_x and R_x on $L^2(M, \tau)$ by the formulae $L_xy=xy$ and $R_xy=yx$, $y\in L^2(M,\tau)$. For a subset S of M, we write $L(S) = \{L_x : x \in S\}$ and $R(S) = \{R_x : x \in S\}$, respectively. For a subset S of $L^2(M, \tau)$, we denote by $[S]_2$ the closed linear span of S in $L^2(M, \tau)$. Further, we define $H^{\infty}(\alpha) = M^{\alpha}(\Gamma_+)$, which is called the noncommutative Hardy space with respect to $\{\alpha_g\}_{g \in G}$. We also define $H_0^\infty(\alpha)=M^\alpha(\Gamma_{+0}),\ H^2(\alpha)=[H^\infty(\alpha)]_2\ ext{and}\ H_0^2(\alpha)=[H_0^\infty(\alpha)]_2.$ Since $au\circlpha_g= au$, there is a unitary group $\{W_g\}_{g\in G}$ on $L^2(M,\, au)$ such that $W_gL_xW_g^*=L_{lpha_g(x)}$ and $W_g R_x W_g^* = R_{\alpha_g(x)}, g \in G, x \in M$. By Lemma 2.1 and [8], we have the following:

PROPOSITION 3.1. (1) $H^{\infty}(\alpha)$ is a finite maximal subdiagonal algebra of M with respect to ε_0 and τ .

- $(2) \quad H^{\infty}(\alpha) = \{x \in M : \varepsilon_{r}(x) = 0, \ \gamma \in \Gamma, \ \gamma < 0\}.$
- $(3) \quad H_0^{\infty}(\alpha) = \{x \in H^{\infty}(\alpha) \colon \varepsilon_0(x) = 0\}.$

We first define invariant subspaces of $L^2(M, \tau)$ according to [9], [10] and [15].

DEFINITION 3.2. Let \mathfrak{M} be a closed subspace of $L^2(M,\tau)$. We say that \mathfrak{M} is left-invariant, if $L(H^\infty(\alpha)\mathfrak{M} \subset \mathfrak{M};$ left-reducing, if $L(M)\mathfrak{M} \subset \mathfrak{M};$ left-pure, if \mathfrak{M} contains no left-reducing subspace; and left-full, if the smallest left-reducing subspace containing \mathfrak{M} is all of $L^2(M,\tau)$. The right-hand versions of these concepts are defined similarly. A closed subspace which is both left- and right- invariant will be called two-sided invariant.

Throughout this section, we suppose that M_0 is a factor. By Corollary 2.4, there exists a family $\{u_{\tau}\}_{{\tau} \in S_{p\alpha}}$ of unitary operators in M such that $M_{\tau} = M_0 u_{\tau}$, $\gamma \in Sp\alpha$.

PROPOSITION 3.3 (cf. [15, Proposition 3.2]). Let \mathfrak{M} be a left-invariant subspace of $L^2(M, \tau)$. Then we have the following:

- (1) \mathfrak{M} is left-reducing if and only if $u_{\tau}\mathfrak{M} \subset \mathfrak{M}$ for every $\gamma \in Sp\alpha$.
- (2) \mathfrak{M} is left-pure if and only if $\bigwedge_{\tau \in Sp\alpha} u_{\tau}\mathfrak{M} = \{0\}.$
- (3) \mathfrak{M} is left-full if and only if $\bigvee_{\tau \in S_{p\alpha}} u_{\tau} \mathfrak{M} = L^{2}(M, \tau)$.

Throughout this section, suppose that $Sp\alpha$ has an Archimedean order, that is, $Sp\alpha$ may be regarded as a subgroup of R with the discrete topology ([19, Theorem 8.1.2]). Thus $Sp\alpha$ is order isomorphic onto Z or a dense subgroup of R with the discrete topology.

Let \mathfrak{M} be a left-invariant subspace of $L^2(M, \tau)$. Put $\mathfrak{M}_{\tau} = u_{\tau}\mathfrak{M}, \gamma \in Sp\alpha$. The family of subspaces \mathfrak{M}_{τ} decreases as γ increases in $Sp\alpha$. If $Sp\alpha$ is a dense subgroup of R with the discrete topology, then we have

$$\mathfrak{M}_{\scriptscriptstyle (+)} = \bigwedge \{\mathfrak{M}_{\scriptscriptstyle -7} : \gamma \in Sp\alpha \cap \Gamma_{\scriptscriptstyle +0}\} \quad \text{and} \quad \mathfrak{M}_{\scriptscriptstyle (-)} = \bigvee \{\mathfrak{M}_{\scriptscriptstyle 7} : \gamma \in Sp\alpha \cap \Gamma_{\scriptscriptstyle +0}\} \ .$$

DEFINITION 3.4. Let \mathfrak{M} be a left-invariant subspace of $L^2(M,\tau)$. If $Sp\alpha$ is a dense subgroup of R with the discrete topology, then \mathfrak{M} is said to be left- (resp. right-) normalized in case $\mathfrak{M}=\mathfrak{M}_{\scriptscriptstyle{(+)}}$ (resp. $\mathfrak{M}=\mathfrak{M}_{\scriptscriptstyle{(-)}}$). If \mathfrak{M} is both left- and right-normalized, then \mathfrak{M} is said to be completely normalized. Further, if $Sp\alpha$ is a dense subgroup of R (resp. $Sp\alpha$ is order-isomorphic onto Z), then a left-invariant subspace \mathfrak{M} of $L^2(M,\tau)$ is said to be canonical in case \mathfrak{M} is left-pure, left-full and left-normalized (resp. left-pure and left-full).

Next we define cocycles of canonical left-invariant subspaces of $L^2(M, \tau)$. We now fix such a subspace $\mathfrak M$ of $L^2(M, \tau)$. For $\gamma \in Sp\alpha$, we denote by P_τ the projection of $L^2(M, \tau)$ onto $\mathfrak M_\tau$. As γ increases in $Sp\alpha$, P_τ decreases from the identity 1 to 0, by Proposition 3.3. For each real number λ not in $Sp\alpha$, we define P_λ so that the family $\{P_\lambda\}_{\lambda \in R}$ is continuous from the left. Then $1-P_\lambda$ is a resolution of the identity in $L^2(M, \tau)$, to which by Stone's theorem is associated the unitary group $\{V_t\}_{t\in R}$ defined by

$$(3.1) V_t = -\int_{-\infty}^{\infty} e^{it\lambda} dP_{\lambda}.$$

Since $L(M_0)\mathfrak{M}_{\lambda} \subset \mathfrak{M}_{\lambda}$, it is clear that P_t and V_t are in $L(M_0)'$ for $t \in \mathbf{R}$. Hence we have $P_{\lambda+\gamma} = L_{u_{\gamma}}P_{\lambda}L_{u_{\gamma}^*}$ and

$$L_{u_{\gamma}^*}V_tL_{u_{\gamma}} = -\int_{-\infty}^{\infty} e^{it\lambda}d(L_{u_{\gamma}^*}P_{\lambda}L_{u_{\gamma}}) = -\int_{-\infty}^{\infty} e^{it\lambda}dP_{\lambda-\gamma} = e^{it\gamma}V_t$$
.

PROPOSITION 3.5 (cf. [15, Theorem 4.1]). Keep the notations and the assumptions as above. The families $\{P_t\}_{t\in R}$ and $\{V_t\}_{t\in R}$ associated with a canonical left-invariant subspace \mathfrak{M} satisfy

$$\begin{cases} P_{\lambda+\gamma} = L_{u_{\gamma}} P_{\lambda} L_{u_{\gamma}^{*}} , \\ V_{t} L_{u} = e^{it\gamma} L_{u_{\gamma}} V_{t} , \\ P_{t}, V_{t} \in L(M_{0})' , \quad t, \ \lambda \in R , \quad \gamma \in Sp\alpha . \end{cases}$$

Conversely, every left-continuous family $\{P_t\}_{t\in\mathbb{R}}$ of projections and every continuous unitary group $\{V_t\}_{t\in\mathbb{R}}$ satisfying (3.2) are obtained from a unique, canonical left-invariant subspace of $L^2(M, \tau)$.

Put $N=\ker\alpha$. Since $Sp\alpha$ is a subgroup of Γ , the dual $(Sp\alpha)^{\hat{}}$ of $Sp\alpha$ is canonically isomorphic to G/N by Lemma 2.2. Since $Sp\alpha$ is also a subgroup of R, let e_t for each real number t be the element of G/N defined by $e_t(\lambda)=e^{it\lambda}, \lambda\in Sp\alpha$. It is easy to verify that the mapping ω defined by $\omega(t)=e_t$ is a continuous homomorphism of R into G/N and the image $\omega(R)$ is a dense subgroup of G/N. Now $\{\alpha_g\}_{g\in G}$ (resp. $\{W_g\}_{g\in G}\}_{g\in G}$ induces a σ -weakly continuous representation of $\{\widetilde{\alpha}_{[g]}\}_{[g]\in G/N}$ (resp. $\{\widetilde{W}_{[g]}\}_{[g]\in G/N}$) of *-automorphisms of M (resp. unitary operators on $L^2(M,\tau)$), where $\widetilde{\alpha}_{[g]}=\alpha_g$ (resp. $\widetilde{W}_{[g]}=W_g$), with the coset [g] of g in G/N. It is clear that $L_{\widetilde{\alpha}_{[g]}}(x)=\widetilde{W}_{[g]}L_x\widetilde{W}_{[g]}^*$, $[g]\in G/N$. Put $S_t=\widetilde{W}_{\omega(t)}$, $t\in R$. Then $\{S_t\}_{t\in R}$ is a continuous unitary group on $L^2(M,\tau)$ and we have the following:

THEOREM 3.6. Keep the notations and the assumptions as above. Then each continuous unitary group $\{V_t\}_{t\in R}$ on $L^2(M,\tau)$ satisfying (3.2) has the form $V_t=R_{a_t}S_t$, where $\{a_t\}_{t\in R}$ is a continuous unitary family of M such that

$$(3.3) a_{t+u} = \tilde{\alpha}_{\omega(t)}(a_u)a_t , \quad t, u \in \mathbf{R} .$$

Conversely, if $\{a_t\}_{t\in\mathbb{R}}$ is any such unitary family of M, then $V_t = R_{a_t}S_t$ defines a continuous unitary group on $L^2(M, \tau)$ which satisfies (3.2).

PROOF. Put $A_t = V_t S_t^*$. Since $(Sp\alpha)^{\hat{}}$ is canonically isomorphic to G/N, $Sp\alpha$ is the annihilator of N, that is, $Sp\alpha = \{\gamma \in \Gamma : \langle g, \gamma \rangle = 1 \text{ for all } g \in N\}$. Thus we have

where $t \in R$, $\gamma \in Sp\alpha$ and $g \in \omega(t)$. Thus

$$A_t^* L_{u_r} A_t = (V_t S_t^*)^* L_{u_r} (V_t S_t^*) = S_t V_t^* L_{u_r} V_t S_t^* = e^{-it\gamma} S_t L_{u_r} S_t^* = L_{u_r}.$$

Since V_t and S_t are elements in $L(M_0)'$ and L(M) is generated by $L(M_0)$ and $\{L_{u_r}\}_{r \in Spa}$, we have $A_t \in L(M)' = R(M)$. Thus there is a unitary family $\{a_t\}_{t \in R}$ of M such that $A_t = R_{a_t}$. Further, we have

$$\begin{split} \mathbf{A}_{t+u} &= V_{t+u} S_{t+u}^* = V_t S_t^* S_t V_u S_u^* S_t^* = A_t S_t A_u S_t^* \\ &= R_{a_t} S_t R_{a_u} S_t^* = R_{a_t} R_{\widetilde{\alpha}_{o_t}(t)}(a_u) = R_{\widetilde{\alpha}_{o_t}(t)}(a_u) a_t \;. \end{split}$$

Thus $a_{t+u} = \tilde{\alpha}_{\omega(t)}(a_u)a_t$.

Conversely, put $V_t = R_{a_t}S_t$. By (3.3), $\{V_t\}_{t\in R}$ is a continuous unitary group of $L(M_0)'$. By Stone's Theorem, there is a left-continuous family $\{P_t\}_{t\in R}$ of projections of $L(M_0)'$ such that $V_t = -\int_{-\infty}^{\infty} e^{it\lambda} dP_{\lambda}$. Now, for $\gamma \in Sp\alpha$ and $t \in R$, we have

$$\begin{split} L_{u_{\gamma}} V_t L_{u_{\gamma}}^* &= L_{u_{\gamma}} R_{a_t} S_t L_{u_{\gamma}}^* = R_{a_t} S_t S_t^* L_{u_{\gamma}} S_t L_{u_{\gamma}}^* \\ &= R_{a_t} S_t L_{\widetilde{\alpha}_{\omega(-t)}(u_{\gamma})} L_{u_{\gamma}}^* = e^{-it\gamma} R_{a_t} S_t = e^{-it\gamma} V_t \; . \end{split}$$

Therefore $\{P_t\}_{t\in R}$ and $\{V_t\}_{t\in R}$ satisfy (3.2). This completes the proof.

DEFINITION 3.7. A unitary family $\{a_t\}_{t\in R}$ of M satisfying the conditions of Theorem 3.6 is called a cocycle determined by a canonical left-invariant subspace of $L^2(M, \tau)$.

Next we show that, if M_0 is a factor, then every two-sided invariant subspace of $L^2(M, \tau)$ which is not left-reducing is left-pure and left-full. To prove this, we need the following lemmas.

LEMMA 3.8. Suppose that M_0 is a factor and $Sp\alpha$ has an Archimedean order. If B is an $\{\alpha_s\}_{g\in G}$ -invariant σ -weakly closed subalgebra of M containing $H^{\infty}(\alpha)$, then either $B=H^{\infty}(\alpha)$ or B=M.

PROOF. Since B is $\{\alpha_g\}_{g\in G}$ -invariant and σ -weakly closed, $\varepsilon_{r}(x)$ lies in B for all $x\in B$. Hence, if $H^{\infty}(\alpha)\neq B$, then there is an $x\in B$ and α γ $(<0)\in Sp\alpha$ such that $\varepsilon_{r}(x)\neq 0$. For this x, we may write $\varepsilon_{r}(x)=au_{r}$ for some $\alpha\in M_{0}$. But, since $M_{0}\subset H^{\infty}(\alpha)\subset B$, we have $M_{0}\alpha M_{0}u_{r}=M_{0}\alpha u_{r}M_{0}\subset B$. Since finite factors are algebraically simple ([3, p. 257]), $M_{0}\alpha M_{0}=M_{0}$, and $u_{r}\in B$. For every γ' $(<0)\in Sp\alpha$, if $\gamma'>\gamma$, then $M_{0}u_{r'}=M_{0}u_{r'-r}u_{r}\subset B$. On the other hand, if $\gamma'<\gamma$, then there exists an n>0 such that $n\gamma\leq\gamma'$. Thus $M_{0}u_{r'}=M_{0}u_{r'-n}v_{r}^{n}\subset B$ and B=M. This completes the proof.

LEMMA 3.9. Suppose that M_0 is a factor, M is not a factor and $Sp\alpha$ has an Archimedean order. Then $\mathfrak{Z}(M)\cap H^\infty(\alpha)$ is a maximal σ -weakly closed subalgebra of $\mathfrak{Z}(M)$.

PROOF. Set $\mathfrak{Z}(M)\cap H^{\infty}(\alpha)=\mathfrak{A}$ and $[\mathfrak{Z}(M)]_2=K$. Let x be a nonzero element in \mathfrak{A} . We now consider the closed subspace $[\mathfrak{A}x]_2=\mathfrak{A}$ ($=\mathfrak{M}$) of $[\mathfrak{A}]_2=K$. Since $\widetilde{\alpha}_{[g]}(\mathfrak{Z}(M))=\mathfrak{Z}(M)$, we put $\beta_{[g]}=\widetilde{\alpha}_{[g]}|_{\mathfrak{Z}(M)}$, $[g]\in G/N$. Since $\{\beta_{[g]}\}_{[g]\in G/N}$ acts ergodically on $\mathfrak{Z}(M)$, $Sp\beta$ is a subgroup of $Sp\alpha$ by Lemma 2.1. Let E be the support projection of x. As in the proof of [15, Proposition 5.2], we have $\beta_{\omega(t)}(E)=E$. Since $\omega(R)$ is dense in G/N, we have $\beta_{[g]}(E)=E$ for every $[g]\in G/N$, hence E=1. By [11, Theorem], \mathfrak{A} is a maximal σ -weakly closed subalgebra of $\mathfrak{Z}(M)$ and the proof is completed.

Since M is generated by M_0 and $\{u_r\}_{r \in S_{p\alpha}}$, we have the following theorem by Lemmas 3.8 and 3.9 as in the proof of [15, Theorem 5.3].

Theorem 3.10. Suppose that M_0 is a factor and $Sp\alpha$ has an Archimedean order. Then every-sided invariant subspace of $L^2(M, \tau)$ which is not left-reducing is left-pure and left-full.

Finally we study the maximality of $H^{\infty}(\alpha)$ as a σ -weakly closed subalgebra of M.

THEOREM 3.11. Suppose that M_0 is a factor and $Sp\alpha$ has an Archimedean order. Let \mathfrak{M} be a canonical left-invariant subspace of $L^2(M, \tau)$. If $B = \{x \in M: L_x \mathfrak{M} \subset \mathfrak{M}\}$, then $B = H^{\infty}(\alpha)$.

PROOF. Let $\{V_t\}_{t\in R}$ be a continuous unitary group associated with \mathfrak{M} . Since $L_{\widetilde{\alpha}_{\omega(t)}(x)} = S_t L_x S_t^* = V_t L_x V_t^*$ by Theorem 3.6, we have

$$L_{\widetilde{lpha}_{m(t)}(x)}\mathfrak{M}=V_{t}L_{x}V_{t}^{st}\mathfrak{M}\subset V_{t}L_{x}\mathfrak{M}\subset V_{t}\mathfrak{M}\subset \mathfrak{M}$$

for $x \in B$. Thus $\widetilde{\alpha}_{\omega(t)}(x) \in B$. Since $\omega(R)$ is dense in G/N, we have $\widetilde{\alpha}_{[g]}(x) \in B$ for every $[g] \in G/N$ and so $\alpha_g(x) \in B$, $g \in G$. Therefore B is $\{\alpha_g\}_{g \in G}$ -invariant. Since B is a σ -weakly closed subalgebra of M containing $H^{\infty}(\alpha)$, we have $B = H^{\infty}(\alpha)$ by Lemma 3.8. This completes the proof.

THEOREM 3.12. Suppose that M_0 is a factor and $Sp\alpha$ has an Archimedean order. Then $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M.

To prove this theorem, we need the following lemma as in the proof of [15, Theorem 6.3] if $Sp\alpha$ is a dense subgroup of R.

LEMMA 3.13. Suppose that M_0 is a factor and $Sp\alpha$ is a dense subgroup of R with the discrete topology. Let \mathfrak{M} be a left-invariant subspace of $L^2(M, \tau)$. If \mathfrak{M} is not left-reducing, then so is $\mathfrak{M}_{(+)}$.

PROOF. Suppose that $\mathfrak{M}_{(+)}$ is left-reducing. For every $x \in \mathfrak{M}$, we have $u_{-2\rho}x \in \mathfrak{M}_{(+)}$ for each $\rho \in Sp\alpha \cap \Gamma_{+0}$. Hence $u_7u_{-2\rho}x \in \mathfrak{M}$ for each $\gamma \in Sp\alpha \cap \Gamma_{+0}$. Since there is an element $\gamma \in Sp\alpha \cap \Gamma_{+0}$ such that $\gamma < \rho$,

we see that $M_0u_{-\rho}x=M_0u_{\rho-\gamma}u_{\gamma}u_{-2\rho}x\subset\mathfrak{M}$. Thus $u_{-\rho}x\in\mathfrak{M}$ and so \mathfrak{M} is left-reducing. This is a contradiction and completes the proof.

PROOF OF THEOREM 3.12. Let B be a proper σ -weakly closed subalgebra of M containing $H^{\infty}(\alpha)$. Let $[B]_2$ be the closed linear span of B in $L^2(M,\tau)$. By [9, Corollary 1.5], we have $[B]_2 \neq L^2(M,\tau)$. It is clear that $[B]_2$ is a two-sided invariant subspace of $L^2(M,\tau)$ which is not left-reducing. If $Sp\alpha$ is a dense subgroup of R (resp. isomrphic onto Z), let $\mathfrak M$ be the two-sided invariant subspace $([B]_2)_{(+)}$ (resp. $[B]_2$) of $L^2(M,\tau)$. By Lemma 3.11, $\mathfrak M$ is not left-reducing. Hence, by Theorem 3.10, $\mathfrak M$ is left-full and left-pure and so $\mathfrak M$ is canonical. As in the proof of [15, Theorem 6.3], we have Theorem 3.12 by Theorem 3.11. This completes the proof.

It is attractive to conjecture that the converse of Theorem 3.12 is true. As a partial answer, we have the following:

THEOREM 3.14. Suppose that $\mathfrak{Z}(M_0) \subset \mathfrak{Z}(M)$ and there is no nonzero projection $p \in \mathfrak{Z}(M_0)$ such that $M_0p = Mp$. Then $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M if and only if M_0 is a factor and $Sp\alpha$ is a subgroup (of Γ) with an Archimedean order.

PROOF. (\Leftarrow) is trivial by Theorem 3.12.

 (\Longrightarrow) . First we suppose that M_0 is not a factor. Then there exists a nonzero projection $p \in \mathfrak{Z}(M_0)$ such that $M_0p \neq Mp$. Considering a σ -weakly closed subalgebra B generated by $H^{\infty}(\alpha)p$ and M(1-p), this is clearly a contradiction. Therefore M_0 is a factor. Hence $Sp\alpha$ is a subgroup of Γ . Next we suppose that $Sp\alpha$ does not have an Archimedean order. Then there are λ , $\gamma \in Sp\alpha \cap \Gamma_{+0}$ such that $n\lambda \leqq \gamma$, $n=1,2,3,\cdots$. Let B be the σ -weakly closed subalgebra of M generated by u_{λ}^* and $H^{\infty}(\alpha)$. Then $B \neq H^{\infty}(\alpha)$. Since $u_{\lambda}^{*n}u_{\lambda} \in H_{0}^{\infty}(\alpha)$, $n=1,2,3,\cdots$, we have $\tau(xu_{\lambda}^{*n}u_{\lambda}) = 0$ for every $x \in H^{\infty}(\alpha)$. Hence it is clear that $\tau(yu_{\lambda}) = 0$ for every $y \in B$. This implies that $B \neq M$, a contradiction.

REMARK 3.15. Suppose that $\Im(M_0) \subset \Im(M)$. By Theorem 2.3, for every $\gamma \in Sp\alpha$ there are a partial isometry u_7 in M_7 and a projection e_7 in $\Im(M_0)$ such that $M_7 = M_0u_7$ and $u_7^*u_7 = u_7u_7^* = e_7$. Put $e = \sup\{e_7: \gamma \in Sp\alpha \cap \Gamma_{+0}\}$. Then $M_0(1-e) = M(1-e)$ and $M_0p \neq Mp$ for every projection $p \in \Im(M_0)$ such that $0 . Thus <math>H^{\infty}(\alpha) = H^{\infty}(\alpha)e \oplus M_0(1-e)$. To prove the maximality of $H^{\infty}(\alpha)$, it is sufficient to consider the part of $H^{\infty}(\alpha)e$. Therefore, by Theorem 3.14, $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M if and only if M_0e is a factor and $Sp\alpha$ has an Archimedean order.

REFERENCES

- H. Araki, Structure of some von Neumann algebras with isolated discrete modular spectrum, Publ. RIMS Kyoto Univ. 9 (1973), 1-44.
- [2] W. B. ARVESON, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642.
- [3] W. B. ARVESON, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
- [4] A. Connes, Une classification des facteurs de type III, Ann. Éc. Norm. Sup. 6 (1973), 135-252.
- [5] J. DIXMIER, Les algebres d'operateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
- [6] H. Helson, Analyticity on compact abelian groups, in Algebras in Analysis, Academic Press, New York, 1975.
- [7] S. KAWAMURA AND J. TOMIYAMA, On subdiagonal algebra associated with flows in operator algebras, J. Math. Soc. Japan 29 (1977), 73-90.
- [8] R. I. LOEBL AND P. S. MUHLY, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252.
- [9] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409.
- [10] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products, II, J. Math. Soc. Japan 33 (1981), 485-495.
- [11] P. S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111-121.
- [12] K.-S. SAITO, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tôhoku Math. J. 29 (1977), 69-75.
- [13] K.-S. SAITO, On non-commutative Hardy spaces associated with flows in finite von Neumann algebras, Tôhoku Math. J. 29 (1977), 585-595.
- [14] K.-S. SAITO, Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. Math. 93 (1981), 431-434.
- [15] K.-S. Saito, Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal. 45 (1982), 177-193.
- [16] I. E. SEGAL, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.
- [17] E. Størmer, Spectra of ergodic tranformations, J. Funct. Anal. 15 (1974), 202-215.
- [18] M. TAKESAKI, Theory of operator algebras, I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [19] W. Rudin, Fourier analysis on groups, Interscience Publishers, New York, 1962.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

NIIGATA UNIVERSITY

NIIGATA, 950-21

Japan