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0. Introduction. The purpose of the present paper is to extend the
following.

THEOREM A (Coifman-Rochberg-Weiss [4], Uchiyama [11]). // K is
a singular integral operator of Calderόn-Zygmund type on Rn and if
p, q, r > 0 satisfy 1/p = 1/q + 1/r < 1 + 1/n, then

\\h-Kg- K'h g\\HP(Rn} ^ C\\h\\Hq(R^\\g\\Hr[Rn} ,

where Kf denotes the operator conjugate to K.

As for the definition of Hp(Rn), see Fefferman-Stein [5]; as for K
and K', see the definitions in the next section.

In Theorem A, the restriction 1/p < 1 + 1/n cannot be relaxed since,
for / = h Kg - K'h g, we cannot expect ^jf(ί) = o(\ζ \n/p~n) as ξ -> 0 (^
denotes the Fourier transform) if 1/p 2£ 1 + 1/n, whereas any distribution
/ in Hp(Rn) has this property.

In this paper, we shall extend Theorem A to the case 1/p ^ 1 + 1/n
by showing that we can obtain a well defined bilinear map H9 x Hr — >
HP

9 1/p = 1/q + 1/r, for all q, r > 0 if we form the following "products":

h K*g - ZK'h Kg + K'2h g,

h K*g - 3K'h K2g + ZK'zh Kg - K'3h g, - - , etc.

(the theorem in the next section will give a slightly more general
"product").

The argument of this paper is a refinement of that given by Uchiyama
[11]; we shall refine the calculations in [11] so that we can use the in-
equality

\\ fg

as well as Holder's inequality.
Throughout this paper, we use the following.

* Partly supported by Fύjukai Foundation.
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NOTATION, φ and ψ denote fixed smooth functions on Rn which have
the following properties: φ(x) — 1 for \χ\ <; 1, φ(x) = 0 for \x\ ^> 2, ψ(x) =
1 — φ(x). B(x, <) denotes the closed ball with center xeRn and radius t
with respect to the usual metric. The mark is sometimes used in
compensation for parentheses; no operator operates beyond this mark.
The letter C denotes a constant which may be different in different
places. f*g denotes the convolution of / and g. k*j is defined by k*3' =
k*(i~l) * k, j = 1, 2, , and fc*° = δ = the Dirac measure. For a = (a19 , α J
with a, nonnegative integers, differential operator 3α and its order a\
are defined by 9α — 9?1 d"n and !«) = «!+ - + an9 where dά is defined
by 3//(α?) = (dldXj)f(x). We shall also use the notation (d/dx)af(x) =

1. The result. The result of this paper is the following.

THEOREM. If K19 , KN are singular integral operators of Calderόn-
Zygmund type on Rn and if p, q, r > 0 satisfy

l/p = l/q + l/r < 1 + N/n ,

then there is a constant C depending only on p, q, r, Kί9 , KN and n
such that, for all h 6 & Π Hq(Rn) and all ge^f} Hr(Rn),

IIΣ(-Dm(Π *;)*•( Π Kjgll*, ^ C\\h\\Hq\\g\\Hr ,
J

where the summation ranges over all the subsets J of {1, , N}. Here
K] denotes the operator conjugate to K$, \J\ the cardinality of J, Jc the
complement of J, Π *Λβ product of operators- if J or Jc is the empty setf

the corresponding product Π means the identity operator.

To explain the singular integral operators in this theorem, we need
the following

PROPOSITION 1.1. ( i ) Suppose that k is a smooth function in
Rn\{0} satisfying

(1.1) \(d/dx}"k(x)\ ^Ca\x\~n-^

and

< oo .(1.2) sup K k(x)dx
0<a<b<oo 1 Jα<|x !<6

Then there are sequences {aά} and {bj} such that aά —* 0, δ,,- —> °o and

exists in
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( ii ) If k is the distribution in (i) and c is a complex number, then
the Fourier transform of k + cd, δ = the Dirac measure, is a bounded
function m which is smooth in Rn\{Q} and satisfies

(1.8) \(dldξYm(ξ)\^C'a\ξ\-^ .

(iiϊ) Conversely, ifmisa bounded function satisfying the conditions
o/(ii), then there are a distribution k arising in (i) and a complex num-
ber c such that m is the Fourier transform of k + cδ.

PROOF, (i) can be seen if we choose {αy} so that

lim I k(x)ψ(xlaό)φ(x)dx

exists. (1.3) for a Φ 0 and (iii) are proved by means of the technique
in [6; Proof of Theorem 2.5]. Proof of (1.3) f or a = 0 can be found in
[1; Theorem 3].

The operators in the theorem are the ones in the following definitions.

DEFINITION 1.1. We shall call K a singular integral operator of
Calderόn-Zygmund type if it is defined by

(1.4) Rf=k*f+cf = J?r-\m^f}

with k, c and m in Proposition 1.1.

By Proposition 1.1, these operators form a commutative algebra. It
is well-known that such operators can be extended to Hp for all p > 0
as bounded operators; see [5; § 12].

DEFINITION 1.2. If K is an operator defined by (1.4), the conjugate
operator K' is defined by K'f = £(-•)*/+ cf = ̂ "\m(- -X^jO

The rest of the paper will be devoted to the proof of the theorem.

2. Preliminary lemmas.

DEFINITION 2.1. For a nonnegative integer m, xeRn and t > 0, we
define

(x, t) = {^6^|suppφ c B(x, t), l | 3VlU~ ^ ί-"Hβl for \a ^ m} ,
) = {φe^\\d«<p\ ^t(t + I - _z|)-n-1Hα| for \a\ ^ m}

and for / e <$",

Mm.tf(x) = sup {| </, ?>> 1 19> e ^Tm(χ, s), 0<s^t},

Mmf(x) = SUP {| </, φ} \ \φ G J^(α, s], 0 < 8 < 00} ,

Mmf(x) = SUP {| </, φ} \ \φ G jTm(x, s), 0 < 8 < 00} .
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DEFINITION 2.2. For a nonnegative integer m, we define J^ as the
set of all k e &> which satisfy

I (d/dx)"k(x} I ̂  I x I-71'1*1 for \a\£m

and

sup \ k(x)dx ^ 1 .
0<α<oo I J \x\<a

We shall list up the lemmas which will be used later.

LEMMA 2.1. // oo > p > q > o, then

If 0 < p ̂  1 and m > n/p — n, then

\\Mmf\\LP^Cp\\f\\HP.

Conversely, if Mmf εLp, 0 < p < oo, for some m ^ 0, then f eHp and

\\f\\H^CP>m\\Mmf\\LP.

LEMMA 2.2. Let 0 < p <; 1 and m ̂  0. I/ supp / c J3(a?0, ί) and
Mmtιtf € Lp(B(xQ, 2ί)), ίfeew / cα?ι δe decomposed as f = g + \θ, where
geHp, θeL00, \\Θ\\L°° ^ ί"n/ί), λ is a complex number, supports of g and
θ are contained in B(x0, t), and

LEMMA 2.3. Let 0 < p ^ 1 and m ̂  0. If supp / c B(xQ, t), ΛfΛ f«/ 6
, 2t))

?β(Za? = 0 /or |α |^

then feHp and

LEMMA 2.4. For \x — x0\ < 2t,

Mm(f( }φ(2( - x0)/t))(x) ^ CmMm>5tf(x) .

LEMMA 2.5. // feHp, 0 < p <; 1 and supp/ c J3(z0, ί), then f can
be decomposed as follows: f = ΣΓ=ι λ»y^y> where λy are complex num-
bers, a, are bounded functions, \\aj\\L«> ^ ^7ra/ί>, suppa^ c jB(^ , ̂  ) c B(xQ,

2ί), afa)χ dx = 0 /or |a| ^ [n/p - w],

LEMMA 2.6. If ke^ and ve^~m(x, t) with m ̂  1, ίfow, /or |/3| +
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|7| <: w - 1 and \w - x\ < lOOOί,

I ( dβv(z)drk(w - z)dz ±-n-\β\-\r\

LEMMA 2.7. // kL and k2 are functions in 3%^ with m ̂  1, then
C^ki * k2 belongs to ^^»_ι, where C depends only on n and m.

LEMMA 2.8. There is a constant C depending only on n such that
II ^"k IL« ̂  C for all k e ̂ .

LEMMA 2.9. Lei θ be a smooth function with supp 0 c B(Q, 1)

ί θ = 1; se£ 0t = t~nθ( /t), t > 0. TΛίw, /or αίϊ fceJ^ς wiίfc m ^ 1,

where the constant C depends only on n and m.

PROOF OF LEMMA 2.1. The first part is derived from the Hardy-
Littlewood maximal theorem; see [10; Chap. II, § 3], The second part is
proved by means of the atomic decomposition of H*\ cf . [11; Lemma 7].
The third part is a result of Fefferman and Stein [5; Theorem 11].

PROOF OF LEMMA 2.2. We can take λ# which has the estimates in
the lemma and satisfies

( (/ - \θ)(x}xadx = 0 for I a \ ̂  [n/p - n] .

Hence the lemma is reduced to Lemma 2.3.

PROOF OF LEMMA 2.3. We shall estimate Mm,f(x) for m' = m +
[n/p — n] + 1. Take φ e ^~m (%9 s). If P denotes the Taylor series of φ
expanded about x0 up to the terms of degree [n/p — n]9 then

( i ) If \x - BO I < 2ί and s <; 4£, then I /$>

(i i) if \x — a?0| < 2t and s > 4ί, then C-1(9> — P)#(( — α&0)/t) 6
4ί), and hence

s^
(iii) if I a — x0\ > 2t and s <; | a j — α?0|/2, then 1/^ = 0;

(iv) if I a — x0\ > 2t and s > \x — x0|/2, then, for every ysB(x0, 2t\

C-\t/\x - x0\Γn-in/p~7
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and hence

fφ ^ C(t/\x - sβ|)"+[ /'W{- t
\ jB(aJ0,

(i)-(iv) give the pointwise estimate for the function Mm,f(x) in terms of
AΓ»,«/; by integration, we obtain the desired estimate.

PROOF OF LEMMA 2.4. Let \x — x0\ <2t and φe<^~m(x, s). Then the
function C~lφ(2( — xQ)/t)φ( ) belongs to ^~m(x, 3ί) if s > 3£ and to ^~m(x, s)
if s ^ 3£ (the constant C depends only on n and m). Thus the claim
follows from the definition of the maximal functions.

PROOF OF LEMMA 2.5. Modify the proof of Latter [7]. If / has
compact support and belongs to Hp, p ^ 1, then it is orthogonal to
polynomials of degree less than or equal to [n/p — n]; hence gk con-
structed in the proof of [7] can be, after the multiplication of some
constant, a p-atom by itself.

PROOF OF LEMMA 2.6. By integration by parts, the integral in the
lemma can be rewritten as

(dβ+*v(z) - dβ+rv(w))k(w - z)dz + dβ+ΐv(w) k(w - z)dz ,
I w-z I <ιooιt J I w-z I <ιooiί

which is majorized in absolute value by

J|w-2|<1001t

PROOF OF LEMMA 2.7. First we shall estimate

Decompose this integral as follows:

j {- - - }φ(Wy/\ x \}dy + J ί te(10(y - x)l\ x \)dy

+ J {•••}(!- Φ(lOy/\x\) - 0(10(tf - x)l\x\ϊ)dy

= I + II + III.

We can estimate I and II by using Lemma 2.6; |I| f |II| <; C\x\~n~lal for
|α| ^ m — 1. As for III, we have, for |α| ^ m,

I III I ̂  C ( \y \~2n'^dy ^ C\x \
J\y\>\x\/iQ

Thus
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(2.1) I (d/Wfa * **)(«) I ^ C\ x\~n'^ , \ a \ ^ m -

Next we shall show

(2.2) sup (λά* k2)(x)φ(x/a)dx
0<α<oo I J

with C depending only on n, which combined with (2.1) proves the lemma.
Decompose the integral in (2.2) as follows:

\ (l k,(x - y)Φ(x/a)dx\k2(y)φ(y/Wa}dy + 1 1 k,(x - y)k2(y)φ(x/a)ιjr(y/lQa)dxdy

= 1 + 11.

We can estimate I by using Lemma 2.6 twice; |I| ^ C. As for II, we
have

Jla; |<2α; |y |>lθα

This proves (2.2).

PROOF OF LEMMA 2.8. See [1; Theorem 3].

PROOF OF LEMMA 2.9. This lemma follows from the estimate

C~\k( )ψ< — /10ί) — (βt * k)( )) e ̂ ϋ,_ι(0, t),

which is proved in a way similar to the proof of Lemma 2.6.

3. Proof of the theorem. We shall prove the theorem in the special
case K! = = KN = K. The general case requires little modification;
see the remark at the end of this paper. In the special case, the "product"
of the theorem can be rewritten as

Σ(-i)f
y=o \ 3

where K'° = K° = the identity operator.
Take two sufficiently large integers m and m' (they can be deter-

mined depending only on p, q, r, N and n). We shall prove that there
are positive numbers u < q, v < r and C such that the following point-
wise inequality holds throughout Rn:

(3.1) Mm/Σ (-ϊ)'(N.}κ''h K«-'g
\ ?=0 \ Ί I
V \ J I

KB-'g) + Mmg)
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(u and v depend only on p, q, r, N and n; C depends only on p, q, r,
N, n and K). Since K and K' are bounded operators in H* for all
s > 0, (3.1) gives, via Holder's inequality and Lemma 2.1, the inequality
of the theorem.

We assume that K = k * , fc e J^» with an m" sufficiently large and
show (3.1) with C depending only on p, q, r, N and n. Proof for the
general K requires an easy limiting argument, which will be omitted.

From now on we simply denote J7~mί ^^ Mm and Mm by ^7 « t̂ M
and M, respectively. We use the following notation: if Af= α*/, then,
for t > 0,

Take φ e ^i/(a?0, t)f #0 e jβra, t > 0 arbitrarily. What we must do is
to estimate

^ φ(h KNg - NK'h KN~lg ± - + (-1)'

The first step is to rewrite this integral as

/ (N\
(φ(y) - Nφ(zJ + Λ }φ(Z2) =F + (-1)^

x h(y)k(y - zl)k(zl — zt) ••• k(zN_^ -

and decompose it into the following four terms:

+ \ I {

{. . .}ψ>((2/ _ x^/Wt^dydz,
J

- J {• W(» - a?0)/10ί)τK(w - x^/lOt^dydz, dzN_,dw

= I + II + III - IV .

We shall estimate these terms separately.
Estimate for III. Ill can be written as a finite linear combination

of the following terms:

III' = - w)g(w)dw)dz ,

where fcx = fc**' and fc2 = Af(ΛΓ"^, j = 1, 2, , N. By Lemma 2.7, we can
assume that kλ and fc2 belong to J%^,,, with an m'" sufficiently large (or
kz = δ when j = JV).
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Consider the following function in the region \z — XQ\ < t:

f(z) =

Decompose this as follows:

= Jl + e/2 -

In our notation, Jx = K[(t)h(x^9 where JBCΊ is the convolution operator with
the kernel fclβ Since, for | z — x0 \ < ί, the function (fcx( — 3) — Aa( — »0))ιK( "~
a?0)/10*) belongs to ^~(x0, t) when it is multiplied by some constant C
depending only on w and m, it holds that | J2\ ^ CMh(x0). Thus we
obtain, for |s — α?0| < ί»

(3.2) I /(*) I ̂  I K^h(x0) I + Cm( 0̂) .

Moreover, if 1 ̂  |α| ^ m, then

C-ψ 'WaO fciO - »M - a?o)/10ί)6^(a?0> t)

with C depending only on τι and m, and hence

(3.3) I (d/dzr/(z) I ̂  Cf^βh(xQ) .

(3.2) and (3.3) mean that

(\W}h(xϋ)\ + CMhMΓφfe^x*, t) .

Hence

|IIΓ| ^ (|JEί(ί)λ(a?0)| + CMh(xQ))M(K2g)(x0) .

This estimate combined with Lemma 2.9 gives the desired estimate for
III.

Estimate for II is similar to that for III.
Estimate for IV. IV can be written as a finite linear combination

of the following terms:

= \\\ - »0)/10ί)

x ((w

where ^ = fc*J' and kz = k*(N~j\ j = 1, 2, , N - 1. By Lemma 2.7, we
can assume that k^ and &2 belong to JίΓ^ with an m'" sufficiently large.
In the same way as in the estimate for III, we have, for | z — x0 \ < t,



492 A. MIYACHI

I \

From these estimate, we see that

which combined with Lemma 2.9 gives the desired estimate for IV.
Estimate for I. This is the essential part of the proof.
For 0e^ we set

C*(0; V, w) = j j

x Λ(y —

We define an operator AN)9 by

φ\ y, w)dy φ((w - a?0)/20ί) .

Mapping properties of this operator are given in the following lemmas.

LEMMA 3.1. Suppose that 0 < ε < 1 and (1 — ε)/n < 1/s < 1 + (N—ε)/n.
Then, for feH* with supp / c B(x0, 20£), we have

where X(e, s) is defined as follows: X(ε, s) = Hp with 1/s — ί/p — (N — ε)/n
if 1/s > (N — έ)/n; — BMO i/ 1/s = (N — ε)/w; = #£,00 (ίΛe homogeneous
Besov space; see [2; § 6.3]) wΐ£fe 1/s + a/n = (N — έ)/n if 1/s < ( N — ε)/n.

LEMMA 3.2. Let ε, s and X(ε, s) be the same as in Lemma 3.1. //

Loo <; t~n/s and supp / c B(x0, 20£), then

LEMMA 3.3. If θ and Θ' are bounded functions with supports con-
tained in B(x0, 20ί), then

' SC||0|U~||0'IU~.

Proofs of these lemmas will be given in the next section.
We shall proceed to estimate I. Take ε, u and v such that 0 < ε < 1,

1/p < 1 + (N - e)/n, 0 < u < q, 0 < v < r, 1/u + 1/v = 1 + (N - ε)/n.
By Lemmas 2.2 and 2.4, we have
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9( }Φ(( ~ O/10ί) = ft + \'θ' ,

where hL, glt θ and θ' have their supports contained in B(xa, 20ί) and

Jΰ(x0,40<)

(3.4) ||flrιlU + |λ/|^c((
\j5(a;0,40ί)

(if u > 1 or v > 1, we take λ0 = 0 or λ'0' = 0). Corresponding to this,
I can be decomposed into four terms:

I = ] ] Wl/)C*(9>; V, w)gl(w}dydw + λ j j θ(y)ζN(φ; y, w}g,(w)dydw

+ λ' JJ h,(y}ζN(φ\ y, w)θ'(w}dydw + λλ' JJ θ(y}ζN(φ\ y, w}θ'(w}dydw

= I, + I2 + I3 + I4 .

Since J5Γ(ε, u) (notation in Lemma 3.1) is the dual space of iP (see
[5; Theorem 2], [7] and/or [3; Theorems 2.1 and 2.5]), if l/u >(1 - e)/w,
we can use Lemma 3.1 to obtain

The same estimate holds also in the case l/u ^ (1 — e)/n since in this
case we have ί/v > (1 — e)/n and hence we can argue with the roles of
u and v interchanged using a variant of Lemma 3.1 (i.e., a lemma for
the operator dual to ANtΨ). Similarly Lemma 3.2 and its variant give

(I2 and I3 appear only in the case u ^ 1 or v ^ 1; hence we can always
apply Lemma 3.2 or its variant.) As for I4, we use Lemma 3.3 to obtain

These estimates and (3.4) give
/ f \ l/u / f \ 1/v

| I |rgφ-"\ (AfΛ) ) (t-M (Λfff) )
\ J5(a;0,40ί) / \ JB(a;0,40ί) /

Thus we have reduced the proof of the theorem to that of Lemmas
3.1-3.3.

4. Proof of Lemmas 3.1-3.3. In order to prove Lemmas 3.1 and
3.2, we use the following Lemmas.
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LEMMA 4.1. (d/dy^θ y, w) = -(3/3w, )ζ*(0; y, w) + ζ*(3, 0; y, w).

LEMMA 4.2. I/ |τ/ - XQ\ < lOOOί, |w - x0\ < 1000£ α^d |α + β + 7|
m (m sufficiently large), then, for any ε > 0,

' n+N lα l ]βlί \y — w\ n+N |α '*'}
PROOF OF LEMMA 4.1. Repeated application of integration by parts.
In order to prove Lemma 4.2, we need the following

LEMMA 4.3. If P is a polynomial of degree less than or equal to
N — 1, then

{ - ( lp(y) - NP(zJ + (N}P(Z2) ηp + (-1
J J \ \ 2 /

X JffΛI _ /y \1f(fy - <y \ . . . Iff φ — in ]ΓΪΦ ... /ΊΦ ~~ f\
*v\y ^l/**/\™'l ^̂  <*'2/ '*/\.^2V 1 M/yW//v^ Us&N—ί ~~~ *

PROOF. Let @^ denote the symmetric group over {1, •• ,JV}. For
each a 6 &N9 define a linear transformation (Zj)*=ι H* (sj)yii1 by the following
rule: if y — z{ = al9 zl — z2 = α2, - -, ^_x — w = aN9 then j/ — 3* = ασ(1),
3j — 3j = ασ(2), , ̂ _! — w = aσ(N). The Jacobian of this transformation
is + 1 or — 1 and the function k(y — z^) k(zl — Z2) k(zN^ — w) is invari-
ant under each of the transformation. On the other hand, if P is a
polynomial of degree less than N, then

Σ (p(y) - NP(zΐ) + (^Wσ) + - + (-ιrP(w)} = o .
<**N\ \ 2 J I

(This equality reduces, by an elementary calculation, to the following
equalities for polynomials in alf * ,α^:

Σ (-l)^(^) Σ Kd) + + α,(,,r = ° » 1 ̂  m ̂  ΛΓ - 1 .
y=ι \3/*e*ιr

Hence, if we denote the integrand of the lemma by I(zl9 , ZN_^ — I(z),
then

\ I(z)dz = (^I)-1 Σ ( !(«'¥« = 0 .
J σe@jy J

This proves Lemma 4.3.

PROOF OF LEMMA 4.2. We may assume 7 = 0. Applying Taylor's
formula to φ and using Lemma 4.3, we can write ζ^(0>; y, w) as a finite
linear combination of the following terms:

J, = Γ (i - βy^S'yfo + 8(y - χMs (y - aO fed/ - w) ,
Jo
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J2 = Γ (1 - sY'-ϊd"φ(xl + s(w - xj)ds (w - x^k^y - w) ,
Jo

s(z - x1))(2 - x1}"kί(y - z)ks(z - w)dzds ,

where \σ\ = N', 1 <^ N' ^ N9 x^Rn (we can fix Nf and xt arbitrarily),
Λ! = k*N, kz = Jf* and A8 = A?"^, J = 1, 2, - -, N - 1. If we take ^ which
satisfies \y — xλ\ <\y — w\ and |w — a?J < \y — w\9 then

\(d/dy)β(d/dw)aJ1\ ^ Crn~N'\y - w|-»+*'-ι«ι-uι ,

\(d/dyY(d/dw)«J2\ ^ Crn~N'\y - w|-»+*'-ι«ι-w .

If a?! is as above and if — n + N' — |α| — |/3| ^ 0, then, for any ε > 0,

\(d/dy)β(d/dw)aJ,\ ^ Cεr
n-N/+s\y - w|-+^-ι«ι-ι^ι-

(this estimate can be obtained in the same way as in the proof of Lemma
2.7). Thus we obtain the desired estimate by taking N' = N if — n +
N- \a\ - |/S| < 0 and ̂ ' = ^ + 1 ^ 1 + |/3| if -n + N - \a\ - \β\ ̂  0.
This completes the proof of Lemma 4.2.

PROOF OF LEMMA 3.1. We shall prove that

(4.1) ||(-Δ)<™A^/|U* <S C.fiί— ̂ 'II/IU- ,

where 1/s — l/v = (1 — ε)/n and Δ denotes the Laplacian. This estimate
together with the well known mapping properties of the operator
(_Δ)-(*-1)/2 (fractional integration; see [3; Theorem 4.1] and [8; Theorem
3.2]) gives the desired result. In order to prove (4.1), it is sufficient to
show the same estimate for d"ANi<pf, \a\ = N — 1.

First consider the case s > 1. We can write

U<p; y, w)φ((w - x0)/2Qt»dy .

Lemma 4.2 shows that the integrand is majorized in absolute value by
C6\f(y)\t~n~N+ε\y — w\~n+1~ε. Hence the fractional integration theorem in
ZΛ spaces, p > 1 ([9; Chap. V, § 1]), gives the desired estimate.

Next suppose that s ^ 1. By Lemmas 2.3 and 2.5, it is sufficient to
show the estimate

(4.2)

for a sufficiently large b and for /'s which satisfy

supp / c B(y0, p) c B(xt>, 40ί) , || / |U- ̂  p~n"

(4<3) \f(y)yβdy = 0 for \β\ ̂  [n/β - n] .
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In order to prove (4.2)-(4.3), we take Θe^l(x9ά)9 \x — x0\ < 80£,
α <i 160£ and study the function

r(ζN(φ; y, w)φ((w -

where |α| = N — 1. We shall estimate

(4.4) (d/dyγηθ>a(y) = (3/W(d/dw)α(ζ^(<p; V,

in the region \y — XQ\ < 40£. If \y — x\ > 2α, in order to estimate this,
we replace the integrand by its absolute value and use Lemma 4.2; we
obtain

(4.5) I ( d / d y γ η θ , a ( y ) \ ^ C5Γ
n-N+*\y - xI-+1—1'« .

If \y — x\ < 2α, we estimate (4.4) in the following way: we rewrite the
integral by using Lemma 4.1 repeatedly and by integration by parts to
obtain

f a \ f β \ f
(d/dy)βtηθta(y) = Σ , 1 , 1 I (d/dw)a ζN(dβ φ\ y, w) (d/dw)β

x {(d/dw)*"φ((w — XQ)/2Qt) θ(w)}dw

then we replace the integrand by its absolute value and use Lemma 4.2
to obtain

(4.6) I (dldyYη,ta(y) \ ̂  cj-n-N+*a-n+ί—w .

Now let / be a function satisfying (4.3) and θ be as before. If P
is the Taylor series of i)9tCt expanded about y0 up to the terms of degree
[n/s — n], then

(d«AN,φf)θ = fηθ>a = /(?,.. - P) .

If \x — yQ\ < 2p, we use (4.5) and (4.6) with β = 0 to obtain

(4.7) I j (d"AN>φf)θ ^ J |/37M| ^ CεΓ
n-N+*p-n/>^

if I a? - 2/01 > 2|0, we use (4.5) and (4.6) with \β\ = [n/s - n] + 1 to obtain

(4.8) I j (d«AN>ψf)θ ^ J I f(η$ta - P) I ̂  Cet-n-N+εp-n/8+c+1+n\ χ _ ̂  |-n-c-e ^

where c = [n/s — n]. (4.7) and (4.8) give the point wise estimate for the
function Mb>mt(d°AN>φf)(x) in the region \x — XQ\ < 80£. Now we obtain
(4.2) by simple computation. This completes the proof of Lemma 3.1.



PRODUCTS OP DISTRIBUTIONS 497

PROOF OF LEMMA 3.2. For the same reason as in the proof of Lemma
3.1, we can reduce the proof to the estimate for daAN>ψf with α = N — 1.
If / is the function in Lemma 3.2 and θ is as in the proof of Lemma
3.1, then (4.5) and (4.6) for β = 0 give

j.-n/8-n-N+l .

hence, for \x — xϋ <

Integrating this and using Lemma 2.3, we obtain the desired estimate.
This completes the proof of Lemma 3.2.

PROOF OF LEMMA 3.3. The integral in the lemma is a finite linear
combination of the following terms:

= \\\ - w)θ'(w)dydzdw ,

where k, = A;-*' and k2 = k'(*~*}, j = 0, 1, - , N. By Lemma 2.8, the con-
volution operators with kernels k} or k2 have bounded norms as operators
in ZΛ Hence

This proves Lemma 3.3.
Thus we have completed the proof of the theorem.

REMARK. We shall indicate the modification of the proof necessary
in the general case. The general "product" in the theorem can be re-
written as

Σ Π K.w)g,
=j+l /

where &N denotes the symmetric group over {1, , N}. Hence we can
obtain the necessary modification by replacing a function of the form
h(Xi) - - k(xN) which appears in the proof for the special case by

(N\r Σ *.u,(aι) - Wir)
oe®N

the proof (of the theorem) with this replacement is just the same as
that in the special case.
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