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CLOSED DERIVATIONS IN C(I)
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Introduction. Closed derivations in C*-algebras have been studied
by many authors motivated by mathematical physics. In commutative
case closed derivations are also of great interest in connection with
differentiations. In this paper we will discuss closed derivations in C(/),
where C(I) is the algebra of all real valued continuous functions on the
unit interval I = [0, 1].

Let δ be a derivations in C(I). Throughout this paper the domain
&(δ) of δ will be always assumed to be a dense subalgebra in C(I) and
we put Ws = [xel; δ(f)(x) = 0 for every / in &(δ) with ||/|| = \f(x)\}.
δ is said to be quasi well-behaved iff the interior Wf of Wδ is dense in I.
Batty [2], Goodman [3], and Sakai [6] have shown that a closed derivation
δ in C(I) is quasi well-behaved if and only if there exist λe<7(/) and
an automorphism a of C(I) such that δ~D\a(dldx)a~~l. But in [4] it has
been shown that there exist non quasi well-behaved closed derivations
in C(/), those induced by non-atomic signed measures on /.

Let δ be a closed derivation in C(J) and put Aδ = {x e 7, 3(f)(x) Φ 0
for some / in &($)}. In this paper we shall show that there exists an
open dense set U in Aδ and a continuous function μ on U such that the
restriction δE of δ to any closed interval E contained in U is the der-
ivation induced by a non-atomic signed measure μ\E on E.

The auther would like to thank Dr. S. Ota for valuable discussions
with him.

Closed derivation in C(7). We first present several lemmas before
stating our main theorem. Throughout this section δ will always denote
a closed derivation in C(I).

LEMMA 1. Let f be a function in &(δ) with f(x0) = <5(/)(#0) = 0

for some x0 in (0, 1) and define f and δ(f) by the following:

7 (f on [Ofs0] ~ (δ(f) on [0, x0]
/ = {θ on Kl] aUd δ ( f } = \ 0 on K 1] .

Then f belongs to &(δ) and satisfies δ(f) =
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PROOF. If / = 0 on [0, x0], by [3, Lemma 1.1.5], the lemma is clear.
Thus we assume maxo^^ |/(#)| Φ 0. Let ε be a positive number with
ε <; maxo^ίs.0 \f(x)\/2 and set a = max{0 <; x <: x0; \f(x)\ = 2ε}, β =
min{α ^ x ̂  x0; \f(x)\ = ε}, and 7 = min({l} U {x ^ α0; |/(a?)| = ε/3}). Tak-
ing —/ instead of / if necessary, we may assume f(ά) = 2ε and f ( β ) =
ε. Let η be an arbitrary positive number. Then, by [3, Lemma 1.1.5]
and the continuity of / and <5(/), a 5* x ̂  #0 implies \3(f)(x)\ ^ η for ε
sufficiently small. Since £&($) is a Silov algebra, we can find gλ and sr2

in &(δ) in such a way that 0 <; Λ ^ 1, -1 ^ 0r2 <; 0,

^_ JO on [/3,1]' _ f 0 on [0, XQ]
9l= (1 on [0,α], aΠ gz= (-1 on [7,1].

Then Λ = / + 211/11(0! + ft) belongs to &($) and we have h(x) ^ ε for
»€[0, β] and fc(&) ̂  ε/3 for cce[aj0, 1]. Let ^ be a ^-function with
0 ̂  ί9' ̂  2 and

(x if # ̂  ε

if a j ^ e / 8 ,

where p' is the usual derivative of p. Then we have (p(Λ) —
/)(») = 0 f or 0 e [0, β] U [s0, 1] and | (p(fc) - 2 1| / 1| Λ - /)(») | = | p(Λ)(a?) | +
!/(&)! ̂  4ε for OJ6[^9, α?0l By [6, Theorem 3.8] and [3, Lemma 1.1.5], we
also have p(K) e

= 0 for x e [0, /3] U [x0, 1] ,

and

= 3 1 «(/)(«) I ̂  3^7 for α? e [/9, cc0] -

It follows that || p(fc) - 2 1| / 1| Λ - / 1| ^ 4ε and || S(p(fc) - 2 1| / 1| Λ) - <K/) || ̂
8)7. Since we can take ε and η arbitrarily small, the closedness of δ

implies that fe&(δ) and <5(/) = δ(f). This completes the proof.

LEMMA 2. Let / and /> be functions in &(δ) such that fί(xQ) =
/2(ί»o) α^ ί(/ι)(»o) = δ(/2)(α?0) /or some #0 m (0, 1). TΓe define functions
f and F in C(I) by the following:

o^ [0, x0] δ(/) (m [0, a?0]f =

/2
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Then f belongs to &(δ) and satisfies £(/) = F.

PROOF. By assumption we have (f, - /2)(«0) = δ(fl - /e)(α?0) = 0. Put

(/i-/. on [Ofs0] , ,, (δ(/ι-Λ) on [0, aj
or = i and G = i

( 0 on [a?0, 1] ( 0 on [a?0, 1] .

Then Lemma 1 shows that g e &(δ) and δ(g) = G, so that we have / =
g + /2 6 ̂ (δ) and <5(/) = G + δ(/2) = F. This completes the proof.

We put As = {x 6 1; δ(/)(a?) Φ 0 for some / in ^(<5)}. Note that A3

is an open set in 7.

LEMMA 3. Let x0 be in Aδ and U an arbitrary neighborhood of x0.
Then there exists f in &(δ) satisfying δ(f)(xQ) = 1, 0 <: δ(f) ^ 2, and
suppδ(/)cZ7, where supp<5(/) is the support of δ(f).

PROOF. xQeAδ implies that there exists a function g in £&($) with
δ(g)(x0} = 1. We assume #0e(0, 1). If cc0 is zero or one, we can also
prove this lemma in a similar way. Take a and β in I in such a way
that [α, β] c:U,x0e (a, β), and 0 < δ(g) ^ 2 on [α, β]. By [3, Lemma 1.1.5],
δ(g) Φ 0 on [α, β] implies that there exist xt e (α, α?0) and xz e (x0, β) with
g(xj φ g(χQ) and 5r(α?2) Φ g(x0) We shall consider only the case where
fK&i) < ^(^o) < ^(^2) In the other case the proof is the same. Take a
number k with 0 < k < min{0(#0) — ff(&ι), fffa) — ̂ (^o)} and put a! —
max ({α} U {x 6 [α, a?J; flr(a?) = g(x0) - fc}) and β* = min ({/3} U {α e [cc2, /3];

= g(χQ) + fc}). Since &(δ) is a Silov algebra, there exists a function
in &(δ) satisfying -1 ^ h ̂  0 on [α', a?J, 0 ̂  Λ ^ 1 on [α;2, /3'], and

'-1 on [0, α']

0 on [a?!, #2]

1 on [/3',1].

Then β = sr + 2 | | f i f | | f e is an element in &(δ) such that e(x) ί [e(a?0) — &>
e(oj0) + fc] for xe [0, a J U [a?2, 1] and, by [3, Lemma 1.1.5], ί(e) = ί(flr) on
[xί9 x2]. Take a function p in C^J?) such that 0 ̂  p' ^ 1, p' = 0 on
Λ\[β(»0) - *, e(«o) + fcli and p'(e(a?0)) = 1. Then, by [6, Theorem 3.8],
p(e) is a function in £&($) with δ(p(β)) = p'(e)δ(e), so that we have
ί(p(e))(aJ0) = 1, 0 ̂  δ(p(e)) ^ 2, and supp δ(p(e)) c [a?lf a?2] c U. Setting / -
p(β), this completes the proof.

Let £7 be an arbitrary closed subinterval of I and denote the restric-
tion of a function g in C(I) to E by 01^. We define the restriction δE

of δ to E by δ E ( f \ E ) = «(/)[, for / in ̂ (ί). Then, by [3, Lemma 1.1.5],
δs is well defined and becomes a derivation in C(E) whose domain
is {/U;/

h =
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PROPOSITION 4. Let E be a closed subίnterval of I. Then dE is a
closed derivation in C(E).

PROOF. Set E = [XQ, #J (XQ < xj and let fn be a sequence in
such that fn -> / and δE(fn) -> F as ^ -> oo in £(#). If a, 6 Aβ(i = 0,1),
by Lemma 3, there exists ht in &(δ) such that <5(/^)(#i) = 1 and 5(Λ<)(ίCι_i) =
0. If $<€ A*, we put fe< = 0. Setting gn = /n — Σi=o,ι^(/J(#i)^iU>
we have grn e &(δE), δE(gn)(xt) = 0, lim^oo gn = f — Σi=o,ι F(x^ht E, and

•n-xπδ^gj - F — Σ<=o,ι F(xt)δ(ht) \E in C(jE'). We put

X^) if cc ̂  B!

grn(α;) if ^ ̂  α; ̂  a?0

Since δ^g^Xi) = 0 for all w and i = 0, 1, by Lemma 2, </n belongs to
&(δ) and satisfies δ(dn)\E — δE(gn). Furthermore gn and δ(gn) are Cauchy
sequences in C(I). From the closedness of δ, we have lim^eo gn e &(δ)
and δίlim^oogrn) = limn_oo§(?„), and it follows that / - Σ<=o,ιF(x i )h ί \ E e
&(8E] and δE(f - Σ<-o,ι ^(»<)Λ< U) = F - Σz=o,ι F(xi)δ(hi) \ E. Thus we have
/ 6 &(δE) and δ^(/) = F, so that ^ is closed, this completes the proof.

We set &9 = {f e ̂ (δ); /(a?) = 0} for a? in I and JB5 = {x 6 1; there
exists a positive number K and an open interval U which contains x such
that || f\\π ^ K\\δ(f)\\u for all fe&9}, where || ||^ is the uniform norm
on U. Note that Bδ is an open subset of I.

LEMMA 5. Le£ #0 δe m /\J5δ, ε α% arbitrary positive number, and
J — (α, j8) ατι arbitrary open subinterval of I which contains x0. Then
there exists an element f in &(δ) such that O ^ / ^ l , / = 1 on

PROOF. By the definition of Bδ,x0eI\Bδ implies that there exists
g in ^βo with ||0||j = 4, | |δ(f l f) | | j ^ ε. Let x^ be an element in J with
I gfa) I = 4. We may assume that g(xί) = 4 and x0 < .̂ Otherwise, the
proof is the same. Put 7 = min [x > #0; 0(05) = 1} and σ = max{# < α^;
(̂a;) = 3}. Then we can find h in &(δ) such that -1 <; fe ̂  0 on [x0, 7],

0 ^ fe <^ 1 on [σ, xj, and

1 on |X, 1]

h = 0 on [7, σ]

-1 on [0, x0] .

Let p be a Cx-function satisfying 0 •<; p <ί 1, 0 <ί p' <* 1, p(cc) = 0 if x ̂  1,
and p(x) = 1 if x ^ 3. Putting / = p(g + 2 | | f l r | | A ) , by [6, Theorem 3.8],
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we have /6&(S), \\δ(f)\\ = \\p'(g + 2\\g\\K)δ(g + 2 1 | g \ \ K ) \ \ ^ ε, / = 0 on
[0, 7], and / = 1 on [σ, 1]. This completes the proof.

We recell the closed derivations induced by non-atmic signed measures
(cf. [4]). Let E= [xQ, ίcj be a closed interval and μ a non-atomic measures
on E with the support E. We define a linear mapping δμ in C(E) by the
following:

8μ(\lE + ( fdμ\ = f for / in C(E) and λ in R ,

where 1E is the unit element of C(E). [4, Theorem 2.2] has shown that
δμ is well defined and becomes a closed derivation in C(E) whose domain
is

jλltf + { fdμ; f e C(E) and λ 6 R\ .

Now we state our main theorem.

THEOREM 6. Let δ be a closed derivation in C(I). Then the following
conditions are satisfied:

( i ) AS ΓΊ Bδ is a dense open subset in Aδ.
(ii) There exists a continuous real-valued function μ on Aδ Π Bδ

such that, for any closed interval E contained in Aδ Π Bδ, the restriction
t*E of μ to E is a non-atomic signed measure on E and satisfies δE = δμs.

PROOF. We suppose that Aδ Γ) Bδ is not dense in Aδ. Then we can
take a closed interval J = [α, β\ with a < β and Jc Aδ Π B§, where Bc

δ

is the complement of Bδ. By Proposition 4, the restriction δj of δ to J
is a closed derivation in C(J).

For an element g in C(J) and a positive number ε, there exists a
Cl(J)-ίunction h with ||h — g\\j <^ ε/2. Furthermore we can find an integer
n such that n~\β — a)\\ti\\j^ 1 and | g ( x ) — g(y)\ ^ε/2 for every x and y
in / with \χ — y\ <; n~l(β — ά). Put xk = a + kn~l(β — a) for k = 0, 1, - , n.
Since J c Bc

δ, Lemma 5 shows that, for k = 1, 2, , n, there exists an
element fk in ̂ (ί,) satisfying 0 ̂  Λ ^ 1, || δj(fk) \\j ^ ε, fk = 0 on [α, a?4_J,
and Λ = 1 on [a?4, ]̂. Note that δ,(Λ) = 0 on [α, %_J U fe, /8] If we
set / = alj + n~l(β — α)Σ*=ι/*> where lj is the unit element in C(J),
we have / e ̂ (̂ ), || δX/) ||, ̂  ^~^(/3 - α), f ( x k ) = α;fc(A; = 0, 1, , n), and
»*-ι ^ /(«) ̂  % for a?4_! ̂  x ^ % (fc = 1, 2, - - -, n). By [6, Theorem 3.8],
we have h(f)e&(dj) and IISXM/Wll^llΛ'ί/^XΛII^^e^ -^llλΊI/^e.
On the other hand, if xk.^x^xk9 we also have \(h(f)-g)(x)\<Z\h(f(x)) —
g(f(x))\ + \g(fW) - g(*)\ ^ e, so that ||λ(/) - g\\j ^ ε. Since ε is arbi-
trary and δj is closed, it follows that g e &(δj) and δj(g) = 0. This is
a contradiction, so that Aδ n #5 is dense in A,.
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Now we prove the second part of the theorem. Let E be a closed
interval in Aδ Π Bδ. By E^Bδ and the compactness of E, there exist
points xi in E and open subintervals Vt of I and positive numbers Kt (ί =
1, 2, . , Λ) such that ^6 7<f #c U?-ιV,f and ||/||F< ̂  ̂ μ(/)||Fί for /
in 2f9i. Then we have ||/||7 ̂  2τι(max<ίΓ<)||δ(/)||7 for / in r̂, where
we put E = [7, σ] and F = U?=ι^< Let # be an arbitrary element in
&(ds) with 0(7) = 0. Lemma 3 shows that there exists hi in &(δ) such
that W(7) = 8E(g)(Ί\ δ(hL)(σ) = δE(g)(σ), and | |δ(W|| ^ 2||δ*(</)|U. Since
^(δ) is a Silov algebra, we can find h2 in ^(δ) with h2 = 0(7) - ̂ (7) =
— ΛiCr) on [0, 7] and hz = flr(cj) - ̂ (σ) on [σ, 1]. Note that δ(hz) = 0 on
[0, 7] U K 1]. We put

_ = (g on [7, σ]
ff (h, + h, on [0, 7] U [σ, 1] .

Lemma 2 implies that ge&(δ) and ||δ(80|| ^ 2||δ^)|U, so that we have

^ \\g\\v ^2

Kt)\\ δ(g) \\ £ max
/ \

It follows that the kernel K(δE) of δE is {λl^, λ e jR} and the range R(δE)
of δE is a closed linear subspace in C(E).

Now we show that R(δE) — C(E). By Lemma 3 and the compactness
of E, there is an element v in ^(δ) with δ(ι>)(a&) ^0 on £7. Taking
(δ(y) I ί)"1^^ instead of δ^ if necessary, we may assume that -β(δ^) contains
\E9 where 1E is the unit element of C(E). Let K be an arbitrary
subinterval of E and X(UL) a characteristic function of jK". Then, by
Lemmas 2 and 3, the same argument as above implies that there exists
a sequence gn in &(8E) such that δE(gn) pointwise converges to I(K) and
H^XflOlU = 2111^11^ = 2. Suppose that φ is a continuous linear functional

on C(E) such that ^(-B(^)) = 0. Then we have ί I(K)dφ = limn^00φ(δE(gn)) =
IE

0 so that φ = 0. Since 12(5^) is a closed subspace of C(E), by the Hahn-
Banach theorem, we have R(δE) = C(^). It follows from [4, Theorem
2.3] that there exists a unique non-atomic signed measure μE on E such
that δtf = δ .̂

Let G be a connected component of A8 n Bδ and Gn a sequence of
closed subintervals of G such that Gn c Gn+1 and \Jn Gn = G. By the
above argument, for each Gn, there is a non-atomic signed measure μGn

with dGn = δμGn. The uniqueness of μGn implies that μGn is the restriction
of f*Gn+1 to GV Considering ^G% as a function of bounded variation on
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Gn which is the restriction of μGn+1 to Gn, we put μ(x) = lim^ μGn(x)
for x in G. Since μa% is non-atomic, μ is continuous. Thus we get a
continuous function μ on Aδ Π J5δ and our assertion follows from the
uniqueness of measure.

REMARK 7. Let S0 be the closed extension of the usual derivative
d/dx whose kernel is the closed subalgebra of C(/) generated by the
Cantor function and the unit element of C(JΓ) (cf. [3]). Then we have
ASO = / and BδQ is the complement of the Cantor set.

REMARK 8. It follows from the proof of [4, Theorem 2.2] that there
exists a dense subset U of Aδ Π Bδ such that

δ(f)(χ) = lim f(x + fe) ~ for / in &(δ) and x in U .
*-* /<# + A) — μ(#)

We set Mμ = {x e Aδ Π Bδ\ there exists a neighborhood of x on which
μ is monotone}. The following corollary is clearly verified by [4, Theorem
3.1].

COROLLARY 9. Let the notation be the same as in Theorem 6. Then
d is quasi well-bebaved if and only if Mμ is dense in Aδ Π Bδ.
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