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Introduction. Closed derivations in C*-algebras have been studied
by many authors motivated by mathematical physics. In commutative
case closed derivations are also of great interest in connection with
differentiations. In this paper we will discuss closed derivations in C(I),
where C(I) is the algebra of all real valued continuous functions on the
unit interval I = [0, 1].

Let 6 be a derivations in C(I). Throughout this paper the domain
Z(6) of 6 will be always assumed to be a dense subalgebra in C(I) and
we put W, = {xel; (f)(x) = 0 for every f in 2(9) with || f| = |f(x)]}.
0 is said to be quasi well-behaved iff the interior Wy of W, is dense in I.
Batty [2], Goodman [3], and Sakai [6] have shown that a closed derivation
0 in C(I) is quasi well-behaved if and only if there exist A € C(I) and
an automorphism a of C(I) such that 6 D aa(d/dx)a™. But in [4] it has
been shown that there exist non quasi well-behaved closed derivations
in C(I), those induced by non-atomic signed measures on I.

Let 6 be a closed derivation in C(I) and put A, ={xel, o(f)(x) # 0
for some f in 2(9)}. In this paper we shall show that there exists an
open dense set U in A, and a continuous function ¢ on U such that the
restriction d; of 6 to any closed interval E contained in U is the der-
ivation induced by a non-atomic signed measure g¢|; on E.

The auther would like to thank Dr. S. Ota for valuable discussions

with him.

Closed derivation in C(I). We first present several lemmas before
stating our main theorem. Throughout this section § will always denote
a closed derivation in C(I).

LEMMA 1. Let f be a function in Z(0) with f(x,) = o(f)(@,) =0
for some xz, in (0,1) and define f and O(f) by the following:

~ f on [0, x] ~ o(f) on [0, x]
= d o =
{0 on [z, 1] an ) 0 on [x,1].

Then f belongs to () and satisfies 6(f) = b‘(Af/)
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ProoF. If f =0 on [0, «,], by [3, Lemma 1.1.5], the lemma is clear.
Thus we assume max,,, |f(@)| # 0. Let ¢ be a positive number with
€ £ MaAXyc,z,, | f(®)]/2 and set o =max{0 = =< 25 |f(@)] = 2}, B =
min{a < ¢ < x,; | f(®)| = ¢}, and ¥ = min({1} U {x = «,; | f(@)| = ¢/3}). Tak-
ing — f instead of f if necessary, we may assume f(a) = 2¢ and f(B) =
e. Let 7 be an arbitrary positive number. Then, by [3, Lemma 1.1.5]
and the continuity of f and 4(f), a < 2 < =z, implies [3(f)(®)| =<7 for ¢
sufficiently small. Since &(9) is a Silov algebra, we can find ¢, and g,
in £2(0) in such a way that 09,51, -1£9, 20,

(0 on [B1T and _ { 0 on [0, 2]
1 on [0,a], ne %= —1 on [7v,1].
Then h = f + 2| f||(g:. + g,) belongs to &£(8) and we have h(x) = ¢ for

ze[0, 8] and h(x) <¢/3 for xe[x,1l]. Let » be a C'-function with
09 =<2 and

9.

x if x=e
0 if x2=<¢/3,
vzhere p' is the usual derivative of p. Then we have~(p(h) — 2| fllg.—
f)@) =0 for ze0, B] U [x, 1] and |(p(h) — 2| fllg, — F)®)| = [p(A)(@)| +
| f(x)] < 4¢ for xe[B, x,]. By [6, Theorem 3.8] and [3, Lemma 1.1.5], we
also have p(h) € 2(6),
(O(oh) = 2] Fllg) — FN@
= (P'(Ro(h) — 2| fl6(g) — (=)
=0 for ze[0,B]U[=,1],

p(x) = {

and

|G(h) — 2 £119) — 6(H)@)]
=< 2|0 @)| + 2[[ £l [8(g)@)| + [8()(@)]
=3[0(H)@)| =3 for ze[B, x].
It follows that || p(h) — 2|| £ | 9, — FIl < 4e and [|3(p(h) — 2] Fllg) — 9(F) | =
37. Since we can take ¢ and % arbitrarily small, the closedness of &
implies that fe &(6) and §(f) = BTf/). This completes the proof.

LEMMA 2. Let f, and f, be functions in Z(0) such that fi(x,) =

fiy) and o(f)(x,) = 0(f)(xw,) for some x, in (0,1). We define functions
f and F in C(I) by the following:

_ (i on [0, x]

() on 10,2
A om [x,1]

d B on [, 1].

and F
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Then f belongs to =2(6) and satisfies 6(f) = F.
Proor. By assumption we have (f, — f)(x,) = 6(fi — fi)(x,) = 0. Put
fi—f, on [0, ] o(fi —f) on [0, x)]
and G =
0 on [ux, 1] 0 on [x, 1].

Then Lemma 1 shows that ge 2(8) and d(g) = G, so that we have f =
g+ f,e () and 6(f) =G + 6(f,) = F. This completes the proof. ‘

We put 4, = {xel; 6(f)(x) # 0 for some f in = (0)}. Note that A4,
is an open set in I.

LEMMA 8. Let x, be in A, and U an arbitrary neighborhood of x,.
Then there exists f in 2(0) satisfying 6(f)(x,) =1,0 < 0(f) < 2, and
supp 6(f) c U, where supp o(f) is the support of o6(f).

PROOF. 2,€ A4, implies that there exists a function g in 2(§) with
dg)x,) =1. We assume 2,€(0,1). If x, is zero or one, we can also
prove this lemma in a similar way. Take a and g in I in such a way
that [a, Bl U, 2, € (a, B), and 0 < i(g) < 2 on[a, B]. By [3, Lemma 1.1.5],
0(g9) # 0 on [e, B] implies that there exist z, € (a, ,) and =z, ¢ (x,, 8) with
g(x) # g(w,) and g(x,) # g(x,). We shall consider only the case where
g(x) < g(&,) < g(x,). In the other case the proof is the same. Take a
number %k with 0 < k < min{g(x,) — g(x), 9(x,) — g(®,)} and put «' =
max ({a} Ufrela, z.]; 9@) = g(@) — k}) and g =min({B} U {zelx, B];
g(x) = g(x,) + k}). Since =2(d) is a Silov algebra, there exists a function
h in 2(0) satisfying —1<h=<0on [a,2],0=h =<1 on [z, 8], and

—1 on [0, a']
h=4{ 0 on [z,

1 on [g,1].
Then e =g + 2||g||kh is an element in Z(6) such that e(x) ¢ [e(x,) — k,
e(x,) + k] for x¢[0, ] U [x,, 1] and, by [3, Lemma 1.1.5], d(¢) = d(g) on
[x, ,]. Take a function p in C(R) such that 0<9»'<1,p'=0 on
R\ [e(x,) — k, e(x,) + k], and p’(e(w,)) = 1. Then, by [6, Theorem 3.8],
pe) is a function in 2(8) with d(p(e)) = p'(e)d(e), so that we have
d(n(e)) (@) = 1,0 = 6(p(e)) = 2, and supp o(p(e)) C [»,, z.] CU. Setting f =
p(e), this completes the proof.

Let E be an arbitrary closed subinterval of I and denote the restric-
tion of a function g in C(I) to E by g|z. We define the restriction d5
of & to E by 6:(f|z) = 0(f)|z for fin &(6). Then, by [3, Lemma 1.1.5],
o is well defined and becomes a derivation in C(E) whose domain Z(d;)

is {fls fe 2}

g:
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PROPOSITION 4. Let E be a closed subinterval of I. Then 65 is a
closed derivation in C(E).

Proor. Set E = [z, x,] (x, < x,) and let f, be a sequence in Z(6z)
such that f, —» f and 6,(f,) > F as n— o in C(H). If z,€¢A4,i=0,1),
by Lemma 3, there exists &, in () such that 6(&,)(z;) = 1 and 6(h,)(x,_;) =
0. If z,€¢4, we put h,=0. Setting g,=/\, — Sz, 0:(f)@)h:lz,
we have g,e€ Z(0yp), 0:(9,),) =0, lim, .9, = f - Zi=0,1 F(x)h|z, and
lim,_ . 04(g,) = F — Zi=0,1 F(x)o(h,)|z in C(E). We put

f Oa.(w) if z=u,
g.x) =19.(x) if z,z2x=w
Lgn(x) if x=2,.

Since dz(g,)(x,) =0 for all » and ¢+ =0,1, by Lemma 2, §, belongs to
() and satisfies 6(§,)|z = 0:(g,). Furthermore §, and 6(§,) are Cauchy
sequences in C(I). From the closedness of 6, we have lim,..§,c€ =2()
and o(lim,.. §,) = lim,...0(F,), and it follows that f — >, F(x)h,|z€
D(05) and 05(f — im0 F@)hilz) = F — Ximo,s F(,)0(h;)| - Thus we have
fe2(6z) and 6,(f) = F, so that 4, is closed, this completes the proof.

We set 9, ={fe20); f(x) =0} for z in I and B, = {xcI; there
exists a positive number K and an open interval U which contains x such

that || fllv < K||o(f)|ly for all fe=,}, where || ||y is the uniform norm
on U. Note that B; is an open subset of I.

LEMMA 5. Let x, be in I\ B;, ¢ an arbitrary positive number, and
J = (a, B) an arbitrary open subinterval of I which contains x,. Then
there exists an element f in 2(0) such that 0 fF <1, f=1 on
[8,1], f =0 on [0, a], and [|3(f)] = e.

PrROOF. By the definition of B;, x,€ I\ B; implies that there exists
g in 2, with |g|; =4, 8(g)|; <e. Let x, be an element in J with
lg(x)| = 4. We may assume that g(x) = 4 and 2, < 2,. Otherwise, the
proof is the same. Put ¥ = min{z > 2,; g(x) = 1} and ¢ = max{zr < x;;
g(x) = 3}. Then we can find % in =2() such that —1 < h <0 on [z, 7],
0<h=1on o], and

1 on [x,1]
h=4 0 on [v,d]
—1 on [0, x)].

Let p be a C'-function satisfying 0 <p<1,0<9p <1, p(x) =0ifx <1,
and pz) =1 if x = 3. Putting f = p(g + 2||g| k), by [6, Theorem 3.8],
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we have fe2(0), [[8(f)l =29 +2|gllmig + 2|lgllk)|| <¢, f =0 on
[0,7], and f =1 on [o,1]. This completes the proof.

We recell the closed derivations induced by non-atmie signed measures
(cf. [4]). Let E =[x, «,] be a closed interval and ¢ a non-atomic measures
on E with the support E. We define a linear mapping 8, in C(&) by the
following:

5,,(;»1,? + S fdy) =f for fin C(E) and X in R,

where 1; is the unit element of C(E). [4, Theorem 2.2] has shown that
0, is well defined and becomes a closed derivation in C(E) whose domain
is

s + S fag; feC(E) and \eR} .

Now we state our main theorem.

THEOREM 6. Let 0 be a closed derivation in C(I). Then the following
conditions are satisfied:

(1) A,N B; i3 a dense open subset in A,.

(ii) There exists a continuous real-valued fumction ¢ on A,N B;
such that, for any closed interval E contained in A, N B;, the restriction
Utz of ¢ to E is a non-atomic signed measure on E and satisfies 05 = 0y

ProOoF. We suppose that A, N B; is not dense in A,. Then we can
take a closed interval J = [a, 8] with a < g8 and JC A, N B;, where B;
is the complement of B;. By Proposition 4, the restriction 6, of § to J
is a closed derivation in C(J).

For an element g in C(J) and a positive number ¢, there exists a
C'(J)-function h with ||h — g||; < ¢/2. Furthermore we can find an integer
n such that n (8 —a)||h'||; <1 and |g(x) — g(y)| <¢/2 for every z and y
inJ with |2 —y|<»(8—a). Putz,=a+kn'(8—a)for k=0,1, ---, n.
Since J c B, Lemma 5 shows that, for k=1, 2, ---, n, there exists an
element f, in 2(5,) satisfying 0 < f, = 1, |0,(f)ll; = ¢, fi = 0 on [a, 2],
and f, =1 on [, B]. Note that 4,(f,) =0 on [a, x,_,] U[x,, g]. If we
set f=al;, +n (B — a) i fr» Where 1, is the unit element in C(J),
we have £ e 2(3,), [6,(Pll; = ne(8 — ), f@) = &% = 0,1, -+, n), and
T, < f@) 2w, fora,_ <x<2, (k=12 ---,n). By [6, Theorem 3.8],
we have h(f)e 2(6,) and [|§,(h(N)) ;=Ko (N, Sn e(B—a)l|V ||,=e.
On the other hand, if z,_,<x<x,, we also have [(h(f)—g)(@)|=|h(f(x))—
9(f@)| + lg(f(@)) — g(x)| < &, so that ||k(f) — g|l; <e. Since ¢ is arbi-
trary and 6, is closed, it follows that ge =2(4,) and d,(¢9) = 0. This is
a contradiction, so that 4; N B; is dense in A,.
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Now we prove the second part of the theorem. Let E be a closed
interval in A,N B;,. By Ec B; and the compactness of FE, there exist
points 2, in E and open subintervals V, of I and positive numbers K, (1 =
1,2, .-, n) such that 2,¢ V,, Ec U.,V,, and Hf”vi = Killa(f)llm for f
in &Z,,. Then we have | f|y = 2n(max; K,)||0(f) |y for f in &, where
we put £ =[7,0] and V =L,V,. Let g be an arbitrary element in
25z with g(7) = 0. Lemma 3 shows that there exists kh, in &/(d) such
that o(h,)(7) = 0x(9)(7), (h)(0) = 0x(9)(0), and ||o(h,)|| < 2]|0x(9)||z- Since
=(0) is a Silov algebra, we can find h, in &2(6) with h, = g(7) — h,(¥) =
—h,(7) on [0, 7] and h, = g(o) — k(o) on [o,1]. Note that (k) =0 on
[0,v]U[o,1]. We put

N_{g on [7,0]
I= W +h on [0,7U[s1].

Lemma 2 implies that §e =) and ||6(@)| < 2]/6:(9)|lz, so that we have
lglls < 171l < 2n(max K.)| 5@y
< Zn(m?x Ki>|( @) = 4n(mgx Ki)ll 05(0) ||z -

It follows that the kernel K(6;) of 45 is {\1z X\ € R} and the range R(dz)
of 0 is a closed linear subspace in C(E).

Now we show that R(6;) = C(E). By Lemma 3 and the compactness
of E, there is an element v in 2/(§) with o(v)(x) # 0 on E. Taking
(0(v)|z)7'05 instead of §, if necessary, we may assume that R(d;) contains
1;, where 1; is the unit element of C(E). Let K be an arbitrary
subinterval of E and X(K) a characteristic function of K. Then, by
Lemmas 2 and 3, the same argument as above implies that there exists
a sequence g, in 2(8;) such that §,(g,) pointwise converges to X(K) and
10(g) |l < 2||1£||z = 2. Suppose that ¢ is a continuous linear functional

on C(E) such that ¢(R(6z))=0. Then we haveSEX(K Yd¢ =1lim,_,., $(0z(g,))=

0 so that ¢ = 0. Since R(6;) is a closed subspace of C(X), by the Hahn-
Banach theorem, we have R(6;) = C(E). It follows from [4, Theorem
2.3] that there exists a unique non-atomic signed measure g; on E such
that 0z = 0,

Let G be a connected component of A, N B, and G, a sequence of
closed subintervals of G such that G,c@G,,, and U,G, = G. By the
above argument, for each G,, there is a non-atomic signed measure g,
with 0q, = 3/«;,,- The uniqueness of p; implies that y; is the restriction
of p¢, ., to G,. Considering y;, as a function of bounded variation on
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G, which is the restriction of f . to G,, we put p(x) = lim,.., e, (@)
for # in G. Since p;, is non-atomic, g is continuous. Thus we get a
continuous function ¢ on A, N B; and our assertion follows from the
uniqueness of measure.

REMARK 7. Let 0, be the closed extension of the usual derivative
d/dx whose kernel is the closed subalgebra of C(I) generated by the
Cantor function and the unit element of C(I) (cf. [3]). Then we have
A; =1I and B, is the complement of the Cantor set.

REMARK 8. It follows from the proof of [4, Theorem 2.2] that there
exists a dense subset U of A, N B; such that

5(f)(x)=l}££1£<(z:2)):£((z)) for fin 2() and zin U.

We set M, = {xe A; N B;; there exists a neighborhood of x on which
¢ is monotone}. The following corollary is clearly verified by [4, Theorem
3.1].

COROLLARY 9. Let the motation be the same as in Theorem 6. Then
0 18 quasi well-bebaved if and only if M, is dense in A; N B;.
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