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1. Introduction. The purposes of this paper are to classify quater-
nionic submanifolds in a quaternionic symmetric space and to investigate
the homology classes represented by quaternionic submanifolds in a com-
pact quaternionic symmetric spaces. The following results motivate the
subject of this paper. Quaternionic submanifolds in a quaternionic Kahler
manifold are minimal stable submanifolds and compact ones are homolo-
gically volume minimizing, as were proved by the author in [13].

Here we shall give the definitions of quaternionic Kahler manifolds
and quaternionic submanifolds and state some properties of quaternionic
submanifolds. A 4n-dimensional connected Riemannian manifold M is
called a quaternionic Kahler manifold, if M has the following property:
There is a point & in M such that, through an identification of T,(M)
with H", the linear holonomy group of M at « is contained in Sp(n)Sp(1).
In this situation, take a piecewise smooth curve z from x to y for any
point ¥ in M and put

S, = P.Sp(LHP,

where P, is the parallel translation along the curve z. S, is independent
of the choice of 7, because Sp(1) is a normal subgroup of Sp(n)Sp(1). We
call S = {S,},cx @ quaternionic structure on M. A connected submanifold
N of M is calld a quaternionic submanifold in M, if T,(N) is invariant
under the action of S, for each y in N. Alekseevskii [1] proved that a
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quaternionic submanifold in a quaternionic Kdhler manifold is totally
geodesic.

Kraines [8] introduced a parallel 4-form 2 on a quaternionic Kahler
manifold. We call 2 the fundamental 4-form on a quaternionic Kahler
manifold. Let 2™(H™) = ¢,,, which is independent of n. On a quaternionic
Kahler manifold M with the fundamental 4-form 2 the inequality

—LQ"‘ < vol,

Cm ¢

holds for any oriented tangent 4m-plane &£ on M. The equality holds if
and only if ¢ is invariant under the action of the quaternionic structure
on M and has a suitable orientation. This result is proved in [13], but
the coefficient of 2™ in the inequality in [13] is incorrect. So £2"/c, is a
calibration on M in the sense of Harvey-Lawson [4]. Consequently, a
quaternionic submanifold is a minimal stable submanifold and compact
one is homologically volume minimizing.

A quaternionic symmetric space is a kind of quaternionic Kahler mani-
fold. The definition of quaternionic symmetric space is given in Section
2. Let M’ be a quaternionic symmetric space and I,(M’) be the identity
component of the group of all isometries on M’. Let ¢' be the Lie algebra
of I,(M’') and ¢'° be its complexification. In Section 8 we shall reduce
the classification of I,(M')-conjugacy classes of complete quaternionic sub-
manifolds in M’ to that of Int(g’“)-conjugacy classes of complex simple
subalgebras of index 1 in ¢'¢. Sections 4, 5 and 6 are devoted to classi-
fying all Int(g’°)-conjugacy classes of complex simple subalgebras of index
1 in classical complex simple Lie algebras g¢'c.

In Section 7 we shall consider the injectivity of the map X from the
set & (M') of all I(M')-conjugacy classes of complete quaternionic sub-
manifolds in a compact quaternionic symmetric space M’ to H,(M’'; R).
The map X assigns the I(M’')-conjugacy class represented by a quater-
nionic submanifold M in M’ to the homology class represented by M.
We shall show that X is injective when M’ is

GS. = SUn + 2)/S(UR)x Um)), G, = SO(7)/SO(4) x SO(3) or

G}, = SO(8)/SO(4) x SO4) .

The compact quaternionic symmetric space G,/SO(4) of exceptional
type is investigated in Section 8. We shall show that there is a unique

I(G,/SO4))-conjugacy class of quaternionic submanifolds in G,/SO(4), which
is represented by P*C) = G¢,.

2. Quaternionic symmetric spaces. We first give the definition of
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quaternionic symmetric spaces and next show that a quaternionic submani-
fold in a quaternionic symmetric space is also a quaternionic symmetric
space. By Wolf [14] all compact quaternionic symmetric spaces are con-
structed from compact simple Lie algebras whose ranks are greater than
1. All noncompact quaternionic symmetric spaces are obtained as the
noncompact duals of compact ones. We shall review this construction in
this section.

DEFINITION 2.1. A Riemannian manifold M is called a quaternionic
symmetric space if M satisfies the following conditions:

(i) M is a quaternionic Kahler manifold with quaternionic strue-
ture S.

(ii) M is a symmetric space.

(iii) S, is contained in the linear holonomy group H,(M) for some
point z in M.

REMARKS. (i) If M is a quaternionic symmetric space, then S, is
contained in H,(M) for any point y in M.

(ii) There exists a Riemannian manifold which is both quaternionic
Kahler and symmetric but is not quaternionic symmetric. S?*x S? is such
an example.

LEMMA 2.2. Let M' be a quaternionic symmetric space and M be a
complete quaternionic submanifold in M'. Then M 1s also a quaternionic
symmetric space with respect to the induced Riemannian metric.

PrROOF. Let S be the quaternionic structure on M’. By Alekseevskii
[1], M is totally geodesic in M’. Therefore M is also symmetric and quater-
nionic Kahler with the quaternionic structure S|y = {S,|r,un},ex- Hence
to prove Lemma 2.2 we may only show that M satisfies the condition
(iii) in Definition 2.1. Fix a point z in M. We can extend each element
h in H,(M’) to an isometry & of M’ which satisfies &(x) = « and (k,), = h.
For each ¢ in S,, the isometry g leaves M invariant. Therefore S,|r_ .,
is contained in H,(M), that is, M satisfies (iii).

Now we shall construct compact quaternionic symmetric spaces from
compact simple Lie algebras whose ranks are greater than 1. Let g be
a compact simple Lie algebra whose rank is greater than 1 furnished
with an Int(g)-invariant inner product {, ). Take a maximal Abelian
subalgebra t in g. Then the complexification t¢ of t is a Cartan subalgebra
of the complexification g¢ of g. For each element « in t, put

0, = {Xeg% [H, X] =V —1{a, HYX for each Het}.
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An element « in t — {0} is called a root if g, # {0}. Let 4 denote the
set of all roots. Fix a lexicographic ordering on t and denote by 4, the
set of all positive roots in 4 and by & the highest root in 4,. Set

g =Ro+gN(@ + g, .

Then g, is a compact 3-dimensional simple subalgebra of g. It is known
that the analytic subgroup G, of Int(g) corresponding to g, is simply con-
nected and isomorphic to Sp(1) (cf. Wolf [14, the proof of Theorem 5.4]).
Let 3 be the centralizer of g, in g. The subalgebra f =g, + 3 is the
normalizer of g, in g and g, and 3 are ideals in . Define an automorphism
s of g and a linear subspace p of g by

s = exp <%>—5> € Int(g)

and
p= gﬂiﬂ](ga + 8.,

where a runs through the elements of 4, — {6} satisfying <{a, 0) # 0.
The automorphism s of g is involutive, because

sly =1id, , s,=—id, and g=f+p.

Hence (g, s) is a compact orthogonal symmetric Lie algebra. Denote by
K the analytic subgroup of Int(g) corresponding to f. From the const-
ruction of K it follows that K is connected and of maximal rank in
Int(g), so the compact symmetric space Int(g)/K is simply connected.
Since = g, + 3 is an ideal decomposition, G, defines a quaternionic struec-
ture on Int(g)/K through the parallel translations. The symmetric space
is a quaternionic Kahler manifold with the quaternionic structure defined
by G,. The relation G,C K implies that Int(g)/K is a quaternionic sym-
metric space. The quaternionic symmetric space Int(g)/K does not depend
on the choice of a maximal Abelian subalgebra t or an ordering on t.

THEOREM 2.3. For each compact simple Lie algebra g whose rank is
greater than 1, Int(g)/K constructed above is a compact simply connected
quaternionic symmetric space. Conversely, each compact quaternionic
symmetric space s of the form Int(g)/K for some compact simple Lie
algebra g whose rank is greater tham 1. Furthermore, the moncompact
quaternionic symmetric spaces are just the noncompact duals of the spaces
Int(g)/ K described above.

PrROOF. We may only prove that each compact quaternionic symmetric
space is of the form Int(g)/K discribed above. Let M be a compact qua-
ternionic symmetric space. By Wolf [14, Lemma 3.1], M is irreducible.
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So the Ricei curvature tensor of M is positive definite. By Alekseevskii
[1, Assertion 6], M is simply connected, so M is a compact simply con-
nected quaternionic symmetric space. By Theorem 5.4 in Wolf [14], M
is the space Int(g)/K for some compact simple Lie algebra g whose rank
is greater than 1.

For the rest of the present paper we shall use the notations { , },
t, 4, -+- described above for a compact simple Lie algebra g and <{ , ), t,
4, -+ for ¢

REMARK. By Theorem 2.3, we can obtain the list of compact quater-
nionic symmetric spaces as in the Table.

TABLE

g€ Rank Dimension
GS§, 31(3, C) 1 4
GS., (n=2) 8l(n+2, C) 2 in
GR; o(7, C) 3 12
GR, n24) o(n+4, C) 4 4n
PYH) (n=1) gp(n+1,0C) 1 4n
(e, Bu(6)-+3p(1)) ¢ 4 40
(e7, 0(12)+2p(1)) e¢ 4 64
(es, e7+3p(1)) e§ 4 112
(7, 39(8)+23p(1)) f¢ 4 28
G./S04) gf 2 8

3. Reduction of the problem. Let ¢’ be a compact simple Lie algebra
whose rank is greater than 1. Then M’ = Int(g)/K’ constructed in Section
2 is a compact quaternionic symmetric space. In this section we shall
reduce the classification of I,(M’)-conjugacy classes of complete quater-
nionic submanifolds in M’ to that of Int(g')-conjugacy classes of simple
subalgebras of index 1 in ¢’ whose ranks are greater than 1 (Theorem
3.1). Next for a compact semisimple Lie algebra g’ we shall reduce the
classification of Int(g’)-conjugacy classes of semisimple subalgebras in g’
to that of Int(g’®)-conjugacy classes of complexs emisimple subalgebras in
g’¢ (Proposition 3.3).

From now on, for any compact simple Lie algebra g, we shall con-
sider the invariant inner product {, > on g normalized by the condition
{8, 8 = 2, which is independent of the choice of a maximal Abelian sub-
algebra t. Let g be a simple subalgebra in a compact simple Lie algebra
¢’ and ¢: g—¢ be the inclusion map. The index j, of the simple subalgebra
g in ¢ is defined by the equation:
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JLX, Y) = {(X)e, (Y))'

for all X and Y in g, after Dynkin. By Theorem 2.2 in Dynkin [3], the
index j, is a positive integer.

For a simple subalgebra g in a compact simple Lie algebra g’, denote
by ¢(g) the Int(g')-conjugacy class represented by g, and by &(g') the set
of all Int(g')-conjugacy classes of simple subalgebras of index 1 in ¢' whose
ranks are greater than 1. Similarly, for a complete quaternionic submani-
fold M in the compact quaternionic symmetric space M’ = Int(g)/K’,
denote by c(M) the I(M’')-conjugacy class represented by M, and by
& (M’') the set of all I,(M')-conjugacy classes of complete quaternionic
submanifolds in M’. Note that I,(M’) leaves the quaternionic structure
on M’ invariant.

We shall construct a map @ from &,(g) to (M’). Take and fix a
maximal Abelian subalgebra t' in g’. For each element a in &(g") we
can take a representative g of a such that gNt’ is a maximal Abelian
subalgebra in g. Since the index j, of g in ¢ is 1, the image of the
highest root 6 in 4 is a long root in 4’, by Theorem 2.4 in Dynkin [3].
So we can suppose ¢(8) = ¢’ and ¢(g,) = g/. The relations

«®)ct and cp)cy

are obtained, because s’ = ¢(s). The relations imply that Int(g)/K is a
totally geodesic submanifold in M’ = Int(g')/K’. Since [gi, ¢(p)] = ¢([g, P]) =
¢(b), the submanifold Int(g)/K is a quaternionic submanifold in M’. We
define @ by

P(a) = c(Int(9)/K) e & (M’) .

THEOREM 3.1. Let ¢ be a compact simple Lie algebra whose rank s
greater than 1 and M’ = Int(g')/K' be the corresponding compact quater-
nionic symmetric space. Then the map @ from &(g) to (M) is well-
defined and bijective.

PrRoOF. We first show that @ is well-defined. Let g and g® be
simple subalgebras in ¢’ which satisfy the following conditions:

(i) The indices of g and g® in ¢ are equal to 1;

(ii) The subalgebras t¥ = g® Nt and t*® = g® Nt’ are maximal Abelian
subalgebras in g* and g, respectively;

(iii) MEP) = ¢?(6?) = §’, where ¢¥:g?”—g’ is the inclusion and &%
is the highest root in 4 for t =1, 2;

(iv) There is an element g in Int(g’) such that g(g”) = g®.
The condition (iv) is equivalent to ¢(g"’) = ¢(g”). We can take an element
g in (iv) such that g(gi”) = g®. Since g = g = g{, we have g(g) = g!.
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To prove that the submanifolds Int(g")/K*™ and Int(g?)/K® are I,(M')-
conjugate, we must show that g* and g® are K’-conjugate in g’. So the
following lemma implies that @ is well-defined.

LEMMA 8.2. The normalizer of g, in Int(g’) coincides with K'.

PROOF. Let N’ denote the normalizer of ¢, in Int(g’). Then the
identity component of N’ coincides with K’. We may only prove that
N'cK'.

For each n» in N’, nlai: gi—¢g: is an automorphism of g/, hence there
exists an element g, in Gi such that gnl|,; =id;. This equation implies
that

3.1) (gm)glgm)™g™ = e

for all g in Gi.

Let 7: G—Int(g") be the universal covering group of Int(g) and G,
be the analytic subgroup of G corresponding to g/. Take elements g, in
G, and 7 in G such that z(§,) = ¢, and (%) = n. By (8.1),

~ SN S\ —] ~—

for all § in G,. Since the kernel of z is discrete,
(3.2) Gmg@Gn)'g =e
for all § in G,. 5
Let § be the element in G defined by
§ = expz <<5,,27;,>,3') ,
which is contained in G, and involutive. Put
K={xeG;523 =2} .

Then the Lie algebra of K is ¥’ and K is connected (see, for example,
Theorem 8.2 of Chapter VII in Helgason [5]). By (3.2), §.% is contained
in K, so % is an element of K. Therefore

n=n@ecnX®) =K',

which completes the proof of Lemma 3.2.

Since the isotropy subgroup of I,(M') at the origin is K’, the map
@ is injective. We have to prove that ¢ is subjective.

For each element b in &2(M’) we can take a representative M of b
such that M contains the origin of M’ = Int(¢’)/K’. By Lemma 2.2, M
is a compact quaternionic symmetric space. The Lie algebra g of the
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group of all isometries of M is naturally imbedded in ¢ in such a way
that fC¥ and pcCp’. Here we show that ¢(g,) = g;. Since the quaternionic
structure of M is the restriction of that of M’ to M, there is a Lie
algebra homomorphism o from g, to gf satisfying ¢([U, X]) = [o(U), «(X)]
for Ueg, and Xep. For Ueg, and X, Yep we have

[0, [X, Y1) = —[(X), «[Y, UD] — [«Y), «[U, X))]
—[«X), [(Y), o(U)]] — [(Y), [o(U), «(X)]]

= [o(U), ([X, Y]] .

Noting that ¥ = [p, p], we obtain
3.3) (LU, X]) = [o(U), X)]

for Ueg, and Xeg. Hence «(g,) = ¢([a, a:]) = [0(a.), ¢(a.)]Cgi, because of
(8.8)and ¥ = g{ + 3’. Therefore we have ¢(g,) = g{. This implies that the
index of g in ¢’ is 1. Therefore ¢(c(g)) = ¢(M) = b. Thus Theorem 3.1
has been proved.

Let ¢’ be a compact semisimple Lie algebra. For a semisimple
subalgebra g in ¢', denote by c(g) the Int(g)-conjugacy class represented
by g, and by &(g’) the set of all Int(g’)-conjugacy classes of semisimple
subalgebras in ¢'. When ¢ is simple, &,(g’) is a subset of &°(g'). The
complexification ¢'¢ of ¢’ is a complex semisimple Lie algebra. For a
complex semisimple subalgebra 9 in ¢'¢, denote by ¢(§) the Int(g’®)-conjugacy
class represented by %, and by & (g'°) the set of all Int(g’“)-conjugacy
classes of complex semisimple subalgebras in ¢’°. Now we define a map
 from Z(g') to £(g’°) by

P(e(9)) = c(g)

-for each semisimple subalgebra g in g¢'.
We shall give a brief proof of the following proposition.

PROPOSITION 3.3. Let ¢ be a compact semisimple Lie algebra. Then
the map + from Z(g') to €(g'€) is well-defined and bijective.

PROOF. Clearly +r is well-defined, because Int(g’) is naturally imbedded
in Int(g’c).

First the surjectivity of 4 follows from the existence of compact real
forms in a complex semisimple Lie algebra and the conjugacy of maximal
compact subalgebras in a real semisimple Lie algebras.

Next the injectivity of 4 follows from Lemma 1 in Ihara [7].

We can define the index of a complex simple subalgebra in a complex
simple Lie algebra, using their compact real forms. Denote by &(g'°)
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the set of all Int(g')-conjugacy classes of complex simple subalgebras of
index 1 in g’¢ whose ranks are greater than 1. For a compact simple Lie
algebra ¢’, the map + preserves the indices. Hence the classification of
all elements in & (M’) is reduced to that of all elements in &,(g’°), by
Theorem 3.1 and Proposition 3.3.

We end this section by stating some properties about complex simple
subalgebras of index 1. Let g be a compact simple Lie algebra. For
each ¢ in Z,(g'°), take a representative g¢ in ¢ such that g = g°Ng’ is a
compact real form of g°. Take maximal Abelian subalgebras t and t’ in
g and ¢, respectively, in such a way that tct'. Denote by ¢ g¢—g'¢ the
inclusion. The following lemma holds, by Theorem 2.4 in Dynkin [3].

LEMMA 3.4. In the above situation, if a s a long root in 4, then
ta) is also a long root in 4. Furthermore, we have ¢(a,) = Glua)-

COROLLARY 3.5. If 4 is of type A, D or E, we have ¢(g,) = @i for
all a in 4.

Proor. If 4 is of type A, D or E, then all roots in 4 are long roots.
Hence Lemma 3.4 implies Corollary 3.5.

A subalgebra g° in g'¢ is said to be regular, if ¢«(g,) = g, for each
a in 4.

4. Preliminaries for classification of simple subalgebras of index 1.
In this section we shall review a general method of classifying subalgebras
in a classical complex Lie algebra developed by Mal’cev in [9] and describe
concretely each of classical complex simple Lie algebras.

Let g’¢ be one of the classical complex simple Lie algebras o(n, C),
8l(n, C) and 8p(n, C). Before considering Int(g’®)-conjugacy classes of com-
plex simple subalgebras in ¢'¢, we consider Int(g'¢)-conjugacy classes of
pairs (9, ¢) of complex simple Lie algebras ) and homomorphisms ¢: H— g'c.
Since o(n, C)C8l(n, C) and 8p(n, C)8l(2n, C), we can regard ¢:H—g'c as
a complex linear representation of ¥). The following theorem is obtained
from Theorem 1 in Mal’cev [9].

THEOREM 4.1. Let ¢, and ¢, be homomorphisms from a complex sim-
ple Lie algebra 9 to ¢'°. Then ¢, and ¢, are equivalent as complex linear
representations if and only if the following conditions are satisfied:

(i) ¢ and ¢ are O(n, C)-conjugate in the case g'¢ = o(n, C).

(ii) ¢, and ¢, are SL(n, C)-conjugate in the case g'¢ = 8l(n, C).

(iii) ¢, and ¢, are Sp(n, C)-conjugate in the case g'¢ = 8p(n, C).

COROLLARY 4.2. Let ¢’ be one of o2n + 1, C), 8l(n, C) and 3p(n, C).
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Let ¢, and ¢, be homomorphisms from a complex stmple Lie algebra ¥ to g’'c.
The homomorphisms ¢, and ¢, are Int(g'¢)-conjugate if and only if ¢, and
¢, are equivalent as complex linear representations.

We shall consider the case ¢'¢ = 0(2n, C). Take an element ¢ in
O(2n, C) such that det(c) = —1. For a complex simple Lie algebra ) and
a homomorphism ¢ from § to g'¢, define ¢° by

(X)) = oe(X)o™!

for all X in ). The following theorem is obtained from Theorems 2 and
3 in Mal’cev [9].

THEOREM 4.3. Let g'° be 02n, C) and o be an element in O2n, C)
such that det(c) = —1. For a complex simple Lie algebra Y and a homo-
morphism ¢: 9 —g’¢, ¢ and ¢ are Int(g“)-conjugate if and only if ¢ 1is
orthogonally reducible.

By Corollary 4.2 and Theorem 4.3, we can construct all Int(g’c)-
conjugacy classes of pairs (9, ¢) of complex simple Lie algebras § and
homomorphisms ¢: ) —g’¢ from all equivalence classes of complex linear
representations for each classical complex simple Lie algebra g'c.

Now we shall consider Int(g’“)-conjugacy classes of complex simple
subalgebras in a classical complex simple Lie algebra g’¢. After classifying
Int(g')-conjugacy classes of pairs (), ¢), we must decide whether ¢(%) and
¢(9) are Int(g'‘)-conjugate subalgebras or not, for distinet Int(g'¢)-conjugacy
classes of (9, ¢) and (9, ¢). If ¢ () and ¢ () are Int(g’c)-conjugate, we can
take a representative ¢, such that ¢(§) = ¢,(§). So there is an element 7
in Aut()) such that ¢, =¢o07z. Since Int(h) is naturally imbedded in
Int(g’“), we may suppose that ¢ is an outer automorphism of Y. If
does not have any outer automorphisms, this does not happen. If § has
outer automorphisms, we must decide which of Int(g’¢)-conjugacy classes
of (9, ¢) coincides with the Int(g'°)-conjugacy class of (9, ¢,o7) for each
(9, ¢,) and 7 mod Int(9) in Aut(h)/Int(h). By identifying Int(g’®)-conjugacy
classes of (9, ¢) and (5, ¢,) such that (9, ¢) and (), ¢,o7) are Int(g®)-conjugate
for some 7z in Aut(f)), we can classify Int(g'¢)-conjugacy classes of complex
simple subalgebras in g'c.

We shall apply the method mentioned above to each classical complex
simple Lie algebra in Sections 5 and 6.

Let g be a complex simple Lie algebra with compact real form g
and 0:g°—gl(V) be an irreducible complex linear representation. Take a
maximal Abelian subalgebra t in g and put

Vi={weV; p(H)w =1V —=1{\, H)v for each H in t}
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for each element \ in t. An element A in t is called a weight of p if
V:# {0}. Let 4, denote the set of all weights of p. Put m; = dim.V,
for A in 4,.

Here we concretely describe each of classical complex simple Lie
algebras. Let M, (F) be the set of all nxn F-matrices and E,; =
(00i0s7)15a,85n € M(F).

(i) ¢g°=38l(n+1,C): A,type

8lln+1,C)={XeM,. (C);tr(X) =0} .

A compact real form g of 8l(n + 1, C) is given by

g=8un+1) ={XeM,,(C);'X+ X =0, tr(X) =0}.
Define an invariant inner product {, > on g by

(X, YY) = —tr(XY)

for X and Y in g. Put

t= {Vj(t1E1,1 + e+ tn+1En+1,n+1); tieR? g ti = O} .
Then t is a maximal Abelian subalgebra in g. Set

e, =V —1E,,

for 1 <7 <n+ 1. The root system 4 of g¢ with respect to t€is {¢; — e;;
1<i#j=<n+1}. Since (e, — e;, e, — ¢;y) = 2, the inner product {, )
defined above is the normalized invariant inner product on g.

> n+1
W=+ ' te——"Se 1Zi<n)
n+1i=

is a fundamental weight system of 4.
(ii) g°=0@2n + 1, C): B,-type

o2n +1,C) ={XeM, ,(C);'X+ X=0}.
A compact real form g of o(2n + 1, C) is given by
g=02n+ 1, R) ={XeM, ,(R); X+ X=0}.
Define an invariant inner product {, > on g by
(X, Y)Y = —tr(XY)/2
for X and Y in g. Put
t={t(E,,—FE,,) + - + t,(Ey_y2n — Eopony); tL,ER}.

Then t is a maximal Abelian subalgebra in g. Set
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€; = E2i-—1,21 - E2i,2i—1

for 1 <4 =< mn. The root system 4 of g¢ with respect to t¢ is {Fe,*e;;
1si<j=n}U{xe;1=<i=<mn}. Since (e, +e; e + e;) = e, — e;, e; —
e;> = 2, the inner product ¢, ) defined above is the normalized invariant
inner product on g.

w;=¢+ - +e I=i1=n-1),

w, = (e, + -+ +e,)2
is a fundamental weight system of 4.

(iii) g¢¢ = 8p(m, C): C,-type

Zl Z2
wm )=,

A compact real form g of 8p(n, C) is given by

}; Z,eM,(C), 'Z, = Z,, *Zy = Z,} .

Z, Z, _
g =8p(n) = > 5 Li€M(C), "2, + 2, =0,'Z, = Zy .
-2, Z,

Define an invariant inner product ¢, > on g by
(X, Y)=—tr(XY)
for X and Y in g. Put
t={V =1t(By — Eppisd) + ++ 4 ta(Brn — B tE R} .
Then t is a maximal Abelian subalgebra in g. Set
e;=V —1(E,; — E,yi,.: )V 2

for 1 <4 < n. The root system 4 of g¢ with respect to t¢ is {1 2e}U
{(xe,xe)V2;1 <4< j=<mn}. Since (" 2e,1 2e) =2, the inner pro-
duct ( , > defined above is the normalized invariant inner product on g.

0, =+ +e)h 2 Q1=ZLiZn)

is a fundamental weight system of 4.
(iv) ¢¢ =o0@n, C): D, type

o(2n,C) ={XeM,(C);'X+ X=0}.
A compact real form g of o(2n, C) is given by
g=02n, R) ={XeM,(R); X+ X=0}.
Define an invariant inner {, > on g by
(X, Y) = —tr(XY)/2
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for X and Y in g. Put
t={t (B, — Ey,) + ++ + t(Fonr0n — Eopony); t€R} .
Then t is a maximal Abelian subalgebra in g. Set
e, =Fy 10— Ey oy

for 1 <7 <mn. The root system 4 of g¢ with respect to t¢ is {*e,*e;;
1=<i¢<j=mn}. Since (e, + e; e, + ¢;) = {e; — e;, e, — e;y) = 2, the inner
product <, ) defined above is the normalized invariant inner product on g.

w,=¢ + -+ +e¢, l=1=n-2),

W,y =(e,+ 0+ +e,.,—6,)2,
w,= (e + -+ +e,_ +e,)2

is a fundamental weight system of 4.

REMARK. The natural inclusions 8l(n,C)—38l(n +1,C), o(n,C)—
o(n +1,C), 8p(n, C)—8p(n + 1, C), 8p(n, C)—38l(2n, C) are of index 1, but
the inclusion o(n, C)—38l(n, C) is of index 2.

5. 8l(m, C). In this section we shall classify all elements in &(g’°)
for g¢'¢ = 8l(n, C). The corresponding compact quaternionic symmetric
space is the complex Grassmann manifold G¢,_, = SU(n)/S(U(n — 2) x U(2)).
Since G¢, = P*C) has no proper quaternionic submanifolds, we may sup-
pose that » = 4. The rank of the symmetric space M’ = G¢,_, is 2. Let
g¢ be a complex simple subalgebra of index 1 in g'® whose rank is greater
than 1. The compact quaternionic symmetric space M corresponding to
g¢ is a quaternionic submanifold, in particular, a totally geodesic submani-
fold in M’. Hence the rank of M is less than or equal to 2. According
to Table in Section 2, g¢ = 8l(k, C), 8p(k, C) or gf.

Let

¢=0@D: - D
be an irreducible decomposition of ¢: g¢—38l(n, C). Then
jt:j11+ v +j’d’

by Theorem 2.3 in Dynkin [3]. Since j, =1, one of j,, -+, 7, is 1 and
the others are all 0. So we suppose that ¢ is an irreducible complex

linear representation.
Take a long root a in 4, a weight A of ¢, and a nonzero vector v in

V,. By the definition,
ta)y =V =1, adv .
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Therefore
), )y = —tr((a)(a)) = 1; m(n a)?

that is,
Jo= ;gj m;(n, a2 .

Since (A, a) = 2\, a)/{a, ) is an integer, we obtain the following lemma.

LEMMA 5.1. Let g° be a complex simple subalgebra in 8l(n, C) and
assume that ¢¢ is irreducible in 8l(n, C). The index of ¢ is equal to 1
+f and only if, for a long root a in 4, there is a unique weight \, in A,
such that (v, a) = 0 for all N in A, — Ay =N}, Ny @) =1, and m,, = 1.

We apply this criterion to g¢ = 8l(k, C), 8p(k, C), and g¢f.

In the case g¢ = 8l(k, C), the highest weight of ¢: 8l(k, C)—38l(n, C) of
index 1 is w, or w,_,, by the concrete description of w, in Section 4 and
Lemma 5.1. Hence k = n and ¢ 3l(n, C)—38l(n, C) is an automorphisms.

In the case g¢ = 8p(k, C), the highest weight of ¢: 8p(k, C)—38l(n, C)
of index 1 is w,. The irreducible complex linear representation with
highest weight w, is nothing but the natural inclusion ¢: 3p(k, C)— 312k, C).

In the case g¢ = ¢f, all irreducible complex linear representations of
g¢ are orthogonal. See Mal’cev [9]. So we may suppose that the image
of an irreducible complex linear representation ¢: g —8l(n, C) is contained
in o(n, C). Since the index of the inclusion o(n, C)—38l(n, C) is 2, we
obtain j, = 2. Therefore there is no inclusion ¢: g —38l(n, C) of index 1.

The following theorem summarizes the above argument.

THEOREM 5.2. For n =4,
&,8l(n, C)) = {cBlk, C)); 3 =k =n — 1}U{c@pk, C)); 2 = k < [n/2]},
where 8p(k, C)C8l(2k, C)8l(n, C) are the natural inclusions.
Now we obtain the classification of quaternionic submanifolds in GY ..

THEOREM 5.3. Let P*(H)CG¢,, be the inclusion induced by the natu-
ral inclusion 3p(k + 1, C)c8I2k + 2,C). For n = 2,
Z(GS,) ={eGE); 1=k =n — 1JU{c(PH)); 1 =k < [n/2]} .
REMARK. Chen-Nagano [2] found these submanifolds as totally geo-
desic submanifolds in G¥,.

6. o(n, C). Let g’ = o(n, C) and g€ be a complex simple subalgebra of
index 1 in ¢'¢ whose rank is greater than 1. We denote by ¢: g¢—g'¢ the
inclusion. Let

(= [1®. . .@zd
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be an orthogonally irreducible decomposition of ¢. Then
j" =j‘1 4 e _|_de
by [3, Theorem 2.3]. Since j, =1, one of j,, *--, j, is 1 and the others

are all 0. So we suppose that ¢ is orthogonally irreducible. We need
the following theorem due to Mal’cev.

THEOREM 6.1 ([9, Theorem 4]). Let ¢: g —o(n, C) be orthogonally irre-
ducible. Then ¢ is also irreducible in 8l(n, C) or there is an irreducible
complex representation o of g¢ such that ¢ is equivalent to opo*, where
©* is the contragredient of p.

In the case that ¢ is also irreducible in 8l(n, C), from the definition
of the normalized invariant inner product on o(n, C) it follows that

{Ua), da)y’ = —tr(da)da))/2 = 2 man a)’f2
for a root @ in 4. Hence
j.= Zg, m;\n, a)?f4

for a long root @ in 4. On the other hand, for a long root « in 4 there
are distinct integers 7 and j such that the matrix ¢(a) is equivalent to
the matrix +e,+e; described in (ii) g = 0(2n + 1, C) and (iv) ¢ = 0(2n, C)
of Section 2, by Lemma 38.4. The matrix =+e,+e; has eigenvalues 1/ -1
with multiplicity 2, —/—1 with multiplicity 2, and 0 with multiplicity
n — 4. We have

oy ay==+1,0
for » in 4,. From these we obtain the following lemma.
LEMMA 6.2. Let g° be a complex simple subalgebra im o(n, C) and

assume that g is irreducible in 8l(n, C). The index of g in o(n, C) is
equal to 1 if and only if for a long root a in 4 and all weights N in A,

v ay=+1,0 and ST my=2.
2e4d,,Q,a)=1

In the case that there is an irreducible complex representation o of
g¢ such that ¢ is equivalent to o@p* we consider the weights of p. Let
V be the representation space of p. From the definition of the normal-
ized invariant inner product on o(n, C) it follows that

a), da)y’ = —tr(a)(@)/2 = % m;(n, a)?

for a root a in 4, because C* = VE@V*. Hence
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jt = Z m2<)\n (X>2/2
leAP

for a long root a in 4. Since {)\, ) is an integer, we obtain the following
lemma.

LEMMA 6.3. Let g° be a complex simple subalgebra in o(n, C) and
assume that ¢ 18 orthogonally irreducible and that there is an irreducible
complex representation o of g° such that ¢ is equivalent to o@p*. The
wndex of g in o(n, C) 1s equal to 1 if and only if for a long root a in
4 there is a unique weight N, in A, such that (\, a) =0 for all \ in
Ao — Moy =N}y vy @) =1, and m,, = 1.

We apply the criterions described in Lemma 6.2 and Lemma 6.3 to
each complex simple Lie algebra g€.

The irreducible complex linear representations p of g¢ described in
Lemma 6.3 have been listed in Section 5, that is, the identity map
0.: 8l(n, C)—8l(n, C), its contragredient p¥, and the natural inclusion
0s: 8p(n, C)—8l(2n, C).

The contragredient pf of p, is given by p¥(X) = —'X for X in 8l(n, C).

Since
I I [X 'I I I 7
[l/?ﬂ —I/Z_I"IJ —tX_L/?iI —1/——_11]

B L[ X—'X -V -I(X + ‘X)J
2V -1(X + 'X) X —tX ’
the representation p,Dof is equivalent to
¢: 8l(n, C) — 8l(2n, C)

1[ X —'X -V =1(X + ”X)J

X = .

2V —1(X +'X) X —X

The image of ¢ is contained in o(2n, C), so ¢ 8l(n, C)—0@2n, C). For an
element ¢ in O(2n, C) with det ¢ = —1, the homomorphisms ¢ and ¢° from

8l(n, C) to o(2n, C) are not Int(o(2n, C))-conjugate by Theorem 4.3, because ¢
is orthogonally irreducible. The order of the group Aut(8l(n, C))/Int8l(xn, C))
is 2 and the unique nontrivial element in it is o} mod Int(8l(xn, C)). For
all X in 8l(n, C),
t t
KOPf(X):_l'|: _)f— X VvV —1(X + X)}
2| -V —1(X + 'X) X —-*X

Sy
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If n is even, ¢ and ¢o pf are Int(0(2n, C))-conjugate. Hence the subalgebras
¢«Bl(n, C)) and ¢°(8l(n, C)) are not Int(o(2n, C))-conjugate. If =» is odd,
taking o = |:I _ I:I’ we obtain ¢o of = ¢°, hence the subalgebras ¢(8l(n, C))
and ¢°(8l(n, C)) are Int(o(2n, C))-conjugate. Next we consider 8l(n, C)C
o(2n, C)Co(m, C), where 2n < m. Denote by ¢,: 0(2n, C) —0(m, C) the natu-
ral inclusion. By Theorem 4.3, c(¢,¢(8l(n, C))) is a unique Int(o(m, C))-
conjugacy class of simple subalgebras of index 1 in o(m, C) which are
obtained from the equivalence class of (8l(n, C), ¢, 0¢).
The representation p,@py of 3p(n, C) is equivalent to

¢: 8p(m, C) — o(4n, C)

'z, z
i_Zs —tZJ
Z, —'Z, Z,—Z, —V =UZ+'Z) —V —1(Z,+'Z,)
1| Z,—'Z, Z,—Z, —V-UZ+'Z) V' -1Z+'Z)
T2lvTizz) vEiZ+z)  Z -z Z,—Z, |’
V' =UZy+Z) —V —1(Z,+Z) Zy — 7, Z, — 7,
For an element ¢ in O(dn, C) with det ¢ = —1, the homomorphisms ¢ and

¢° from 8p(n, C) to o(dn, C) are not Int(o(4dn, C))-conjugate by Theorem 4.3,
because ¢ is orthogonally irreducible. The group Aut(8p(n, C))/Int 8p(n, C))
is trivial, hence ¢&p(n, C)) and °(8p(n, C)) are not Int(o(dn, C))-conjugate.
Next we consider 8p(n, C)Co(dn, C)Co(m, C), where 4n < m. Denote by
¢,: 9(dm, C)— (m, C) the natural inclusion. By Theorem 4.3, c(¢, - ¢«(8p(n, C)))
is a unique Int(o(m, C))-conjugacy class of simple subalgebras of index 1
in o(m, C) which are obtained from the equivalence class of (8p(n, C), ¢, o¢).

We classify elements in &(o(n, C)) whose orthogonally irreducible
parts satisfy the condition in Lemma 6.2. Let g° be a complex simple
subalgebra in o(n, C) and assume that g¢ is irreducible in 8l(n, C). We
apply the criterion described in Lemma 6.2 to each complex simple Lie
algebra g¢.

In the case g = 8l(k, C), the highest weight of ¢ 3l(k, C)—o(n, C) of
index 1 is only w, of 8l(4, C), by the concrete description of w, in Section
4 and Lemma 6.2. Hence ¥ =4 and n» = 6. The complex irreducible
representation of 8l(4, C) with highest weight w, gives an isomorphism
of 84, C) to 0(6, C).

In the case g¢° = 0(2k + 1, C), the highest weight of ¢: 02k + 1, C)—
o(n, C) of index 1 is w, of 02k + 1, C) or w, of o(7,C). The complex
irreducible representation of o(2k + 1, C) with highest weight ®, is nothing
but the identity of o2k + 1, C). That of o(7, C) with w, is the spin
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representation spin: o(7, C)—0(8, C). For an element ¢ in O(8, C) with
det 0 = —1, the homomorphisms spin and spin® from o(7, C) to o(8, C) are
not Int(o(8, C))-conjugate by Theorem 4.3. The group Aut(o(7, C))/Int(o(7,
C)) is trivial, hence spin(o(7, C)) and spin’(o(7, C)) are not Int(o(8, C))-
conjugate. For n > 8, subalgebras spin(o(7, C)) and spin’(o(7, C)) in o(n, C)
are Int(o(n, C))-conjugate, by Theorem 4.3.

In the case ¢° = 8p(k, C), the highest weight of ¢: 8p(k, C)—o(n, C)
of index 1 is only w, of 8p(2, C). The complex irreducible representation
of 8p(2, C) with highest weight w, gives an isomorphism of 3p(2, C) to
o(5, C).

In the case g° = o(2k, C), the highest weight of ¢: o2k, C)—o(n, C)
of index 1 is w, of o(2k, C) or w,, w, of 0(8, C). The complex irreducible
representation of o(2k, C) of highest weight w, is the identity of o2k, C).
That of o(8, C) with highest weight w, or w, gives an outer automorphism
of o(8, C).

In the case that g€ is of type E. It is impossible that the Dynkin
diagram of g° is a subdiagram of the extended Dynkin diagram of o(n, C),
hence o(n, C) does not admit a regular subalgebra which is isomorphic to
g¢ by Theorems 5.1, 5.2 and 5.3 in Dynkin [3]. Therefore there is no
inclusion g€ —o(n, C) of index 1 because of Corollary 3.5.

In the case g¢ = {¢, we shall first describe the root system of the
exceptional Lie algebra f¢. Let {e, e, ¢, ¢,} be an orthonormal basis of R:.
Put

4= {iei; 1=1= 4}U{i‘eiieg’; 1=1<J5 = 4}U{(i61:f_‘62i‘63j:€4)/2} .

Then 4 is the root system of f{. Since {e;, + e;, e; + e;) = {e; — ¢;, €; —
e;y = 2, the inner product ( , ) is the normalized invariant inner product.

w, =e +e, w, =2 + ¢, + ¢,
w3=(3el+e2+e3+e4)/2, W, =€

is a fundamental weight system of 4. The weight w, is a unique domi-
nant weight )\ such that {\, @) = =1 or 0 for all long roots a in 4.
Since all (e, +e,+e,+¢,)/2 are weights of the complex irreducible repre-
sentation ¢: f¢—0(26, C) with highest weight w,, the index of ¢ is not 1
by Lemma 6.2. Hence there is no inclusion f{—o(n, C) of index 1.

In the case g¢ = ¢¢, we shall first describe the root system of the
exceptional Lie algebra gf. Let {e, e, ¢;} be an orthonormal basis of R®.
Put

4 ={x(e, —e), (e, — &), £(e; — e), (e, + e, — 2¢,)/3,
+(e, + € — 2e,)/3, (s + e, — 2¢,)/3} .
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Then 4 is the root system of gf. Since {e; — ¢;, ¢, — ¢;) = 2, the inner
product ¢, > is the normalized invariant inner product.

W, = (e, +e—26)8, w,=e¢ —e

is a fundamental weight system of 4. The weight w, is a unique domi-
nant weight A such that (A, @) = =1 or 0 for all long roots a in 4.
The complex irreducible representation ¢: g¢§ —o(7, C) with highest weight
w, is of index 1 by Lemma 6.2. This represents a unique Int(o(7, C))-
conjugacy class of homomorphisms of index 1 from g¢ to o(7, C) by Corollary
4.2. Hence the subalgebra ¢(gf) represents a unique Int(o(7, C))-conjugacy
class of simple subalgebras of index 1 in o(7, C) which are isomorphic to
g¢. Similar results hold in o(n, C) for n = 8.
The following theorem summarizes the above argument.

THEOREM 6.4. Take an element ¢ in O(m, C) with deto = —1 and
let 8l(n, C)Co(2n, C), 8p(n, C)Co(dn, C), spin(o(7, C))Co(8, C) and g5 Co(7, C)
be the inclusions described above. Then &, (o(m, C)) is given as follows.
&,0(7, €)) = {c(0(5, C)), c(0(6, C)), c(BL(S, C)), c(a?)} -
&,(0(8, C)) = {c(o(k, C)); 5 = k < T}U{cBl(4, C)), c(o8l(4, C)o™?), ¢(8L(3, C))}
U{e®p(2, C)), c(a 8p(2, C)o™")}
U{e(gs), e(spin(o(7, C))), ¢(o spin(o(7, C))o™)} .
&, (0(4n, C)) = {c(ok, C)); 5 < k < 4n — 1}U{c@Bl(k, C)); 3 < k < 2n}
U{c(o 8I(2n, C)o )} U{c@pk, C)); 2 < k < m}
U{e(o 8p(n, C)o™)}U{e(g?), c(spin(o(7, C)))}
for n = 3.
& 0dn + r, C)) = {cwk, C)); 5=k =4n + r — 1}
U{e@lk, €)); 8 =k = 2n + [r/2} U{c@pk, C)); 2=k < n}
U{e(gs), c(spin(o(7, C)))}
for n=2and r=1,2 or 3.
Now we obtain the classification of quaternionic submanifolds in Gf,.

THEOREM 6.5. Take an element ¢ in O(m + 4) with detg = —1 and
assume that o leaves the quatermionic structure on Gi, invariant. Let
G¢,CGR,,, P"(H)CGR,,, GR,(spin)CGR, and G,/SO(4)CGR, be the inclusions
induced by 8l(n + 2, C)Co(2n + 4, C), 8p(n + 1, C)Co(dn + 4, C), spin(o(7,
C))co8, C) and ¢fCo(7,C), respectively. Then Z(GE,) is given as
Sollows.

Z(Gs) = {c(GL), c(GLy), ¢(GF)), ¢(Go/SO4))} .
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Z(GL) = {e(GL); 1 = k =< 3LU{e(Gy), ¢(0Gyy), (G} U {c(P(H), c(aP(H))}
U{c(G:/SO(4)), c(Giy(spin)), ¢(0GEs(spin))} .
Z(GL,) = {c(GR); 1 =k < 4n — 1}U{e(GEy); 1 = k < 2n}U{c(0Gs .0}
U{e(P*(H)); 1 < k < n}U{c(aP"(H))} U{c(G:/SO4)), ¢(Gi(spin))}
for n = 2.

E(Glusr) = {e(GL); 1 Sk < 4n + v — 13U{e(GSL); 1 S k < 2n + [r/2]}
U{e(P¥(H)); 1 = k = n}U{e(G./SO4)), ¢(GEy(spin))}
forn=1and r=1,2 or 3.

REMARKS. Chen-Nagano [2] found many of these submanifolds as
totally geodesic submanifolds in Gf,.

The compact quaternionic symmetric space M’ satisfying ¢'¢ = 8p(n +
1, C) is P*(H) = Sp(n + 1)/Sp(1) x Sp(n). In P~(H), all complete quater-
nionic submanifolds are P™(H) (1 <m < n — 1). Furthermore, all compact
minimal stable submanifolds in P*(H) are P*(H) 1 £ m < n — 1), which
was proved by Howard-Wei [6] and Ohnita [10]. So we omit this case.

7. Homology classes represented by quaternionic submanifolds. In
this section we shall investigate the homology classes represented by
compact quaternionic submanifolds in compact quaternionic symmetric
spaces Gf,, Gf, and Gf,, using the results obtained in Sections 5 and 6.

Let M' be a compact quaternionic symmetric space. Define a map
X.zM)—H,M'; R) by

X(e(M)) = [M],

where [M] is the homology class represented by M. If complete quater-
nionic submanifolds M, and M, are I(M')-conjugate, M, and M, are
isotopic, in particular, homologous. A complete quaternionic submanifold
in a compact quaternionic symmetric space is a compact oriented sub-
manifold. Therefore X is well-defined.

The aim of this section is to show that X is injective when M’ is
one of Gi, Gf and Gf,. Consequently, in these spaces a complete
quaternionic submanifold is a unique volume minimizing submanifold
up to IL(M')-conjugacy im its homology class. Indeed, a quaternionic
submanifold M in M’ is a volume minimizing submanifold in its homology
class. Let £ Dbe the fundamental 4-form on M’'. If a compact oriented
submanifold M, in M’ is also volume minimizing in the homology class
[M], then

S Q*le, = S Q%le, = vol(M) = vol(M,) = S voly, ,
My M My
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where dim(M) = dim(M,) = 4k. Since vol, = 2*/c, on M,, M, is also a
quaternionic submanifold. If the map X for M’ is injective, then M and
M, are I(M’)-conjugate. Therefore a quaternionic submanifold in M’ is
a unique volume minimizing submanifold in its homology class up to
I,(M'")-conjugacy.

REMARK. A uniqueness theorem of certain homologically volume

minimizing submanifolds in a compact simple Lie group was obtained by
Ohnita and the author in [11].

LEMMA 7.1. Let M, and M, be compact quaternionic submanifolds
wn a quaternionic Kdahler manifold M'. If M, and M, are homologous
wn M', then vol(M,) = vol(M,).

Proor. Let 2 be the fundamental 4-form on M’. Put dim(M,) =
dim(M,) = 4k. Then we obtain

vol(M,) = SM e, = SM /e, = vol(M,) .

THEOREM 7.2. The following map 1is injective.
X: (Gs,) — Hy(G:.; R) .
ProOOF. By Theorem 5.3, we may only prove [Gf,]+# [P*¥H)] in
H,(Gf.; R) for 1 £k < [n/2].
Suppose [GS,] = [P*(H)]. Since Gy, is a Hermitian symmetric space,
we can consider the fundamental 2-form @ on the Kahler manifold Gf,.
The submanifold Gf, is a complex submanifold in Gf,. On the other

hand, P*(H) is a totally real submanifold in the Kahler manifold Gf,.
Therefore

VOI(GZC,k) = SGC a)Qk/(zk)! = SPk(H) w?k/(2k)! =0 ,

2,k

which is a contradiction. Hence [Gf,] # [P*(H)].
THEOREM 7.3. The following maps are injective.
X 2(Géy) — H(Gds; R)
X: 2 (Gs) — Hy(GY R) .
Proor. By Theorem 6.5, the map & (Gf;)— & (GE,) induced by the
inclusion Gf,— Gf, is injective and the diagram

Z(GF) 5 H, (G2 R)

Lo,
(GL) > H,(GL B)
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is commutative. Hence it is sufficient to prove that the map X: &°(Gf,) —
H,.(G},; R) is injective.

First we shall construct 4 distinct quaternionic structures on Gf,.
The root system 4 of o(8, C) is given by 4 = {te,;+e;1 <1< 5 <4}
Since every roots in 4 are long roots, each of them is the highest root
with respect to a suitable ordering. Let

31 =6 — 6,
4y ={ae ;e 6,;) = 0tU{=xd},
4, ={aed — {£d}; {a, 3,y # 0} .
Then the decomposition
o8 =Ft+p,
f=t+o(8)na% O »
t

p=0®)N3 &

determines the quaternionic symmetric space Gf,. Denote by S, the qua-
ternionic structure constructed from Rd, + o(8)N(g,, + g_,). Set

0,=¢ +e,, 0;=¢€e —e and 0,=¢ +oe,.
For each 2 <5 <4,
4 = {ae d;{a, 9;) = 0}U{=xd;},
A‘, = {aeA —_ {ia_,,}; <0(, 33> #* 0} ,
hence Ro; + 0(8)N(8,; + 8_;;) also determines a quaternionic structure on
G{,, which is denoted by S;. We call a quaternionic submanifold with
respect to the quaternionic structure S; on Gf, an S;-quaternionic sub-

manifold in G¥,. Let 2, be the fundamental 4-form with respect to the
quaternionic structure S; on Gf, for 1 < j < 4.

LEMMA 7.4. Let M, and M, be complete S,-quaternionic submanifolds
wn Gf,. If M, is an S;-quaternionic submanifold and if M, is nmot an
S;-quaternionic submanifold for the same j (2 < j < 4), then the homology
classes represented by M, and M, are distinct.

ProOF. Let dim(M,) = dim(M,) = 4k. Suppose [M,] =[M,], then
vol(M,) = vol(M,) by Lemma 7.1. On the other hand,

vol(at) = | @¥fe. = | @¥fe, < ol ,
1 2

which is a contradiction. Hence [M,] # [M,].
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By Theorem 6.5, a 4-dimensional S,-quaternionic submanifold in Gf,
coincides with one of Gf,, Gf,, P'(H) and ¢P'(H) up to I,(GR,)-conjugacy,
where o is an element in O(8) with deto = —1. The corresponding
complex simple subalgebras of index 1 in o(8, C) are o(5, C), 3I(3, C),
8p(2, C) and o 8p(2, C)o™.

The root system 4(3(3, C)) is given as follows, by Corollary 3.5.

4838, C) = {x(e; —¢;); 1 =1 < j=38}c4.
481(8, C)) contains o,. Hence Gy, is an S,-quaternionic submanifold, but
it is not an S;-quaternionic submanifold for 2 < j < 4, by the proof of
the surjectivity of ¢ in Theorem 3.1.
The subalgebra o(5, C) is orthogonally reducible in o(8, C), so

A(0(5, C)) = {*e,+e, +e, *e)}.

4(o(5, C)) contains 8, and d,. Therefore Gf, is an S,- and S,-quaternionic
submanifold, but it is not an S,- or S,-quaternionic submanifold.
The inclusion 8p(2, C)—0(8, C) is explicitly represented in Section 6.
By a suitable permutation of coordinates, 4(8p(2, C)) is given by
4@3p2, C)) = {x(e, — e,), £(&; — €,), (£(e, — )£ (e — 34))/2} .

4(8p(2, C)) contains 4, and §,. Therefore P'(H) is an S;- and S;-quater-
nionic submanifold, but it is not an S,- or S,-quaternionic submanifold.
Put

1
o= B c0@) .

-1
Then
ge;0t =¢;, for 1575838, and oceo™' = —e,.
Hence
(o 8p(2, C)o™) = {(e, — €), £(e; + €), (F(e, — €)E(es + €))/2} .

A(o 82, C)o*) contains 4, and §,. Therefore ¢P'(H) is an S,- and S,-
quaternionic submanifold, but it is not an S,- or S,-quaternionic sub-
manifold.
It follows from the above argument and Lemma 7.4 that the homology
classes represented by Gy,, Gf,, P'(H) and oP'(H) are pairwise distinct.
By Theorem 6.5, an 8-dimensional S,-quaternionic submanifold in Gf,
coincides with one of G, Gf,, oGS, and G,/SO(4) up to I(Gf,)-conjugacy.
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The corresponding complex simple subalgebras of index 1 in o(8, C) are
o(6, C), 814, C), 08l(4, C)o~* and gf. The root system of them are given
as follows.
408, C)) = {xe,+e;1 <1< j=<83},
4814, C)) = {x(e; —¢;); 1 =1 < j =4},
40814, C)o7™") = {x(es,—€); 1 =1 <j=8}U{x(e; +e);1 =13},
A(g‘f) = {i(el - 62), i(ez - ea)v i<ea - el)! i(e1 + € — 293)/3r
+(e, + e; — 2e))/3, +(e; + e, — 2¢,)/3} .
Therefore it follows from Lemma 7.4 that the homology classes represented
by GE,, G¢, oGS, and G,/SO(4) are pairwise distinct.

By Theorem 6.5, a 12-dimensional S-quaternionic submanifold in G,
coincides with one of G, Giy(spin) and oGF,(spin) up to I,(GR,)-conjugacy.
The corresponding complex simple subalgebras of index 1 in o(8, C) are
o(7, C), spin(o(7, C)) and o spin(o(7, C))o™".

The root system 4(o(7, C)) is given by

A00(7, C)) = {te,;ke; 1 =1 < j<8}U{xe;1 =7 =<38}.

Using the explicit realization of the spin representation spin: o(7, C)—
0o(8, C) in Sato-Kimura [12, (5, 81)], we can obtain the root system

A(spin(o(7, C))) = {x(e, — €,), (e, — €;), =(e, + ¢,), (e, — €5), (e, *e,),
+(es + €), £(—e + e, + e + ¢,)/2,
+(e, — e + e + €)/2, =(e, + e, — €5 + €)/2} .
So
A(o spin(o(7, C))o™) = {x(e, — e,), +(e, — €;), =(e, — e,), (e, — &),
Hle, — e), =(es —e), £(—e, + e + & — €)/2,
+(e, — e, + e — e)2, (e, + e, — e; — €,)/2} .
Therefore it follows from Lemma 7.4 that the homology classes represented
by GF,, GRi(spin) and oG{y(spin) are pairwise distinct, which completes
the proof of Theorem 7.3.

8. (,/SO(4). Quaternionic submanifolds in G,/SO(4) are investigated
in this section.

The root system A4(8l(8, C)) is a subsystem in 4(gf). So there is an
inclusion 8I(8, C)—gf whose image is a regular subalgebra in g;.

THEOREM 8.1.

Z\(a) = {c(BL3, C)}
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where 8L(3, C)—gf is the inclusion described above.

ProoF. The rank of g whose Int(gf)-conjugacy class ¢(g) is contained
in &(g7) is 2. So g€ is 8((3, C) or o5, C). By Lemma 3.4, long roots in
4(g°) are also long roots in 4(gf). It is impossible, if g¢ = o(5, C). If
g¢=3l(3, C), it is a regular subalgebra in g¢ by Corollary 3.5 and it is
unique up to Int(gf)-conjugacy.

From Theorem 8.1 we obtain the classification of quaternionic sub-
manifolds in G,/SO4).

THEOREM 8.2. Let Gi,—G,/SO4) be the inclusion induced by the
inclusion 318, C)—gf described above. Then

Z(G,/S04)) = {e(G5)} -
Since #°(G,/SO(4)) has only one element, it is trivial that the map
X1 #(G,/SO(4)) — H,(G,/SO4); R)
is injective.
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