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1. Introduction. The purposes of this paper are to classify quater-
nionic submanifolds in a quaternionic symmetric space and to investigate
the homology classes represented by quaternionic submanifolds in a com-
pact quaternionic symmetric spaces. The following results motivate the
subject of this paper. Quaternionic submanifolds in a quaternionic Kahler
manifold are minimal stable submanifolds and compact ones are homolo-
gically volume minimizing, as were proved by the author in [13].

Here we shall give the definitions of quaternionic Kahler manifolds
and quaternionic submanifolds and state some properties of quaternionic
submanifolds. A 4^-dimensional connected Riemannian manifold M is
called a quaternionic Kahler manifold, if M has the following property:
There is a point x in M such that, through an identification of TX(M)
with Hn, the linear holonomy group of M at x is contained in Sp(ri)Sp(l).
In this situation, take a piecewise smooth curve r from x to y for any
point y in M and put

where Pτ is the parallel translation along the curve τ. Sy is independent
of the choice of τ, because Sp(l) is a normal subgroup of Sp(ri)Sp(l). We
call S = {Sy}yeM a quaternionic structure on M. A connected submanifold
N of M is calld a quaternionic submanifold in M, if Ty(N) is invariant
under the action of Sy for each y in N. Alekseevskii [1] proved that a
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quaternionic submanifold in a quaternionic Kahler manifold is totally
geodesic.

Kraines [8] introduced a parallel 4-form Ω on a quaternionic Kahler
manifold. We call Ω the fundamental A-form on a quaternionic Kahler
manifold. Let Ωm(Hm) = cm, which is independent of n. On a quaternionic
Kahler manifold M with the fundamental 4-form Ω the inequality

-U- ^ vole

holds for any oriented tangent 4m-plane ζ on M. The equality holds if
and only if ξ is invariant under the action of the quaternionic structure
on M and has a suitable orientation. This result is proved in [13], but
the coefficient of Ωm in the inequality in [13] is incorrect. So Ωm/cm is a
calibration on M in the sense of Harvey-Lawson [4]. Consequently, a
quaternionic submanifold is a minimal stable submanifold and compact
one is homologically volume minimizing.

A quaternionic symmetric space is a kind of quaternionic Kahler mani-
fold. The definition of quaternionic symmetric space is given in Section
2. Let M' be a quaternionic symmetric space and I0(M') be the identity
component of the group of all isometries on M'. Let g' be the Lie algebra
of I0(M') and g'c be its complexification. In Section 3 we shall reduce
the classification of I0(^O-conjugacy classes of complete quaternionic sub-
manifolds in M' to that of Int(g'c)-conjugacy classes of complex simple
subalgebras of index 1 in g'c. Sections 4, 5 and 6 are devoted to classi-
fying all Int(g'c)-conjugacy classes of complex simple subalgebras of index
1 in classical complex simple Lie algebras g'c.

In Section 7 we shall consider the injectivity of the map X from the
set <ĝ (ikΓ) of all 70(ΛΓ)-conjugacy classes of complete quaternionic sub-
manifolds in a compact quaternionic symmetric space M' to H*(M'; R).
The map X assigns the I0(ikf')-conjugacy class represented by a quater-
nionic submanifold M in Mr to the homology class represented by M.
We shall show that X is injective when M' is

Gc

2>n = SU(n + 2)/S( 17(2) x U(n)) , G«s = SO(7)/SO(4) x SO(3) or
G«4 - SO(8)/SO(4)xSO(4) .

The compact quaternionic symmetric space G2/SO(4) of exceptional
type is investigated in Section 8. We shall show that there is a unique
I0(G2/SO(4))-conjugacy class of quaternionic submanifolds in GJSO(4), which
is represented by P\C) = Gξtl.

2. Quaternionic symmetric spaces. We first give the definition of
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quaternionic symmetric spaces and next show that a quaternionic submani-
fold in a quaternionic symmetric space is also a quaternionic symmetric
space. By Wolf [14] all compact quaternionic symmetric spaces are con-
structed from compact simple Lie algebras whose ranks are greater than
1. All noncompact quaternionic symmetric spaces are obtained as the
noncompact duals of compact ones. We shall review this construction in
this section.

DEFINITION 2.1. A Riemannian manifold M is called a quaternionic
symmetric space if M satisfies the following conditions:

( i ) M is a quaternionic Kahler manifold with quaternionic struc-
ture S.

(ii) M is a symmetric space.
(iii) Sx is contained in the linear holonomy group HX(M) for some

point x in M.

REMARKS, (i) If M is a quaternionic symmetric space, then Sy is
contained in Hy{M) for any point y in M.

(ii) There exists a Riemannian manifold which is both quaternionic
Kahler and symmetric but is not quaternionic symmetric. S2xS2 is such
an example.

LEMMA 2.2. Let M' he a quaternionic symmetric space and M be a
complete quaternionic submanifold in M'. Then M is also a quaternionic
symmetric space with respect to the induced Riemannian metric.

PROOF. Let S be the quaternionic structure on M'. By Alekseevskii
[1], M is totally geodesic in M'. Therefore M is also symmetric and quater-
nionic Kahler with the quaternionic structure S\M = {Sy\TyiM)}yeM. Hence
to prove Lemma 2.2 we may only show that M satisfies the condition
(iii) in Definition 2.1. Fix a point x in M. We can extend each element
h in HX{M') to an isometry h of Mf which satisfies h(x) = x and (h*)x = h.
For each q in Sx, the isometry q leaves M invariant. Therefore Sa

is contained in HX{M), that is, M satisfies (iii).
TZ(M)

Now we shall construct compact quaternionic symmetric spaces from
compact simple Lie algebras whose ranks are greater than 1. Let g be
a compact simple Lie algebra whose rank is greater than 1 furnished
with an Int(g)-invariant inner product < , >. Take a maximal Abelian
subalgebra t in g. Then the complexification tc of t is a Cartan subalgebra
of the complexification gc of g. For each element a in t, put

gα - {Xegc; [H, X] = \Z^Λ{a, H)X for each Het) .
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An element a in t — {0} is called a root if gα Φ {0}. Let J denote the
set of all roots. Fix a lexicographic ordering on t and denote by J+ the
set of all positive roots in Δ and by δ the highest root in A+. Set

Then 9i is a compact 3-dimensional simple subalgebra of g. It is known
that the analytic subgroup Gx of Int(g) corresponding to gx is simply con-
nected and isomorphic to Sp(l) (cf. Wolf [14, the proof of Theorem 5.4]).
Let g be the centralizer of Q1 in g. The subalgebra ϊ = gx + 3 is the
normalizer of gx in g and gx and 3 are ideals in ϊ. Define an automorphism
s of g and a linear subspace p of g by

ϊ)elnt(β)

and
*> = 9nΣ(9« + 9-J ,

where a runs through the elements of J+ — {<5} satisfying {a, δ} Φ 0.
The automorphism s of g is involutive, because

s\t = id, , s|, = -id, and g = ϊ + p .

Hence (g, s) is a compact orthogonal symmetric Lie algebra. Denote by
K the analytic subgroup of Int(g) corresponding to I. From the const-
ruction of K it follows that K is connected and of maximal rank in
Int(g), so the compact symmetric space Int(g)/UL is simply connected.
Since ϊ = gx + 3 is an ideal decomposition, G1 defines a quaternionic struc-
ture on Int(g)/J5Γ through the parallel translations. The symmetric space
is a quaternionic Kahler manifold with the quaternionic structure defined
by Gx. The relation G^K implies that Int(g)/if is a quaternionic sym-
metric space. The quaternionic symmetric space Int(g)/iί does not depend
on the choice of a maximal Abelian subalgebra t or an ordering on t.

THEOREM 2.3. For each compact simple Lie algebra g whose rank is
greater than 1, Int(g)/ϋΓ constructed above is a compact simply connected
quaternionic symmetric space. Conversely, each compact quaternionic
symmetric space is of the form Int(g)/iΓ for some compact simple Lie
algebra g whose rank is greater than 1. Furthermore, the noncompact
quaternionic symmetric spaces are just the noncompact duals of the spaces
Int(g)/UL described above.

PROOF. We may only prove that each compact quaternionic symmetric
space is of the form Int(g)/iΓ discribed above. Let M be a compact qua-
ternionic symmetric space. By Wolf [14, Lemma 3.1], M is irreducible.
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So the Ricci curvature tensor of M is positive definite. By Alekseevskii
[1, Assertion 6], M is simply connected, so M is a compact simply con-
nected quaternionic symmetric space. By Theorem 5.4 in Wolf [14], M
is the space Int(g)/ίL for some compact simple Lie algebra g whose rank
is greater than 1.

For the rest of the present paper we shall use the notations < , >,
t, Δ, described above for a compact simple Lie algebra g and < , >', t',
Δ\ for g\

REMARK. By Theorem 2.3, we can obtain the list of compact quater-
nionic symmetric spaces as in the Table.

TABLE

GξΛ

Gin (n^2)
G?,s

G^n (Λ^4)

Pn(H) (w^l)
(eβ,βu(6)+βp(l))

(e7>o(12)+«p(D)

(e8, c7+Sp(D)

(f4,βp(3)+«ρ(D)

G2/SO(4)

31(3, C)

&(n+2

o(7, C)

o(w+4,

2p(n+l

ef
e?
es

ff

C)

C)

Rank

1

2

3

4

1

4

4

4

4

2

Dimension

4

4w

12

An

An

40

64

112

28

8

3. Reduction of the problem. Let g' be a compact simple Lie algebra
whose rank is greater than 1. Then Mf = Int(tf)/K' constructed in Section
2 is a compact quaternionic symmetric space. In this section we shall
reduce the classification of 70(Λf')-conjugacy classes of complete quater-
nionic submanifolds in Mr to that of Int(g')-conjugacy classes of simple
subalgebras of index 1 in g' whose ranks are greater than 1 (Theorem
3.1). Next for a compact semisimple Lie algebra g' we shall reduce the
classification of Int(g')-conjugacy classes of semisimple subalgebras in g'
to that of Int(g'c)-conjugacy classes of complexs emisimple subalgebras in
g'c (Proposition 3.3).

From now on, for any compact simple Lie algebra g, we shall con-
sider the invariant inner product < , > on g normalized by the condition
(βt «5> = 2, which is independent of the choice of a maximal Abelian sub-
algebra t. Let g be a simple subalgebra in a compact simple Lie algebra
g' and c: fl—»β' be the inclusion map. The index jc of the simple subalgebra
g in g' is defined by the equation:
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je(X, Y} = (c(X)c, (Y)Y

for all X and Y in g, after Dynkin. By Theorem 2.2 in Dynkin [3], the
index j t is a positive integer.

For a simple subalgebra g in a compact simple Lie algebra g', denote
by c(β) the Int(g')-conjugacy class represented by g, and by ^Ί(g') the set
of all Int(g')-conjugacy classes of simple subalgebras of index 1 in g' whose
ranks are greater than 1. Similarly, for a complete quaternionic submani-
fold M in the compact quaternionic symmetric space Mr = Int(Q')/Kr

9

denote by c{M) the /0(ikf')-conjugacy class represented by M, and by
^(Mf) the set of all 70(M')-conjugacy classes of complete quaternionic
submanifolds in M'. Note that I0(M') leaves the quaternionic structure
on M' invariant.

We shall construct a map φ from ^Ί(fl') to ^(Mf). Take and fix a
maximal Abelian subalgebra t' in g'. For each element a in ^(g') we
can take a representative g of a such that gf)t' is a maximal Abelian
subalgebra in g. Since the index je of g in g' is 1, the image of the
highest root δ in Δ is a long root in Δr, by Theorem 2.4 in Dynkin [3].
So we can suppose c(δ) = <?' and C(Q±) = gί. The relations

*(l)cϊ' and c(p)atf

are obtained, because s' = c(s). The relations imply that Int(g)/iί is a
totally geodesic submanifold in Mf = Int(Q')/K'. Since [gί, c(p)] = c([Qlf p]) =
c(p), the submanifold Int(g)/if is a quaternionic submanifold in Mf. We
define φ by

φ{a) = c(Int(β)/ίΓ) e 9f (M') .

THEOREM 3.1. Lei g' be a compact simple Lie algebra whose rank is
greater than 1 and Mf = Int(g')/i£' be the corresponding compact quater-
nionic symmetric space. Then the map ψ from ^i(g') to ^{Mr) is well-
defined and bijective.

PROOF. We first show that φ is well-defined. Let g(1) and g(2) be
simple subalgebras in g' which satisfy the following conditions:

( i ) The indices of g(1) and g(2) in g' are equal to 1;
(ii) The subalgebras t(1) = g(1) n t' and t(2) = g(2) n t' are maximal Abelian

subalgebras in g{1) and g{2), respectively;
(iii) c{1\δω) = c{2\δ{2)) = δ', where cU): g(ί)->g' is the inclusion and δw

is the highest root in Δ{t) for t = 1, 2;
(iv) There is an element g in Int(β') such that #(g(1)) = g(2).

The condition (iv) is equivalent to c(g(1)) = c(g(2)). We can take an element
g in (iv) such that #(gί1}) = gί2). Since β{1} = gί2) = gί, we have g(&[) = gj.
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To prove that the submanifolds Int(g(1))/if(1) and Int(g(2))/lΓ2) are I0(*Γ')-
conjugate, we must show that g(1) and g(2) are if'-conjugate in g'. So the
following lemma implies that φ is well-defined.

LEMMA 3.2. The normalizer of gί in Int(g') coincides with Kf.

PROOF. Let N' denote the normalizer of gί in Int(g'). Then the
identity component of N' coincides with K'. We may only prove that
N'<zK'.

For each n in N', w18>:gί—>gί is an automorphism of g[, hence there
exists an element gλ in G[ such that gλn\^ = id8>. This equation implies
that

(3.1) (g^Mg^Γg-1 = e

for all g in G[.
Let π:G—>Int(g') be the universal covering group of Int(g') and Q1

be the analytic subgroup of G corresponding to gί. Take elements g1 in
Gx and n in G such that π(S\) = g1 and π(n) = n. By (3.1),

π{{g,n)g(g.n)-ιg-1) = e

for all g in Gx. Since the kernel of π is discrete,

(3.2) (QinMgfiy'g-1 = e

for all g in Qlm

Let s be the element in G defined by

which is contained in Gx and involutive. Put

K = {x e G; sxs'1 = x] .

Then the Lie algebra of K is ϊ' and K is connected (see, for example,
Theorem 8.2 of Chapter VII in Helgason [5]). By (3.2), gfi is contained
in K, so n is an element of K. Therefore

n = π(n)eπ(K) = K' ,

which completes the proof of Lemma 3.2.

Since the isotropy subgroup of I0(M') at the origin is K'y the map
φ is injective. We have to prove that φ is subjective.

For each element b in <^(Mf) we can take a representative M of b
such that M contains the origin of M' = Int(g')/if. By Lemma 2.2, M
is a compact quaternionic symmetric space. The Lie algebra g of the
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group of all isometries of M is naturally imbedded in g' in such a way
that ϊ c ϊ ' and pdp\ Here we show that ^gj = gί. Since the quaternionic
structure of M is the restriction of that of M' to M, there is a Lie
algebra homomorphism p from gx to gί satisfying c([ U, X]) = [p( U), c(X)]
for UGQ1 and Xep. For UβQ1 and X, Yep we have

e([U, [X, Y]]) = -WX), c([Y, U])] - [c(Y\ c([U, X])]

= [p(U),c([X, Y])].

Noting that ϊ = [p, p], we obtain

(3.3) c([U, X]) = [p(U)9 c(X)]

for Ueg, and XβQ. Hence *(&) = C([Q19 gj) = !>(&),'(&)]<= gj, because of
(3.3) and f = gί + 3'. Therefore we have £(gj = gί. This implies that the
index of g in g' is 1. Therefore <P(C(Q)) = c(M) = b. Thus Theorem 3.1
has been proved.

Let g' be a compact semisimple Lie algebra. For a semisimple
subalgebra g in g', denote by c(g) the Int(g')-conjugacy class represented
by g, and by <^(g') the set of all Int(g')-conjugacy classes of semisimple
subalgebras in g\ When g' is simple, ^(g ') is a subset of ^(g'). The
complexification g'c of g' is a complex semisimple Lie algebra. For a
complex semisimple subalgebra ί) in g'c, denote by c(§) the Int(g'c)-conjugacy
class represented by ^, and by ^(g' c) the set of all Int(g'c)-conjugacy
classes of complex semisimple subalgebras in g'c. Now we define a map
f from if(g') to <^(g'c) by

•for each semisimple subalgebra g in g'.
We shall give a brief proof of the following proposition.

PROPOSITION 3.3. Let g' be a compact semisimple Lie algebra. Then
the map ψ from ^(g') to ^(g' c) is well-defined and bijective.

PROOF. Clearly <f is well-defined, because Int(g') is naturally imbedded
in Int(g'c).

First the surjectivity of ψ follows from the existence of compact real
forms in a complex semisimple Lie algebra and the conjugacy of maximal
compact subalgebras in a real semisimple Lie algebras.

Next the injectivity of ψ follows from Lemma 1 in Ihara [7].

We can define the index of a complex simple subalgebra in a complex
simple Lie algebra, using their compact real forms. Denote by
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the set of all Int(g'c)-conjugacy classes of complex simple subalgebras of
index 1 in g'c whose ranks are greater than 1. For a compact simple Lie
algebra g', the map ψ preserves the indices. Hence the classification of
all elements in <g*(AΓ) is reduced to that of all elements in ^i(g'c), by
Theorem 3.1 and Proposition 3.3.

We end this section by stating some properties about complex simple
subalgebras of index 1. Let g' be a compact simple Lie algebra. For
each c in ^(g ' c ), take a representative gc in c such that g = gcί1g' is a
compact real form of gc. Take maximal Abelian subalgebras t and t' in
g and g', respectively, in such a way that tct ' . Denote by £:gc—>g'cthe
inclusion. The following lemma holds, by Theorem 2.4 in Dynkin [3].

LEMMA 3.4. In the above situation, if a is a long root in Δ, then
c(a) is also a long root in Δ\ Furthermore, we have c(Qa) = gί(α).

COROLLARY 3.5. // Δ is of type A, D or E, we have c(Qa) = gί(α) for
all a in Δ.

PROOF. If Δ is of type A, D or E, then all roots in Δ are long roots.
Hence Lemma 3.4 implies Corollary 3.5.

A subalgebra gc in g'c is said to be regular, if c(Qa) = gj(α) for each
a in Δ.

4. Preliminaries for classification of simple subalgebras of index 1.
In this section we shall review a general method of classifying subalgebras
in a classical complex Lie algebra developed by MaΓcev in [9] and describe
concretely each of classical complex simple Lie algebras.

Let g'c be one of the classical complex simple Lie algebras o(n, C),
8l(n, C) and $p(n, C). Before considering Int(g'c)-conjugacy classes of com-
plex simple subalgebras in g'c, we consider Int(g'c)-conjugacy classes of
pairs (§, c) of complex simple Lie algebras Jj and homomorphisms c: ίj—>g'c.
Since o(n, C)c:δί(nf C) and 8p(n, C)cδl(2n, C), we can regard c: §-^g'c as
a complex linear representation of §. The following theorem is obtained
from Theorem 1 in MaΓcev [9].

THEOREM 4.1. Let tx and c2 be homomorphisms from a complex sim-
ple Lie algebra ί) to g'c. Then cx and c2 are equivalent as complex linear
representations if and only if the following conditions are satisfied:

( i ) d and c2 are O(n, C)-conjugate in the case g'c = o(n, C).
(ii) cx and c2 are SL(n, C)-conjugate in the case g'c = 8ί(n, C).
(iii) cλ and c2 are Sp{n, C)-conjugate in the case g'c = 2p(n9 C).

COROLLARY 4.2. Let g'c be one of o(2n + 1, C), 8l(n, C) and $p(n, C).
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Let Cί and c2 be homomorphisms from a complex simple Lie algebra Ij to g'c.
The homomorphisms tx and c2 are lnt(Q'c)-conjugate if and only if tx and
c2 are equivalent as complex linear representations.

We shall consider the case g'c = o(2n, C). Take an element σ in
0(2n, C) such that det(σ) = — 1. For a complex simple Lie algebra § and
a homomorphism c from ί) to g'c, define cσ by

cσ(X) = σc(X)σ"1

for all X in ί). The following theorem is obtained from Theorems 2 and
3 in MaΓcev [9].

THEOREM 4.3. Let g'c be o(2n, C) and σ be an element in O(2n, C)
such that det(0 ) = — 1. For a complex simple Lie algebra ί) and a homo-
morphism c: ί)—>g'c, c and cσ are Int(g'c)-ccmjugate if and only if c is
orthogonally reducible.

By Corollary 4.2 and Theorem 4.3, we can construct all Int(g'c)-
conjugacy classes of pairs (ϊj, c) of complex simple Lie algebras ί) and
homomorphisms c: §-^g'c from all equivalence classes of complex linear
representations for each classical complex simple Lie algebra g'c.

Now we shall consider Int(g'c)-conjugacy classes of complex simple
subalgebras in a classical complex simple Lie algebra g'c. After classifying
Int(g'c)-conjugacy classes of pairs (ϊj, c), we must decide whether c^ί)) and
c2($) are Int(g'c)-conjugate subalgebras or not, for distinct Int(g'c)-conjugacy
classes of (ή, d) and (§, c2). If ^(ί)) and c2(ί)) are Int(g'c)-conjugate, we can
take a representative c2 such that cλ(t)) = c2(ί)). So there is an element τ
in Aut(§) such that c2 = ^ o r. Since Int(lj) is naturally imbedded in
Int(g'c), we may suppose that τ is an outer automorphism of ί). If ίj
does not have any outer automorphisms, this does not happen. If § has
outer automorphisms, we must decide which of Int(g'c)-conjugacy classes
of (§, c) coincides with the Int(g'c)-conjugacy class of (§, cx o τ) for each
(Jj, d) and τ mod Int(§) in Aut(ή)/Int(§). By identifying Int(g'c)-conjugacy
classes of (ί), c) and (§, rj such that (Jj, ί) and (ί>, cλ © τ) are Int(g'c)-conjugate
for some r in Aut(ή), we can classify Int(g'c)-conjugacy classes of complex
simple subalgebras in g'c.

We shall apply the method mentioned above to each classical complex
simple Lie algebra in Sections 5 and 6.

Let gc be a complex simple Lie algebra with compact real form g
and p:Qc—>βl(V) be an irreducible complex linear representation. Take a
maximal Abelian subalgebra t in g and put

Vx = {veV; ρ{H)v - ^ ^ { λ , H)v for each H in t}
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for each element λ in t. An element λ in t is called a weight of p if
Vχ Φ {0}. Let ΛP denote the set of all weights of p. Put mλ = dimcVj
for λ in Ap.

Here we concretely describe each of classical complex simple Lie
algebras. Let Mn(F) be the set of all nxn F-matrices and EtιJ =

( i ) fl* = 8l(n + 1, C): An-type

8ί(n + 1, C) = {XeMn+1(C); tr(X) = 0} .

A compact real form g of Sί(n + 1, C) is given by

g = $u(n + 1) = {Xe Mn+1(C); ιX + X = 0, tr(X) = 0} .

Define an invariant inner product ( , ) on 9 by

for X and Y in g. Put

t - { l / ^ ϊ f o i ^ + + tn+1En+ltn+1); tt e Λ, Σ «i = 0J .

Then t is a maximal Abelian subalgebra in g. Set

for 1 ^ i ^ w + 1. The root system A of gc with respect to t c is {e< — ê ;
1 ^ i ^ i ^ n + 1}. Since <βi — ejf et — ey> = 2, the inner product < , >
defined above is the normalized invariant inner product on g.

i n+1

(*)i = ex+ + et — Σ βj (1 ̂  i ^ w)
W + 1 i=i

is a fundamental weight system of Δ.
(ii) gc = o{2n + 1, C): 5n-type

o(2^ + 1, C) = { l6l 2 n + 1 (C); 'X + X = 0} .

A compact real form g of o(2n + 1, C) is given by

8 = o{2n + 1, R) = {X e M2n+1(R); *X + X = 0} .

Define an invariant inner product < , > on g by

<X, Y> = -tr(XΓ)/2

for X and Y in g. Put

t = {ί^,, - £?2il) + + tn(E2n_lt2n - E^-ά UeR}.

Then t is a maximal Abelian subalgebra in g. Set
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e% — E2i_1>2i — E 2 ί t 2 i _ 1

for 1 <; i <k n. The root system Δ of gc with respect to t c is {±e,±ey;
1 ^ i < j ^ n}U{±et; 1 <; i <; w}. Since <^ + ê  , e* + eά} = (e* — ejf et —
βj) = 2, the inner product < , > defined above is the normalized invariant
inner product on g.

<*>i = ex + + et (I ^ ί ^ n — 1) f

(On = (βl + * + β J/2

is a fundamental weight system of Δ.
(iii) βc = βKΛ,C): Cn-type

A compact real form g of 8p(n, C) is given by

Zt e MJP), % + Zι = 0, % = Z..

Define an invariant inner product < , > on g by

<X, Y> = -tr(XY)

for X and Y in g. Put

t - {l/^ΪME^ - En+ltn+1) + ., + ίn(£7n,π - #2 n,2J);

Then t is a maximal Abelian subalgebra in g. Set

et = V=ϊ{EiΛ - En+itn+i)/ι/Ύ

for 1 ^ ί ^ n. The root system Δ of gc with respect to tc is {±1/2^11
{(±ei±ei)/v/"2~; 1 ^ i < j ^ w}. Since <i/Te i f v T ^ ) = 2, the inner pro-
duct < , ) defined above is the normalized invariant inner product on g.

a), = (βl + + e<)/v/T (1 ^ i ^ n)

is a fundamental weight system of Δ.
(iv) gc = o(2^,C): Artype

o(2n, C) = { I e M2n(C); 4JSΓ + X = 0} .

A compact real form g of o(2n, C) is given by

g = o(2n, R) = ( l e i l ί J Λ ) ; *X + X = 0} .

Define an invariant inner < , ) on g by

, Y) = -tr(XF)/2



QUATERNIONIC SUBMANIFOLDS 525

for X and Y in g. Put

t = {ίxCEΊ,, - # ί f l ) + + tn(E2n_lt2n - Eto.to-i); ί*6Λ} .

Then t is a maximal Abelian subalgebra in g. Set

for 1 <; i <S n. The root system Δ of gc with respect to t c is {±et±es;
1 ^ i < j ^ w}. Since (et + e i f e< + e, ) = (e* — ê  , e< — ê  ) = 2, the inner
product < , > defined above is the normalized invariant inner product on g.

(Oί = βi + + βi (1 ^ i ^ w — 2) ,

α>n-i = («i + + en_i - en)/2 ,

«)« = (βl + + βn-1 + β.)/2

is a fundamental weight system of J .

REMARK. The natural inclusions Sl(n, C)—>$ί(n + 1, C), o(n, C)—>
o(n + 1, C), Stftt, C)->«t>(^ + 1, C), Zp(n, C)->8ί(2n, C) are of index 1, but
the inclusion o(n,-C)—>$ί(nt C) is of index 2.

5. 8ί(n, C). In this section we shall classify all elements in
for g'c = Sl(n, C). The corresponding compact quaternionic symmetric
space is the complex Grassmann manifold G£n_2 = SU(n)/S(U(n — 2) x 17(2)).
Since Gξtl = P\C) has no proper quaternionic submanifolds, we may sup-
pose that n ^ 4. The rank of the symmetric space Mf = G^,n_2 is 2. Let
gc be a complex simple subalgebra of index 1 in g'c whose rank is greater
than 1. The compact quaternionic symmetric space M corresponding to
gc is a quaternionic submanifold, in particular, a totally geodesic submani-
fold in M'. Hence the rank of M is less than or equal to 2. According
to Table in Section 2, gc = 8ί(k, C), Sp(k, C) or g2

c.
Let

be an irreducible decomposition of c: gc—>Sί(n, C). Then

3t = J ( 1 + '-- + 3cd ,

by Theorem 2.3 in Dynkin [3]. Since j t = 1, one of j t l , •••, yί<f is 1 and
the others are all 0. So we suppose that c is an irreducible complex
linear representation.

Take a long root a in Δ, a weight λ of r, and a nonzero vector v in
Vχ. By the definition,

*(α)i; = V —
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Therefore

), c(a)Y = -trWαMα)) = Σ mλ<\, α>2 ,

that is,
3c = Σ mλ<λ, α>2/2 .

Since <λ, a) = 2<λ, a)/(a, a) is an integer, we obtain the following lemma.

LEMMA 5.1. Let gc 6e α complex simple subalgebra in Sί(n9 C) and
assume that gc is irreducible in Sί(n, C). The index of gc is equal to 1
if and only if for a long root a in A, there is a unique weight λ0 in Λc

such that <λ, a) = 0 for all λ in Λe — {λ0, — λ0}, <λ0, a) = 1, cmd m;0 = 1.

We apply this criterion to gc = 8l(fc, C), δt>(fe, C), and ĝ .
In the case gc = 8ί(k, C), the highest weight of r. Sί(Jc9 C)->8l(n, C) of

index 1 is ω1 or ωk_lf by the concrete description of ωt in Section 4 and
Lemma 5.1. Hence k = n and c:$l(n, C)-+8ί(n, C) is an automorphisms.

In the case gc = 2p(k, C), the highest weight of c: $p(k, C)-+8ί(n, C)
of index 1 is ωλ. The irreducible complex linear representation with
highest weight ωι is nothing but the natural inclusion c: 8p(k, C)—>8l(2fc, C).

In the case gc = ĝ , all irreducible complex linear representations of
g£ are orthogonal. See MaΓcev [9]. So we may suppose that the image
of an irreducible complex linear representation c: f£-+8l(n, C) is contained
in o(n,C). Since the index of the inclusion o{n, C)—>8i(n, C) is 2, we
obtain j\ ^ 2. Therefore there is no inclusion c: gf —>8ί(n, C) of index 1.

The following theorem summarizes the above argument.

THEOREM 5.2. For n ^ 4,

^i(βϊ(n, C)) = {c(βl(fe, O); 3 ^ k ^ n - l}U{c(βKfc, C)); 2 ^ fc ^ [n/2]} ,

where 8p(k, C)a$l(2k, C)a8ί(n9 C) are the natural inclusions.

Now we obtain the classification of quaternionic submanifolds in G£n.

THEOREM 5.3. Let Pfc(ff)cG^)2fe be the inclusion induced by the natu-
ral inclusion $p(k + 1, C)a$ί(2k + 2, C). For n^2,

= {c(G2

c,J; 1 ^ fc ^ n - l}U{c(P\H)); 1 ^ k ^

REMARK. Chen-Nagano [2] found these submanifolds as totally geo-
desic submanifolds in G£n.

6. o(n, O Let g'c = o(n, C) and gc be a complex simple subalgebra of
index 1 in g'c whose rank is greater than 1. We denote by c: QC—>Q'C the
inclusion. Let
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be an orthogonally irreducible decomposition of c. Then

by [3, Theorem 2.3]. Since j \ = 1, one of j t ί , , j \ d is 1 and the others
are all 0. So we suppose that c is orthogonally irreducible. We need
the following theorem due to MaΓcev.

THEOREM 6.1 ([9, Theorem 4]). Let c: gc-»o(n, C) be orthogonally irre-
ducible. Then c is also irreducible in 8ί(n, C) or there is an irreducible
complex representation p of Qc such that c is equivalent to p(&p*, where
p* is the contragredient of p.

In the case that c is also irreducible in 8l(n, C), from the definition
of the normalized invariant inner product on o(n, C) it follows that

), c(a)Y = -trWα)*(α))/2 = Σ ma<λ, a)2/2
XeΛ[

for a root α in i Hence

je = Σ m/λ, α>2/4

for a long root a in A. On the other hand, for a long root am A there
are distinct integers i and ? such that the matrix c(ά) is equivalent to
the matrix ±ei±ej described in (ii) QC = o(2n + 1, C) and (iv) gc = o(2n, C)
of Section 2, by Lemma 3.4. The matrix ± e ί ± e i has eigenvalues V — 1
with multiplicity 2, — i/ —1 with multiplicity 2, and 0 with multiplicity
n — 4. We have

<λ, α> = ± 1 , 0

for λ in Λe. From these we obtain the following lemma.

LEMMA 6.2. Let QC be a complex simple subalgebra in o(n, C) and
assume that Qc is irreducible in 8ί(n, C). The index of (f in o(n, C) is
equal to 1 if and only if for a long root a in A and all weights X in Λt

<λ, a) = ± 1 , 0 and Σ mλ = 2 .
JU/f,,α,α>=l

In the case that there is an irreducible complex representation p of
QC such that e is equivalent to pζ&p* we consider the weights of p. Let
V be the representation space of p. From the definition of the normal-
ized invariant inner product on o(n, C) it follows that

), c(a)Y = -tr(*(α)*(α))/2 = Σ m/λ, α>2

XΛ

for a root a in zί, because Cn = F φ F * . Hence
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jc = Σ m,<λ, α>2/2
λeΛp

for a long root a in J. Since <λ, a) is an integer, we obtain the following
lemma.

LEMMA 6.3. Let gc be a complex simple subalgebra in o(n, C) and
assume that c is orthogonally irreducible and that there is an irreducible
complex representation p of Qc such that i is equivalent to pφp*. The
index of Q€ in o(n, C) is equal to 1 if and only if for a long root a in
A there is a unique weight λ0 in Λp such that <λ, a) = 0 for all λ in
ΛP — {λ0, — λ0}, <λ0, a) = 1, and mλo = 1.

We apply the criterions described in Lemma 6.2 and Lemma 6.3 to
each complex simple Lie algebra gc.

The irreducible complex linear representations p of Qc described in
Lemma 6.3 have been listed in Section 5, that is, the identity map
pλ: 8ί(n, C)—>8ί(n, C), its contragredient pf, and the natural inclusion
ρ2: &p(n, C)-+8ί(2n, C).

The contragredient p? of px is given by pf(X) = — *Xfor Xin 8l(n, C).
Since

X

the representation

c: Sl(n, C)

: *""* 2

_ JLΓ
 χ-tχ

is equivalent to

• 3l(2n, C)

x-*x

x-ιx
The image of ί is contained in o(2n, C), so e: $ί(n, C)^>o(2n, C). For an
element a in O(2», C) with detσ = — 1, the homomorphisms c and ί° from
$l(n, C) to o(2%, C) are not Int(o(2w, C))-conjugate by Theorem 4.3, because t
is orthogonally irreducible. The order of the group Aut(3l(%, C))/Int(£l(%, C))
is 2 and the unique nontrivial element in it is p* mod Int(8l(n, C)). For
all X in βl(», C),

*XY]

-I

X-'X J

c(X)
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If n is even, c and c ° p* are Int(o(2w, C))-conjugate. Hence the subalgebras
c(8ί(n, C)) and cσ(8ί(n, C)) are not Int(o(2w, C))-con jugate. If n is odd,
taking σ = _ r , we obtain £ o ô* = £σ, hence the subalgebras c(8l(n, C))
and cσ(8l(n, C)) are Int(o(2n, C))-conjugate. Next we consider Sl(nfC)c
o(2n, C)co(m, C)» where 2w < m. Denote by ^: o(2w, C)-+o(m, C) the natu-
ral inclusion. By Theorem 4.3, c^*ι(Ά(n, C))) is a unique Int(o(m, C))-
conjugacy class of simple subalgebras of index 1 in o(m, C) which are
obtained from the equivalence class of (8l(n, C), C!°c).

The representation pz@pf of 8p(n, C) is equivalent to

, C) -> o(4w, C)

ZJ^ — ZJX ZJ2

2

For an element <7 in O(4w, C) with det σ = — 1, the homomorphisms e and
£σ from 8p(n, C) to o(4w, C) are not Int(o(4n, C))-conjugate by Theorem 4.3,
because c is orthogonally irreducible. The group Aut(βp(n, C))βnt%p(n, C))
is trivial, hence c(βp(n9 C)) and ca(δp(n, C)) are not Int(o(4w, C))-conjugate.
Next we consider 8p(n, C)co(4^, C)co(m, C), where An < m. Denote by
^: o(4w, C)—>(m, C) the natural inclusion. By Theorem 4.3, cfa°*(8|)(ii, C)))
is a unique Int(o(ra, C))-conjugacy class of simple subalgebras of index 1
in o(m, C) which are obtained from the equivalence class of (βp(nf C), c^t).

We classify elements in ^(o(w, C)) whose orthogonally irreducible
parts satisfy the condition in Lemma 6.2. Let QC be a complex simple
subalgebra in o(n, C) and assume that Qc is irreducible in Sί(n, C). We
apply the criterion described in Lemma 6.2 to each complex simple Lie
algebra gc.

In the case gc = Sl(ft, C), the highest weight of c: Sί(kf C)^o{n, C) of
index 1 is only ω2 of 81(4, C), by the concrete description of ωt in Section
4 and Lemma 6.2. Hence k = 4 and w = 6. The complex irreducible
representation of §1(4, C) with highest weight ω2 gives an isomorphism
of §1(4, C) to o(6, C).

In the case QC = o(2& + 1, C), the highest weight of c: o(2k + 1, C)->
o(n, C) of index 1 is ^ of o(2& + 1, C) or α>8 of o(7, C). The complex
irreducible representation of o(2k + 1, C) with highest weight ωt is nothing
but the identity of o(2fc + 1, C). That of o(7, C) with α>3 is the spin
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representation spin: o(7, C)—• 0(8, C). For an element σ in 0(8, C) with
deter = — 1, the homomorphisms spin and spin* from o(7, C) to 0(8, C) are
not Int(o(8, C))-conjugate by Theorem 4.3. The group Aut(o(7, C))/Int(o(7,
O) is trivial, hence spin(o(7, C)) and spinσ(o(7, C)) are not Int(o(8, C))-
conjugate. For n > 8, subalgebras spin(o(7, C)) and spinσ(o(7, C)) in o(n, C)
are Int(o(w, C))-conjugate, by Theorem 4.3.

In the case QC = g£(fc, C), the highest weight of c:$p(k, C)^o(n, C)
of index 1 is only ω2 of &p(2, C). The complex irreducible representation
of &p(2, C) with highest weight ω2 gives an isomorphism of &p(2, C) to
o(5, C).

In the case gc = o(2fc, C), the highest weight of c: o(2k, C)—>o(n, C)
of index 1 is ωλ of o(2fc, C) or ω3, α>4 of 0(8, C). The complex irreducible
representation of o(2kf C) of highest weight ωι is the identity of o(2fc, C).
That of 0(8, C) with highest weight ω3 or α>4 gives an outer automorphism
of 0(8, C).

In the case that gc is of type E. It is impossible that the Dynkin
diagram of QC is a subdiagram of the extended Dynkin diagram of o(n, C),
hence o(n, C) does not admit a regular subalgebra which is isomorphic to
QC by Theorems 5.1, 5.2 and 5.3 in Dynkin [3]. Therefore there is no
inclusion Q€->o(n, C) of index 1 because of Corollary 3.5.

In the case gc = ff, we shall first describe the root system of the
exceptional Lie algebra ff. Let {elf e2, ez, e j be an orthonormal basis of R\
Put

Δ = { ± e t \ l ^ i S i } Ό { ± e i ± e j ; l ^ i < j £ 4 } U { ( ± e 1 ± e 2 ± e 3 ± e 4 ) / 2 } .

Then A is the root system of ff. Since (et + ejΊ e* + eά) = {ei — ejf et —
ed) = 2, the inner product < , > is the normalized invariant inner product.

α>! = e1 + e2, ω2 = 2ex + e2 + e 3 ,

ω3 = (3ex + e2 + e5 + e4)/2 , ω^ = ex

is a fundamental weight system of A. The weight ω4 is a unique domi-
nant weight λ such that <λ, α> = ± 1 or 0 for all long roots a in A.
Since all (±e 1 ±e 2 ±β 3 ±β 4 )/2 are weights of the complex irreducible repre-
sentation c: ff —>o(26, (7) with highest weight ω4, the index of c is not 1
by Lemma 6.2. Hence there is no inclusion ff —>o(w, C) of index 1.

In the case gc = g£, we shall first describe the root system of the
exceptional Lie algebra Q2. Let {elf e2, e3} be an orthonormal basis of R3.
Put

A -= {±{e1- e2), ±(β2 - e3), ±(e 8 - βx), ± f e + e2 - 2e3)/3,

±(β2 + β3 - 2β1)/3f ±(ββ + e, - 2β2)/3} .
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Then Δ is the root system of g£. Since <^ — ej9 e< — eά) = 2, the inner
product < , > is the normalized invariant inner product.

(f>i = (βi + e2 — 2β 3)/3 , ω2 = et — e 3

is a fundamental weight system of Δ. The weight α^ is a unique domi-
nant weight λ such that <λ, a) = ± 1 or 0 for all long roots α in J.
The complex irreducible representation c:g£—>o(7, C) with highest weight
(*>! is of index 1 by Lemma 6.2. This represents a unique Int(o(7, C))-
conjugacy class of homomorphisms of index 1 from g£ to o(7, C) by Corollary
4.2. Hence the subalgebra r(g£) represents a unique Int(o(7, C))-conjugacy
class of simple subalgebras of index 1 in o(7, C) which are isomorphic to
g£. Similar results hold in o(n, C) for n ^ 8.

The following theorem summarizes the above argument.

THEOREM 6.4. Take an element σ in O(m,C) with άetσ = — 1 and
let &{n, C)ao(2n, C), Sp(n, C)ao{4n, C), spin(o(7, C))co(8, C) and g£co(7, C)
be the inclusions described above. Then ^Ί(o(m, C)) is given as follows.

, C)) = {c(o(5, O ) , c(o(6, C)), c(δl(3, C)), c(g2

c)} .

8, C)) - {c(o(fc, O ) ; 5 ^ fc ^ 7}U{c(δI(4, C)), c(σβl(4, C ) ^ 1 ) , c(βl(3, C))}

U { c ( g 2

c ) , c ( s p i n ( o ( 7 , C ) ) ) f

{c(o(fc, C ) ) ; 5 ^ k ^ 4 ^ - l } U { c ( β I ( f c , C))\ % S k ^

{j{c(σ$l(2n, C)^-1)} U {c(βpφ> C)); 2^k^n}

\J{c(σ8p(n, C)σ~ι)}\J{c(sg), c(spin(o(7, C)))}

/or ^ ^ 3.

^(o(4n + r, O) - {c(o(fcf O); 5 ^ f c ^ 4 ^ + r - l }

U{c(βl(k, O); 3 ^ Λ ̂  2w + [r/2]}U{c(βKifcf C)); 2^k^n}

UWg2

c), c(spin(o(7, C)))}

/or ^ ^ 2 cmcZ r = 1, 2 or 3.

Now we obtain the classification of quaternionic submanifolds in G*n.

THEOREM 6.5. Tα&e an element σ in O(m + 4) with detσ = — 1 and
assume that σ leaves the quaternionic structure on G*m invariant. Let
Gf,ncG4*ln, Pn(H)czGΐAn, G4*.(spin)cG4*4αndG>/SO(4)cGi ί>e ίfeβ inclusions
induced by δl(n + 2, C)co(2^ + 4, C), ap(n + 1, C)ao(An + 4, C), spin(o(7,
C))co(8, C) ^^ώ 8fco(7, C), respectively. Then ^ ( G ^ J is flfit e^ as
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y, l ^ k ^ 3}U{c(G2

c,2), c(σG2

c

>2), c(Gξ9l)}\J{c(P\H), c{σP\H))}

U{c(G 2/SO(4)), c(Gf,3(spin)), c(σG 4

c

3(spin))} .

= {c(G«k>, l ^ k ^ i n - l}U{c(G2

c, f t); 1 ^ k ^ 2n} U {c(σG2

c,2J}

Ό{c(P\H)); l ^ k ^ n}U{c(σPn(H))}[J{c(G2/SO(4)), c(G« 3(spin))}

for n^2.

^(Gf, 4 n + r) = {c(G«k); 1 ^ fc ^ 4n + r - l}U{c(G2

c,fc); 1 ^ fc ^ 2n + [r/2]}

U{c(Pfc(ίT)); 1 ^ fc ^ n}Ό{c(GJS0(4)), c(G4

Λ

3(spin))}

/or w ^ 1 and r = 1, 2 or 3.

REMARKS. Chen-Nagano [2] found many of these submanifolds as
totally geodesic submanifolds in G*n.

The compact quaternionic symmetric space M' satisfying Q'C = %p(n +
1, C) is P\H) = Spin + l)/Sp(l)xSp(n). In Pn(H), all complete quater-
nionic submanifolds are Pm(H) (1 <5 m ^ ^ — 1). Furthermore, all compact
minimal stable submanifolds in Pn(H) are Pm(H) (1 <Ξ m ^ w — 1), which
was proved by Ho ward-Wei [6] and Ohnita [10]. So we omit this case.

7. Homology classes represented by quaternionic submanifolds. In
this section we shall investigate the homology classes represented by
compact quaternionic submanifolds in compact quaternionic symmetric
spaces G2

c,n, G£3 and G£4, using the results obtained in Sections 5 and 6.
Let Mf be a compact quaternionic symmetric space. Define a map

TL\<&{M')-+H+(M'\ R) by

X(c(M)) = [M] ,

where [M] is the homology class represented by M. If complete quater-
nionic submanifolds Mγ and M2 are 70(M')-conjugate, M1 and M2 are
isotopic, in particular, homologous. A complete quaternionic submanifold
in a compact quaternionic symmetric space is a compact oriented sub-
manifold. Therefore X is well-defined.

The aim of this section is to show that X is injective when M' is
one of G2tnf G*s and G£4. Consequently, in these spaces a complete
quaternionic submanifold is a unique volume minimizing submanifold
up to I0(M')-conjugacy in its homology class. Indeed, a quaternionic
submanifold M in Mr is a volume minimizing submanifold in its homology
class. Let Ω be the fundamental 4-form on M\ If a compact oriented
submanifold Mx in M' is also volume minimizing in the homology class
[Ml then

( Ωk/ck = [ Ωk/ck = vol(M) = volCMi) = ( vol~ ,
JM1 JM JM1
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where dim(ikf) = dim(Λfi) = 4fc. Since vol^ = Ωk/ck on Mlf M1 is also a
quaternionic submanifold. If the map X for M' is injective, then M and
Mj are J0(ikf')-con jugate. Therefore a quaternionic submanif old in Mr is
a unique volume minimizing submanifold in its homology class up to
I0(M')-conjugacy.

REMARK. A uniqueness theorem of certain homologically volume
minimizing submanifolds in a compact simple Lie group was obtained by
Ohnita and the author in [11].

LEMMA 7.1. Let M1 and M2 be compact quaternionic submanifolds
in a quaternionic Kahler manifold Mf. If M1 and M2 are homologous
in M', then vol(Afi) = vol(Λf2).

PROOF. Let Ω be the fundamental 4-form on M\ Put dim(Jlίi) =
dim(M2) = 4fc. Then we obtain

Ί) = ( Ωk/ck = \ Ωk/ck = YO\(M2) .
J M! J M 2

THEOREM 7.2. The following map is injective.

PROOF. By Theorem 5.3, we may only prove [G2

c

>fc] Φ [P\H)] in
H*(GZn; R) for 1 ̂  k ^ [n/2].

Suppose [G2

c

tk] — [Pk(H)]. Since G2

c

tk is a Hermitian symmetric space,
we can consider the fundamental 2-form ω on the Kahler manifold G2>n.
The submanifold G2tk is a complex submanifold in G2

c,n. On the other
hand, Pk(H) is a totally real submanifold in the Kahler manifold G2in.
Therefore

vol(G2

c,J - { c ω*kl(2k)\ = \ ω*k/(2k)\ = 0 ,

which is a contradiction. Hence [G2

C,J Φ [Pk(H)].

THEOREM 7.3. The following maps are injective.

) -> H^Gΐx, R) .

PROOF. By Theorem 6.5, the map <&'(G?Λ)-+<&'(G*i) induced by the
inclusion G*3^>G?A is injective and the diagram

Λ HJβΐj R)

x ί
-> H^GU R)
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is commutative. Hence it is sufficient to prove that the map X:
H*((JΓ*A; R) is injective.

First we shall construct 4 distinct quaternionic structures on GfA.
The root system Δ of 0(8, C) is given by Δ = {±ei±ej\ 1 ^ i < j ^ 4}.
Since every roots in Δ are long roots, each of them is the highest root
with respect to a suitable ordering. Let

Δp = {aeΔ - {±δ1}; <α, <5X> ^ 0}

Then the decomposition

0(8) = ϊ + *>,

determines the quaternionic symmetric space G*Λ. Denote by Sι the qua-
ternionic structure constructed from Rdt + o(8)Π(g3l + fl_ai). Set

δ2 = ex Λ- e2 , δ3 = e3 — e4 and δ4 = e3 + e4 .

For each 2 ^ j ^ 4,

<α, δ,-) ^ 0} ,

hence Rδj + 0(8) Π (Qδj + Q-δj) also determines a quaternionic structure on
Gf,4, which is denoted by S3-. We call a quaternionic submanifold with
respect to the quaternionic structure Sj on GfΛ an Sj-quaternionic sub-
manifold in G£4. Let Ω5 be the fundamental 4-form with respect to the
quaternionic structure Sό on Gf>4 for 1 ^ j ^ 4.

LEMMA 7.4. Lei ikfx cmcZ ikΓ2 6e complete S^quaternionic submanίfolds
in GfΛ. If Mγ is an Sj-quaternionic submanifold and if M2 is not an
Sj-quaternionic submanifold for the same j (2 ^ j ^ 4), then the homology
classes represented by Mγ and M2 are distinct.

PROOF. Let dimCM^ = dim(M2) = 4fc. Suppose [ikfj = [M2], then
= vol(Λf2) by Lemma 7.1. On the other hand,

fi) = ( Ωkj/ck = ( Ωkj/ck < vol(ikf2) ,
Jjf! JM2

which is a contradiction. Hence [ikfj Φ \M2\
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By Theorem 6.5, a 4-dimensional S rquaternionic submanifold in Gf,4

coincides with one of G?fl, Gξtl9 P\H) and σPι(H) up to J0(Gf,4)-conjugacy,
where σ is an element in 0(8) with d e t σ = — 1. The corresponding
complex simple subalgebras of index 1 in o(8, C) are o(5, C), §1(3, C),

, C) and σ Sft2, C)σ~\
The root system 4(81(3, C)) is given as follows, by Corollary 3.5.

J(βl(3, O) = {±(e, - ey); 1 ̂  i < i ^ 3}cJ .

J(3I(3, O ) contains δ±. Hence G2

C

Λ is an S rquaternionic submanifold, but
it is not an SΓquaternionic submanifold for 2 <S j ^ 4, by the proof of
the surjectivity of φ in Theorem 3.1.

The subalgebra o(5, C) is orthogonally reducible in o(8, C), so

J(o(5, O) = {±βx±e2, ±e l f ±β2} .

J(o(5, O) contains 8X and δ2. Therefore Gffl is an S^ and S2-quaternionic
submanifold, but it is not an S8- or S4-quaternionic submanifold.

The inclusion δj)(2, C)—>o(8, C) is explicitly represented in Section 6.
By a suitable permutation of coordinates, A($p(2, C)) is given by

J(SK2, O) = { ± f e - e2), ±(β8 - e4), ( ± ( β l - e2)±(e3 - O)/2} .

J(§t)(2, O ) contains δλ and δ3. Therefore P ĴBΓ) is an Sr and S3-quater-
nionic submanifold, but it is not an S2- or S4-quaternionic submanifold.
Put

σ= ' . 6 0(8)

- 1 _

Then

aeάσ~ι = e$ , for 1 ^ j ^ 3 , and σe±σ~γ = — e4

Hence

d(σ8p(2, C)σ-1) = {±(e,. — e8), ±(e8 + e4), (±(βi — e2)±fe +

Δ(σ «t>(2, C)^"1) contains ^ and δ4. Therefore σP\H) is an Sx- and S4-
quaternionic submanifold, but it is not an S2~ or S4-quaternionic sub-
manifold.

It follows from the above argument and Lemma 7.4 that the homology
classes represented by G2tl9 G*19 P\H) and σP\H) are pairwise distinct.

By Theorem 6.5, an 8-dimensional ίvquaternionic submanifold in G£4

coincides with one of G*2J G2% σG2t2 and G2/SO(4) up to ^(GfJ-conjugacy.
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The corresponding complex simple subalgebras of index 1 in r>(8, C) are
0(6, C), §1(4, C), σ$ί(4:, C)σ~ι and g2

c. The root system of them are given
as follows.

J(o(6, O) = {±e,±e/, 1 ^ i < j ^ 3} ,

4(βl(4, O ) - {±(β, - β,); 1 ^ i < i ^ 4} ,

, O r 1 ) = {±(β, - ey); 1 ^ i < i ^ 3}U{±(e* + e4); 1 ^ i ^ 3} ,

Λ(g2

c) = {±(01 - e2), ±(β2 - ez), ±(e 8 - ej, ± ( ^ + e2 - 2β3)/3,

±(e, + es - 2e1)/3, ±(e 3 + βx - 2e2)/3} .

Therefore it follows from Lemma 7.4 that the homology classes represented
by Gfι2, G2

C,2, σG£2 and GJSO(4) are pairwise distinct.
By Theorem 6.5, a 12-dimensional Si-quaternionic submanifold in Gf,4

coincides with one of Gf,3, Gf,3(spin) and <7Gf>3(spin) up to J0(Gf)4)-conjugacy.
The corresponding complex simple subalgebras of index 1 in 0(8, C) are
o(7, C), spin(o(7, C)) and σ spin(o(7, C))σ~\

The root system Λ(o(7, C)) is given by

j(o(7, O ) = {±e < ±e y ; 1 ^ i < i ^ 3} U {±6^; 1 ^ i ^ 3} .

Using the explicit realization of the spin representation spin: o(7, C)—>
0(8, C) in Sato-Kimura [12, (5, 31)], we can obtain the root system

, C))) = {±{ex - e2), ±(et - e3), ±(e± + β4), ±(e 2 - e3), ±(β 2±β 4),

So

Δ(σ spin(o(7, C))^"1) = {±(ex — e2), ±(e x - e8), ±(βx - e4), ±(e 2 - e8),

±(β2 - e4), ±(β8 - e4), ± ( - e x + e2 + e3 - e4)/2,

±(«i - β2 + e3 - O/2, ±(βx + e2 - e5 - e4)/2} .

Therefore it follows from Lemma 7.4 that the homology classes represented
by GftZ, Gf,3(spin) and σGf,3(spin) are pairwise distinct, which completes
the proof of Theorem 7.3.

8. GJS0(4). Quaternionic submanifolds in G2/SO(4) are investigated
in this section.

The root system J(8ί(β, C)) is a subsystem in zi(g2

c). So there is an
inclusion §1(3, C)—>g2

c whose image is a regular subalgebra in g2

c.

THEOREM 8.1.

, C))} ,



QUATERNIONIC SUBMANIFOLDS 537

where §1(3, C)—>g2

c is the inclusion described above.

PROOF. The rank of gc whose Int(g2

c)-conjugacy class c(gc) is contained
in ^(&ΐ) is 2. So gc is §1(3, C) or o(5, C). By Lemma 3.4, long roots in
J(gc) are also long roots in J(g2

c). It is impossible, if gc = o(5, C). If
gc = §1(3, C), it is a regular subalgebra in g2

c by Corollary 3.5 and it is
unique up to Int(g2

c)-conjugacy.

From Theorem 8.1 we obtain the classification of quaternionic sub-
manifolds in GJSO(4).

THEOREM 8.2. Let Gξtl-+GJSO(4:) be the inclusion induced by the
inclusion §1(3, C)—>g2

c described above. Then

Since ^(G2/SO(4)) has only one element, it is trivial that the map

X: &(GJSO(4)) -> #*(G2/SO(4); R)

is injective.
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