A FAMILY OF COMPACT SOLVABLE G₂-CALIBRATED MANIFOLDS

MARISA FERNÁNDEZ

(Received May 19, 1986)

1. Introduction. The G_2 -calibrated manifolds are the G_2 analogous of the symplectic manifolds (see [HL 1], [HL 2]). Such a manifold M is 7-dimensional and has a twofold vector cross product P such that the associated 3-form ϕ is closed. In particular if ϕ is closed and coclosed, then P is a 2-fold parallel vector cross product, or equivalently M has a subgroup of G_2 as the holonomy group (see [GR]).

Bryant has shown that locally there are many 7-dimensional Riemannian manifolds with "Hol $\subset G_2$ " (see [BR]) but a compact example is still conjectural.

Recently we reported in [FE] the existence of a compact G_2 -calibrated manifold V^{τ} and, as far as we know, no more examples of this kind are known in the literature. V^{τ} is a nilmanifold and its first Betti number is equal to five.

In the present paper, we shall give a family of compact solvable nonnilpotent G_2 -calibrated manifolds $M^r(k)$ and we shall prove that its first Betti number is equal to three.

We show that with respect to the natural metric $M^{\tau}(k)$ does not have a parallel vector cross product, so the holonomy group is not a subgroup of G_2 . Thus $M^{\tau}(k)$ satisfies a natural weakening from "Hol $\subset G_2$ " to " G_2 calibrated".

2. The manifolds $M^{r}(k)$. Let G(k) be the group of matrices of complex numbers of the form

	$ e^{kz_1} $	0	0	z_{2}
<i>a</i> =	0	e^{-kz_1}	0	z_{3}
	0	0	1	$\begin{vmatrix} z_3 \\ z_1 \\ 1 \end{vmatrix}$
	/0	0	0	1/

where $k \in \mathbf{R}$ is fixed such that $e^k + e^{-k}$ is an integer different from 2 and $z_1, z_2, z_3 \in \mathbf{C}$. G(k) is a connected simply connected solvable nonnilpotent Lie group of (complex) dimension 3.

A global system of (complex) coordinates (z_1, z_2, z_3) on G(k) is defined by

M. FERNÁNDEZ

$$oldsymbol{z}_{\scriptscriptstyle 1}(a)=oldsymbol{z}_{\scriptscriptstyle 1}$$
 , $oldsymbol{z}_{\scriptscriptstyle 2}(a)=oldsymbol{z}_{\scriptscriptstyle 2}$, $oldsymbol{z}_{\scriptscriptstyle 3}(a)=oldsymbol{z}_{\scriptscriptstyle 3}$.

A basis for the right invariant (complex) 1-forms on G(k) is given by

$$oldsymbol{\omega}_{\scriptscriptstyle 1}=doldsymbol{z}_{\scriptscriptstyle 1}$$
 , $oldsymbol{\omega}_{\scriptscriptstyle 2}=doldsymbol{z}_{\scriptscriptstyle 2}-koldsymbol{z}_{\scriptscriptstyle 2}doldsymbol{z}_{\scriptscriptstyle 1}$, $oldsymbol{\omega}_{\scriptscriptstyle 3}=doldsymbol{z}_{\scriptscriptstyle 3}+koldsymbol{z}_{\scriptscriptstyle 3}doldsymbol{z}_{\scriptscriptstyle 1}$

Now, to get a compact quotient, we take $X(k) = G(k)/\Gamma(k)$, where $\Gamma(k)$ is a uniform subgroup of G(k). (We refer to [NA, §2] for a classification of 3-dimensional compact complex solvmanifolds, as well as for some explicit realizations of X(k). See also [UE, Chapter VII, §17].)

The 1-forms ω_1 , ω_2 and ω_3 all descend to X(k); denote the (complex) 1-forms induced on X(k) by ϕ_1 , ϕ_2 and ϕ_3 respectively. Moreover, (ϕ_1, ϕ_2, ϕ_3) is a basis for the holomorphic 1-forms on X(k) such that

$$d\phi_1=0$$
 , $d\phi_2=k\phi_1\wedge\phi_2$, $d\phi_3=-k\phi_1\wedge\phi_3$.

THEOREM 1 ([NA]). The first Betti number of X(k) is equal to 2.

Next we shall denote by α_1 , α_2 , β_1 , β_2 , γ_1 , γ_2 the (real) 1-forms $\operatorname{Re}(\phi_1)$, $\operatorname{Im}(\phi_1)$, $\operatorname{Re}(\phi_2)$, $\operatorname{Im}(\phi_2)$, $\operatorname{Re}(\phi_3)$, $\operatorname{Im}(\phi_3)$. Then we have

$$egin{aligned} &dlpha_1=dlpha_2=0\ ,\ &deta_1=k(lpha_1\wedgeeta_1-lpha_2\wedgeeta_2)\ ,\ &deta_2=k(lpha_2\wedgeeta_1+lpha_1\wedgeeta_2)\ ,\ &d\gamma_1=-k(lpha_1\wedge\gamma_1-lpha_2\wedge\gamma_2)\ ,\ &d\gamma_2=-k(lpha_2\wedge\gamma_1+lpha_1\wedge\gamma_2)\ .\end{aligned}$$

Let us now consider the compact manifold $M^{\tau}(k) = X(k) \times S^{1}$.

THEOREM 2. There exists a (nonparallel) vector cross product on $M^{\tau}(k)$ such that the associated 3-form is closed.

PROOF. Let ϕ be the 3-form on $M^{r}(k)$ defined by

$$egin{aligned} (1) & \phi = eta_1 \wedge eta_2 \wedge lpha_1 + eta_2 \wedge eca_2 \wedge \eta + eca_2 \wedge lpha_1 \wedge eca_1 \wedge eca_1 + lpha_1 \wedge \eta \wedge lpha_2 \ & + \eta \wedge eca_1 \wedge eta_1 + eca_1 \wedge lpha_2 \wedge eta_2 + lpha_2 \wedge eta_1 \wedge eca_2 \,, \end{aligned}$$

where η denotes the canonical 1-form on S^1 . On the right hand side of (1), all of the terms except the second, fifth, sixth and seventh are closed. But $d(\beta_2 \wedge \gamma_2 - \beta_1 \wedge \gamma_1) = d(\beta_2 \wedge \gamma_1 + \beta_1 \wedge \gamma_2) = 0$, and so the sum of the second and fifth terms and sixth and seventh terms are each closed.

Define a metric on $M^{\prime}(k)$ by

 $\langle , \rangle = lpha_1^2 + lpha_2^2 + eta_1^2 + eta_2^2 + \gamma_1^2 + \gamma_2^2 + \eta^2$.

Let $\{E_0 \cdots E_i\}$ be the basis dual to $\{\beta_1, \beta_2, \gamma_2, \alpha_1, \eta, \gamma_1, \alpha_2\}$. Then a twofold vector cross product P on $M^r(k)$ is given by $P(E_i, E_j) = -P(E_j, E_i)$,

288

and $P(E_i, E_{i+1}) = E_{i+3}$, $P(E_{i+3}, E_i) = E_{i+1}$, $P(E_{i+1}, E_{i+3}) = E_i$ $(i \in \mathbb{Z}_7)$. It is not hard to show that P satisfies the axioms for a twofold vector cross product (see [GR]) and ϕ is the associated 3-form. To show that P is not parallel we prove that $\delta\phi$ is nonzero, δ being the coderivative of $M^r(k)$ with respect to the metric given above. Indeed, a calculation shows that $\delta\phi = 4k(\gamma_1 \wedge \gamma_2 - \beta_1 \wedge \beta_2) \neq 0$.

THEOREM 3. The first Betti number of M'(k) is equal to 3.

PROOF. It is a direct consequence of Theorem 1.

References

- [BR] R. BRVANT, Metrics with holonomy G₂ or Spin(7), Lect. Notes in Math. 1111, Springer-Verlag, Berlin, Heidelberg, New York 1985, 269-277.
- [FE] M. FERNANDEZ, An example of a compact calibrated manifold associated with the exceptional Lie group G_2 , J. Differential Geometry (to appear).
- [FG] M. FERNANDEZ AND A. GRAY, Riemannian manifolds with structure group G_2 , Ann. Mat. Pura ed Appl. (IV) 32 (1982), 19-45.
- [GR] A. GRAY, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969), 463-504. Correction 148 (1970), 625.
- [HL1] R. HARVEY AND H. B. LAWSON, A constellation of minimal varieties defined over G_2 , Proceedings of the Conference on Geometry and Partial Differential Equations, Lecture Notes in Pure and Applied Math. 48, Marcel Dekker, 1979, 167–187.
- [HL2] R. HARVEY AND H. B. LAWSON, Calibrated geometries, Acta Math. 148 (1982), 47-157.
- [NA] I. NAKAMURA, Complex parallelizable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85-112.
- [UE] K. UENO, Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lect. Notes in Math. 439, Springer-Verlag, Berlin, Heidelberg, New York 1975.

DEPARTAMENTO DE MATEMATICAS FACULTAD DE CIENCIAS SECCION DE MATEMATICAS UNIVERSIDAD DEL PAIS VASCO APARTADO 644 BILBAO SPAIN