A FAMILY OF COMPACT SOLVABLE G_{2}-CALIBRATED MANIFOLDS

Marisa Fernández

(Received May 19, 1986)

1. Introduction. The G_{2}-calibrated manifolds are the G_{2} analogous of the symplectic manifolds (see [HL 1], [HL 2]). Such a manifold M is 7-dimensional and has a twofold vector cross product P such that the associated 3 -form ϕ is closed. In particular if ϕ is closed and coclosed, then P is a 2 -fold parallel vector cross product, or equivalently M has a subgroup of G_{2} as the holonomy group (see [GR]).

Bryant has shown that locally there are many 7-dimensional Riemannian manifolds with "Hol $\subset G_{2}$ " (see $[\mathrm{BR}]$) but a compact example is still conjectural.

Recently we reported in [FE] the existence of a compact G_{2}-calibrated manifold V^{7} and, as far as we know, no more examples of this kind are known in the literature. V^{7} is a nilmanifold and its first Betti number is equal to five.

In the present paper, we shall give a family of compact solvable nonnilpotent G_{2}-calibrated manifolds $M^{7}(k)$ and we shall prove that its first Betti number is equal to three.

We show that with respect to the natural metric $M^{7}(k)$ does not have a parallel vector cross product, so the holonomy group is not a subgroup of G_{2}. Thus $M^{7}(k)$ satisfies a natural weakening from " $\mathrm{Hol} \subset G_{2}$ " to " G_{2} calibrated".
2. The manifolds $M^{7}(k)$. Let $G(k)$ be the group of matrices of complex numbers of the form

$$
a=\left(\begin{array}{llll}
e^{k z_{1}} & 0 & 0 & z_{2} \\
0 & e^{-k z_{1}} & 0 & z_{3} \\
0 & 0 & 1 & z_{1} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $k \in \boldsymbol{R}$ is fixed such that $e^{k}+e^{-k}$ is an integer different from 2 and $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{z}_{3} \in \boldsymbol{C} . \quad G(k)$ is a connected simply connected solvable nonnilpotent Lie group of (complex) dimension 3.

A global system of (complex) coordinates $\left(z_{1}, z_{2}, z_{3}\right)$ on $G(k)$ is defined by

$$
z_{1}(a)=z_{1}, \quad z_{2}(a)=z_{2}, \quad z_{3}(a)=z_{3} .
$$

A basis for the right invariant (complex) 1-forms on $G(k)$ is given by

$$
\omega_{1}=d z_{1}, \quad \omega_{2}=d z_{2}-k z_{2} d z_{1}, \quad \omega_{3}=d z_{3}+k z_{3} d z_{1}
$$

Now, to get a compact quotient, we take $X(k)=G(k) / \Gamma(k)$, where $\Gamma(k)$ is a uniform subgroup of $G(k)$. (We refer to [NA, §2] for a classification of 3 -dimensional compact complex solvmanifolds, as well as for some explicit realizations of $X(k)$. See also [UE, Chapter VII, §17].)

The 1-forms ω_{1}, ω_{2} and ω_{3} all descend to $X(k)$; denote the (complex) 1-forms induced on $X(k)$ by ϕ_{1}, ϕ_{2} and ϕ_{3} respectively. Moreover, ($\phi_{1}, \phi_{2}, \phi_{3}$) is a basis for the holomorphic 1-forms on $X(k)$ such that

$$
d \dot{\phi}_{1}=0, \quad d \phi_{2}=k \dot{\phi}_{1} \wedge \phi_{2}, \quad d \phi_{3}=-k \phi_{1} \wedge \phi_{3} .
$$

Theorem 1 ([NA]). The first Betti number of $X(k)$ is equal to 2.
Next we shall denote by $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ the (real) 1 -forms $\operatorname{Re}\left(\phi_{1}\right)$, $\operatorname{Im}\left(\phi_{1}\right), \operatorname{Re}\left(\phi_{2}\right), \operatorname{Im}\left(\phi_{2}\right), \operatorname{Re}\left(\phi_{3}\right), \operatorname{Im}\left(\phi_{3}\right)$. Then we have

$$
\begin{aligned}
& d \alpha_{1}=d \alpha_{2}=0 \\
& d \beta_{1}=k\left(\alpha_{1} \wedge \beta_{1}-\alpha_{2} \wedge \beta_{2}\right) \\
& d \beta_{2}=k\left(\alpha_{2} \wedge \beta_{1}+\alpha_{1} \wedge \beta_{2}\right) \\
& d \gamma_{1}=-k\left(\alpha_{1} \wedge \gamma_{1}-\alpha_{2} \wedge \gamma_{2}\right) \\
& d \gamma_{2}=-k\left(\alpha_{2} \wedge \gamma_{1}+\alpha_{1} \wedge \gamma_{2}\right)
\end{aligned}
$$

Let us now consider the compact manifold $M^{7}(k)=X(k) \times S^{1}$.
Theorem 2. There exists a (nonparallel) vector cross product on $M^{7}(k)$ such that the associated 3 -form is closed.

Proof. Let ϕ be the 3 -form on $M^{7}(k)$ defined by

$$
\begin{align*}
\phi= & \beta_{1} \wedge \beta_{2} \wedge \alpha_{1}+\beta_{2} \wedge \gamma_{2} \wedge \eta+\gamma_{2} \wedge \alpha_{1} \wedge \gamma_{1}+\alpha_{1} \wedge \eta \wedge \alpha_{2} \tag{1}\\
& +\eta \wedge \gamma_{1} \wedge \beta_{1}+\gamma_{1} \wedge \alpha_{2} \wedge \beta_{2}+\alpha_{2} \wedge \beta_{1} \wedge \gamma_{2}
\end{align*}
$$

where η denotes the canonical 1-form on S^{1}. On the right hand side of (1), all of the terms except the second, fifth, sixth and seventh are closed. But $d\left(\beta_{2} \wedge \gamma_{2}-\beta_{1} \wedge \gamma_{1}\right)=d\left(\beta_{2} \wedge \gamma_{1}+\beta_{1} \wedge \gamma_{2}\right)=0$, and so the sum of the second and fifth terms and sixth and seventh terms are each closed.

Define a metric on $M^{7}(k)$ by

$$
\langle,\rangle=\alpha_{1}^{2}+\alpha_{2}^{2}+\beta_{1}^{2}+\beta_{2}^{2}+\gamma_{1}^{2}+\gamma_{2}^{2}+\eta^{2} .
$$

Let $\left\{E_{0} \cdots E_{6}\right\}$ be the basis dual to $\left\{\beta_{1}, \beta_{2}, \gamma_{2}, \alpha_{1}, \eta, \gamma_{1}, \alpha_{2}\right\}$. Then a twofold vector cross product P on $M^{7}(k)$ is given by $P\left(E_{i}, E_{j}\right)=-P\left(E_{j}, E_{i}\right)$,
and $P\left(E_{i}, E_{i+1}\right)=E_{i+3}, P\left(E_{i+3}, E_{i}\right)=E_{i+1}, P\left(E_{i+1}, E_{i+3}\right)=E_{i}\left(i \in Z_{7}\right)$. It is not hard to show that P satisfies the axioms for a twofold vector cross product (see [GR]) and ϕ is the associated 3-form. To show that P is not parallel we prove that $\delta \phi$ is nonzero, δ being the coderivative of $M^{7}(k)$ with respect to the metric given above. Indeed, a calculation shows that $\delta \phi=4 k\left(\gamma_{1} \wedge \gamma_{2}-\beta_{1} \wedge \beta_{2}\right) \neq 0$.

Theorem 3. The first Betti number of $M^{7}(k)$ is equal to 3.
Proof. It is a direct consequence of Theorem 1.

References

[BR] R. Bryant, Metrics with holonomy G_{2} or $\operatorname{Spin}(7)$, Lect. Notes in Math. 1111, SpringerVerlag, Berlin, Heidelberg, New York 1985, 269-277.
[FE] M. Fernandez, An example of a compact calibrated manifold associated with the exceptional Lie group G_{2}, J. Differential Geometry (to appear).
[FG] M. Fernandez and A. Gray, Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura ed Appl. (IV) 32 (1982), 19-45.
[GR] A. Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969), 463-504. Correction 148 (1970), 625.
[HL1] R. Harvey and H. B. Lawson, A constellation of minimal varieties defined over G_{2}, Proceedings of the Conference on Geometry and Partial Differential Equations, Lecture Notes in Pure and Applied Math. 48, Marcel Dekker, 1979, 167-187.
[HL2] R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
[NA] I. Nakamura, Complex parallelizable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85-112.
[UE] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lect. Notes in Math. 439, Springer-Verlag, Berlin, Heidelberg, New York 1975.

Departamento de Matematicas
Facultad de Ciencias
Seccion de Matematicas
Universidad del Pais Vasco
Apartado 644
Bilbao
Spain

