COMPACT OPERATORS IN TYPE III $_{\lambda}$ AND TYPE III ${ }_{0}$ FACTORS, II

Herbert Halpern and Victor Kaftal

(Received October 21, 1985)

1. Introduction and notations. In this paper we continue the program started in [8] of studing notions of compact operators in type III_{2} $(0 \leqq \lambda<1)$ factors. Given a type III_{λ} factor \boldsymbol{M} operating on a separable Hilbert space \boldsymbol{H}, we represent it as the crossed product of a type II_{∞} algebra N (a factor for $0<\lambda<1$ or an algebra with diffuse center for $\lambda=0$) by an automorphism θ that λ-scales a trace τ (i.e., $\tau \circ \theta=\lambda \tau$ for $0<\lambda<1$ or $\tau \circ \theta \leqq \lambda_{0} \tau$ with $\lambda_{0}<1$ for $\lambda=0$). We embed \boldsymbol{N} in \boldsymbol{M} and let E be the canonical normal conditional expectation $E: M \rightarrow N, u$ be the unitary operator implementing θ (i.e., $\operatorname{Ad} u=\theta$) such that $\{\boldsymbol{N}, u\}^{\prime \prime}=\boldsymbol{M}$ and $\varphi=$ $\tau \circ E$ be the dual weight of τ. Then φ is a lacunary weight, i.e., 1 is an isolated point in $\operatorname{Sp} \sigma^{\varphi}, \lambda_{0}=\sup \left\{\lambda \in \operatorname{Sp} \sigma^{\varphi} \mid \lambda<1\right\}, N$ is the centralizer of φ and $\boldsymbol{M} \cap \boldsymbol{N}^{\prime}=\boldsymbol{N} \cap \boldsymbol{N}^{\prime}$. For further references see [2, §4,5] and [16, § 30.4].

In [8] we denoted by $\boldsymbol{I}(\boldsymbol{N})$ the two sided ideal of N generated by the finite projections of N, by $J(N)$ the norm closure of $I(N)$ and we defined

$$
\begin{aligned}
& \boldsymbol{I}=\operatorname{span}\left\{x \in \boldsymbol{M}^{+} \mid E(x) \in \boldsymbol{I}(\boldsymbol{N})\right\}, \\
& \boldsymbol{M}_{\varphi}=\operatorname{span}\left\{x \in \boldsymbol{M}^{+} \mid \varphi(x)<\infty\right\},
\end{aligned}
$$

$$
\boldsymbol{J}=\overline{\boldsymbol{I}} \text { where the bar denotes the norm closure. }
$$

We then obtained the embeddings for $0<\lambda<1$ [8, Theorem 6.2]

$$
\boldsymbol{I} \subset \boldsymbol{M}_{\varphi} \subset J
$$

analogous to the classical embeddings of finite rank, trace-class and compact operator ideals. For the case $\lambda=0$ we obtained a similar embedding involving the center of \boldsymbol{N} [8, Corollary 6.5]. We then proved the generalization of several of the classical properties of compact operators, (Riesz, Calkin, Rellich and Hilbert properties [8, Theorem 5.3, Proposition 5.6]). In [8, Remark 4.6] we noticed that J is minimal among the C^{*}-algebras $\boldsymbol{C} \supset \boldsymbol{E}(\boldsymbol{C})=\boldsymbol{J}(\boldsymbol{N})$ which are two sided \boldsymbol{N}-modules, while the maximal one is the algebra \boldsymbol{K} given by:

Definition 1.1. $\boldsymbol{K}=\operatorname{span}\left\{x \in \boldsymbol{M}^{+} \mid E(x) \in \boldsymbol{J}(\boldsymbol{N})\right\}$.

By [8, Proposition 3.3], we have that \boldsymbol{K} is a hereditary C^{*}-algebra, a two sided N-module (actually a two sided module over span $N(E)$, where the latter is the normalizer group of the expectation E [8, Remark 3.4]) and by [8, Remark 4.6], $\boldsymbol{K} \cap \boldsymbol{N}=E(\boldsymbol{K})=\boldsymbol{J}(\boldsymbol{N})$ and $\boldsymbol{J} \subset \boldsymbol{K}$. The hereditary algebras $\boldsymbol{I}, \boldsymbol{M}_{\varphi}, \boldsymbol{J}$ and \boldsymbol{K} depend on the choice of the crossed product decomposition of \boldsymbol{M} (or equivalently, on the choice of the lacunary weight φ) only up to inner automorphisms of M (this holds for $0<\lambda<1$; for $\lambda=0$ an analogous condition involving central projections of N is given in [8, Remark 4.7]).

In § 2 we characterize the algebra K in terms of the essential central range of its elements. In particular we prove that $x \in \boldsymbol{K}^{+}$if and only if \boldsymbol{N}^{\prime} meets the σ-weak closure of the convex hull of $\left\{v x v^{*} \mid v\right.$ unitary in $\left.\boldsymbol{N}\right\}$ only in $\{0\}$, and we discuss analogous conditions involving the closure in the uniform topology.

In $\S 3$ we study the notion of θ-wandering projections in N (i.e., projections p such that $p \theta^{n}(p)=0$ for all $n \neq 0$) and we prove that every nonzero projection majorizes a nonzero θ-wandering projection.

Using this notion we introduce in $\S 4$ an isomorphism ρ of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto $\boldsymbol{D} \subset \boldsymbol{M}$ such that $E(\rho(\alpha))=\sum_{n=-\infty}^{\infty} a_{n n} \pi\left(\theta^{n}(p)\right)$. This enables us to fully characterize in $\S 5$ the positive part of the intersection of D with all the algebras introduced earlier ($\boldsymbol{I}, \boldsymbol{M}_{\varphi}, \boldsymbol{J}$ and \boldsymbol{K}) in terms of the matricial form of the elements of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$. In particular we show that $\rho(a) \in J^{+}$ if and only if the "upper left corner" of the (bi-infinite) matrix of a is compact in the usual sense. We prove also that in contradistinction to $\boldsymbol{B}(\boldsymbol{H})$ or to semifinite factors, the above listed algebras have properly different sets of projections. In particular this shows that $\boldsymbol{J} \neq \boldsymbol{K}$.

By exploiting module properties of J and \boldsymbol{K} relative to the algebra generated by u (i.e., the algebra of Laurent operators tensored with 1) and some subalgebras of it, and by using some results on Toeplitz operators, we show in $\S 6$ that J is not an ideal of \boldsymbol{K}.
2. The essential central range. In this section we are going to study a generalization to M of the following characterization of $\boldsymbol{J}(\boldsymbol{N})$. For every $x \in \boldsymbol{B}(\boldsymbol{H})$ define

$$
K(x)=\overline{\operatorname{co}}\{\operatorname{Ad} v(x) \mid v \in \boldsymbol{U}(\boldsymbol{N})\}
$$

to be the norm closure of the convex hull of the unitary orbit of x, where $\operatorname{Ad} v(x)=v x v^{*}$ and $\boldsymbol{U}(\boldsymbol{N})$ is the group of unitary elements of \boldsymbol{N}. Let also $C(x)$ be the σ-weak closure of $K(x)$. Then for all $x \in N$ we have by [6, Theorem 4.12, Corollary 4.17] that $K(x) \cap \boldsymbol{N}^{\prime}=C(x) \cap \boldsymbol{N}^{\prime}=\{\omega(x) \mid \omega$ centervalued state on $N, \omega(J(N))=\{0\}\}$. Here a center-valued state is a positive
bounded $N \cap N^{\prime}$-module homomorphism of \boldsymbol{N} onto the center of \boldsymbol{N} with $\omega(1)=1$. If N is a factor, then this notion coincides with the usual notion of state.

Thus $C(x) \cap \boldsymbol{N}^{\prime}$ is the essential central range of $x \in \boldsymbol{N}$, and $x \in J(N)$ if and only if $C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$. For further information on the notion of essential central range (modulo the ideal $J(N)$) we refer the reader to [6] and [7].

In order to simplify notations, let us define \boldsymbol{F} to be the set of all finite-support functions $f: \boldsymbol{U}(\boldsymbol{N}) \rightarrow[0,1]$ such that $\sum\{f(v) \mid v \in \boldsymbol{U}(\boldsymbol{N})\}=1$. Define an action of \boldsymbol{F} on \boldsymbol{M} by setting

$$
f \cdot x=\sum\{f(v) \operatorname{Ad} v(x) \mid v \in \boldsymbol{U}(\boldsymbol{N})\}
$$

Then f is a positive contraction, i.e., $\|f \cdot x\| \leqq\|x\|$ for all $x \in M$, and $f \cdot x \geqq 0$ for all $x \in M^{+}$. The norm closure (resp. the σ-weak closure) of $\{f \cdot x \mid f \in \boldsymbol{F}\}$ coincides with $K(x)$ (resp. with $C(x)$). Explicitly, $y \in K(x)$ (resp. $y \in C(x)$) if and only if there is a sequence $f_{n} \in \boldsymbol{F}$ such that $f_{n} \cdot x \rightarrow y$ in norm (resp. σ-weakly, using the metrizability of the unit ball).

Notice that if $x \in \boldsymbol{M}$ and $y \in K(x)$ then $K(y) \subset K(x) \subset \boldsymbol{M} ; E$ and $f \in \boldsymbol{F}$ commute, i.e., $E(f \cdot x)=f \cdot E(x) ; f$ leaves $N \cap \boldsymbol{N}^{\prime}$ pointwise invariant and leaves every two sided N-module globally invariant (in particular N, I, $\boldsymbol{M}_{\varphi}, \boldsymbol{J}$ and \boldsymbol{K}). Finally, \boldsymbol{F} is closed under composition, i.e., for all $f, g \in \boldsymbol{F}$, $f \circ g$ is in \boldsymbol{F} and coincides with the usual convolution product.

Recall that Dixmier [4, Théorème 1, Ch. III, §5] proved for all von Neumann algebras \boldsymbol{N} that $K(x) \cap \boldsymbol{N}^{\prime} \neq \varnothing$ for all $x \in \boldsymbol{N}$ (Dixmier property) and Schwartz [15] defined and studied the algebras $\boldsymbol{N} \subset \boldsymbol{B}(\boldsymbol{H})$ for which $C(x) \cap \boldsymbol{N}^{\prime} \neq \varnothing$ for all $x \in \boldsymbol{B}(\boldsymbol{H})$ (P-property). We need to generalize both properties.

Definition 2.1. An embedding $\boldsymbol{A} \subset \boldsymbol{B}$ has:
(a) the relative Dixmier property if $K(x) \cap \boldsymbol{A}^{\prime} \neq \varnothing$ for all $x \in \boldsymbol{B}$;
(b) the relative P-property if $C(x) \cap \boldsymbol{A}^{\prime} \neq \varnothing$ for all $x \in \boldsymbol{B}$.

It is usually difficult to analyze the relative Dixmier property: recall for instance that the long standing pure state extension problem for $\boldsymbol{B}(\boldsymbol{H})$ is equivalent to the relative Dixmier property for the embedding of the algebra of diagonal operators in $\boldsymbol{B}(\boldsymbol{H})$ ([1], [9]). In our case, we can however prove the relative P-property.

Theorem 2.2. The embedding $\boldsymbol{N} \subset \boldsymbol{M}$ has the relative P-property.
Proof. Let \boldsymbol{A} be a maximal abelian von Neumann subalgebra of \boldsymbol{N}. Then by [2, 4.2.3], \boldsymbol{A} is maximal abelian in \boldsymbol{M}. Let $x \in \boldsymbol{M}$ and let $C_{A}(x)$ be the σ-weak closure of the convex hull of $\{\operatorname{Ad} v(x) \mid v \in \boldsymbol{U}(\boldsymbol{A})\}$. Then
$C_{A}(x) \subset C(x) \subset M$ and $C_{A}(x)$ is bounded and hence σ-weakly compact. Therefore by the Markov-Kakutani fixed point theorem [17, Lemma A.1], $C_{A}(x)$ contains a point y fixed under all maps $\operatorname{Ad} v, v \in \boldsymbol{U}(\boldsymbol{A})$ and hence belonging to \boldsymbol{A}^{\prime}. But then, $\boldsymbol{y} \in \boldsymbol{A}^{\prime} \cap \boldsymbol{M}=\boldsymbol{A} \subset \boldsymbol{N}$ and hence because of the Dixmier property for N, the set $K(y) \cap \boldsymbol{N}^{\prime}$ is nonvoid. Since $y \in C(x)$, then $K(y) \subset$ $C(x)$ and hence $\varnothing \neq K(y) \cap N^{\prime} \subset C(x) \cap N^{\prime}$.

Remark 2.3. In [12, Corollary 4.9] Longo has proved with different methods the same result for the case of the embedding of a separably operating factor N in its crossed product by a discrete group.

Corollary 2.4. Let $x \in M$; then

$$
C(x) \cap \boldsymbol{N}^{\prime}=C(E(x)) \cap \boldsymbol{N}^{\prime}=K(E(x)) \cap \boldsymbol{N}^{\prime} .
$$

Proof. The second equality has been proven in [6, Corollary 4.17]. Let $z \in C(x) \cap \boldsymbol{N}^{\prime}$. Then there is a sequence $f_{n} \in \boldsymbol{F}$ such that $f_{n} \cdot x \rightarrow z$ (σ weakly). By the normality and hence σ-weak continuity of E and the fact that $z \in \boldsymbol{M} \cap \boldsymbol{N}^{\prime}=\boldsymbol{N} \cap \boldsymbol{N}^{\prime}$, we have that

$$
f_{n} \cdot E(x)=E\left(f_{n} \cdot x\right) \rightarrow E(z)=z .
$$

Thus $z \in C(E(x)) \cap \boldsymbol{N}^{\prime}$. Conversely, assume that $z \in C(E(x)) \cap N^{\prime}$ and let $f_{n} \in \boldsymbol{F}$ be such that $f_{n} \cdot E(x) \rightarrow \boldsymbol{z}$ (σ-weakly). Since $f_{n} \cdot x$ is bounded, we can assume, by passing to a subsequence if necessary, that $f_{n} \cdot x \rightarrow y$ (σ-weakly) for some $y \in C(x)$. Then again

$$
f_{n} \cdot E(x) \rightarrow E(y)=z
$$

By Theorem 2.2, $C(y) \cap \boldsymbol{N}^{\prime} \neq \varnothing$ and by the first part of this proof

$$
C(y) \cap \boldsymbol{N}^{\prime} \subset C(E(y)) \cap \boldsymbol{N}^{\prime}=C(z) \cap \boldsymbol{N}^{\prime}=\{z\}
$$

because the center of \boldsymbol{N} is pointwise invariant under the action of \boldsymbol{F}. Thus $z \in C(y) \cap N^{\prime} \subset C(x) \cap N^{\prime}$.

COROLLARY 2.5. Let $x \in \boldsymbol{M}$. Then $C(x) \cap \boldsymbol{N}^{\prime}=\left\{\omega(x) \mid \omega\right.$ is an $\boldsymbol{N} \cap \boldsymbol{N}^{\prime}$ valued positive module homomorphism on M, with $\omega(1)=1$, $\omega=\omega \circ E$ and $\omega(J)=\{0\}\}$.

Proof. From Corollary 2.4 we have that $C(x) \cap N^{\prime}=\{\tilde{\omega}(E(x)) \mid \tilde{\omega}$ is a center-valued state on $\boldsymbol{N}, \tilde{\omega}(\boldsymbol{J}(\boldsymbol{N}))=\{0\}\}$. Let $\tilde{\boldsymbol{\omega}}$ be a center-valued state on N vanishing on $\boldsymbol{J}(\boldsymbol{N})$ and let $\omega=\tilde{\omega} \circ E$ be its extension to M; then ω is an $N \cap N^{\prime}$-valued positive module homomorphism on \boldsymbol{M}, with $\omega(1)=1$ and $\omega=\omega \circ E$. For every $x \in J^{+}$, there is a $y \in J(N)$ such that $x \leqq y[8$, Theorem 4.3.(b)]; therefore,

$$
0 \leqq \omega(x) \leqq \omega(y)=\tilde{\omega}(y)=0
$$

As $\boldsymbol{J}=\operatorname{span} J^{+}$, we thus have $\omega(\boldsymbol{J})=\{0\}$. Conversely, if ω is as in the statement of the Corollary, its restriction $\tilde{\omega}$ to N is a center-valued state on $N, \tilde{\omega}(J(N))=\{0\}$ and

$$
\omega(x)=\omega(E(x))=\tilde{\omega}(E(x)) .
$$

Thus $C(x) \cap \boldsymbol{N}^{\prime}$ is an essential central range of x. In particular for $0<\lambda<1$ the center of \boldsymbol{N} is trivial, center-valued states are simply states and the essential central range is an essential numerical range. It is thus natural to investigate the class of elements x of \boldsymbol{M} with $C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$. As we have already mentioned, this condition for \boldsymbol{N} characterizes the class of compact operators $\boldsymbol{J}(\boldsymbol{N})$. In \boldsymbol{M}^{+}it characterizes \boldsymbol{K}^{+}.

Theorem 2.6. Let $x \in \boldsymbol{M}^{+}$. Then $x \in \boldsymbol{K}^{+}$if and only if $C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$.
Proof. We have that $x \in \boldsymbol{K}^{+}$if and only if $E(x) \in \boldsymbol{J}(\boldsymbol{N})$ if and only if $C(E(x)) \cap \boldsymbol{N}^{\prime}=\{0\}$ if and only if $C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$ (by Corollary 2.4).

The proof actually shows that for all $x \in M, E(x) \in J(N)$ if and only if $C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$. The class characterized by this condition is, however, much too large to be of interest as it includes all the elements x with $E(x)=0$. Let us collect here for ease of reference some facts about \boldsymbol{K}.

Proposition 2.7.
(a) \boldsymbol{K} is a hereditary C^{*}-subalgebra of \boldsymbol{M} and a two sided \boldsymbol{N}-module.
(b) $\boldsymbol{K}=\operatorname{span} \boldsymbol{K}^{+}=\left\{x \in \boldsymbol{M} \mid E\left(x x^{*}+x^{*} x\right) \in \boldsymbol{J}(\boldsymbol{N})\right\}$.
(c) \boldsymbol{K} is globally invariant under the action of \boldsymbol{F}.
(d) $\boldsymbol{I} \subset \boldsymbol{K}$, hence $\boldsymbol{J} \subset \boldsymbol{K}$.
(e) $\boldsymbol{K} \cap \boldsymbol{N}=E(\boldsymbol{K})=\boldsymbol{J}(\boldsymbol{N})$.
(f) $\boldsymbol{N}+\boldsymbol{K}=\{x \in \boldsymbol{M} \mid x-E(x) \in \boldsymbol{K}\}$ is a C^{*}-algebra with two sided ideal \boldsymbol{K} and $(\boldsymbol{N}+\boldsymbol{K}) / \boldsymbol{K}$ is isomorphic to the generalized Calkin algebra $N / J(N)$.
(g) \boldsymbol{J} is minimal and \boldsymbol{K} is maximal among the hereditary C^{*}-algebras \boldsymbol{C} such that $E(\boldsymbol{C})=\boldsymbol{J}(\boldsymbol{N})$.

Proof. (a) and (b) follow from [8, Proposition 3.3], (c) is a consequence of (a), while (d) and (e) follow immediately from the definition. The proof of (f) is essentially identical to the proof of [8, Proposition 4.5] and (g) follows from [8, Proposition 4.5 and Remark 4.6].

While for $x \in \boldsymbol{N}$ we know that $K(x) \cap \boldsymbol{N}^{\prime}=C(x) \cap \boldsymbol{N}^{\prime}$, this is no longer obvious for $x \in \boldsymbol{M}$ and therefore we have to investigate the set $K(x) \cap \boldsymbol{N}^{\prime}$ independently. Notice however that the above equality would hold also for every \boldsymbol{x} in \boldsymbol{M} if we knew that the embedding $\boldsymbol{N} \subset \boldsymbol{M}$ had the relative Dixmier property (see next lemma, part (a)).

Lemma 2.8. Let $x \in \boldsymbol{M}$. Then
(a) if $K(f \cdot x) \cap \boldsymbol{N}^{\prime} \neq \varnothing$ for all $f \in \boldsymbol{F}$, then $K(x) \cap \boldsymbol{N}^{\prime}=C(x) \cap \boldsymbol{N}^{\prime}$;
(b) if $0 \in K(f \cdot x)$ for all $f \in \boldsymbol{F}$, then $K(x) \cap \boldsymbol{N}^{\prime}=\{0\}$.

Proof. (a) Let $z \in C(x) \cap N^{\prime}$. Then $z \in K(E(x)) \cap N^{\prime}$ (Corollary 2.4) and thus for every $\varepsilon>0$ there is an $f \in \boldsymbol{F}$ such that $\|f \cdot E(x)-z\|<\varepsilon$. By hypothesis there is a $z^{\prime} \in K(f \cdot x) \cap \boldsymbol{N}^{\prime}$ and hence a $g \in \boldsymbol{F}$ such that $\left\|(g \circ f) \cdot x-z^{\prime}\right\|<\varepsilon$. Therefore we obtain

$$
\begin{aligned}
\|(g \circ f) \cdot x-z\| & \leqq\left\|(g \circ f) \cdot x-z^{\prime}\right\|+\left\|z^{\prime}-(g \circ f) \cdot E(x)\right\|+\|(g \circ f) \cdot E(x)-z\| \\
& <\varepsilon+\left\|E\left((g \circ f) \cdot x-z^{\prime}\right)\right\|+\|g \cdot(f \cdot E(x)-z)\|<3 \varepsilon
\end{aligned}
$$

by using the facts that E commutes with the action of $\boldsymbol{F}, E\left(z^{\prime}\right)=z^{\prime}$, $\mathrm{g} \cdot z=z$ and that both E and g are contractions. Thus $z \in K(x) \cap N^{\prime}$. The opposite inclusion follows from $K(x) \subset C(x)$.
(b) Let $z \in K(x) \cap \boldsymbol{N}^{\prime}$, let $\varepsilon>0$ and let $f \in \boldsymbol{F}$ be such that $\|f \cdot x-z\|<$ ε. By hypothesis there is a $g \in \boldsymbol{F}$ such that $\|(g \circ f) \cdot x\|<\varepsilon$. Thus

$$
\|z\| \leqq\|(g \circ f) \cdot x\|+\|g \circ(f \cdot x-z)\|<2 \varepsilon
$$

by the same reasoning as in (a). Consequently, $z=0$. Also, by (a) and by Theorem 2.2, $K(x) \cap N^{\prime} \neq \varnothing$.

Proposition 2.9. Let $x \in M^{+}$; then $0 \in K(E(x))$ if and only if $0 \in K(x)$.
Proof. The condition is sufficient, even for a nonpositive x, by Corollary 2.4 and the inclusion $K(x) \subset C(x)$. Assume now that $0 \in K(E(x))$. Then 0 is in the central convex hull of the essential central spectrum of $E(x)$ [6, Theorem 4.4]. Since $E(x) \geqq 0,0$ belongs also to the essential central spectrum of $E(x)$ [6, Proposition 3.12]. Hence we can apply [7, Theorem 2.10] to the case of the (central) ideal $\boldsymbol{J}(\boldsymbol{N})$ of \boldsymbol{N} and thus we can find a sequence of mutually orthogonal equivalent projections $p_{n} \in \boldsymbol{N}$ with central support 1 , such that $\left\|p_{n} E(x) p_{n}\right\|<2^{-n}$. By passing if necessary to subprojections, we can assume that $\tau\left(p_{n}\right)<\infty$. Let $p=\sum_{n=1}^{\infty} p_{n}$. Then p is properly infinite, $p \sim 1$ and

$$
\varphi(p x p)=\tau(p E(x) p)=\sum_{n=1}^{\infty} \tau\left(p_{n} E(x) p_{n}\right) \leqq \sum_{n=1}^{\infty} 2^{-n} \tau\left(p_{n}\right)=\tau\left(p_{1}\right)<\infty
$$

Therefore $p x p \in \boldsymbol{M}_{\varphi} \subset \boldsymbol{J}$ and hence there is a $y \in \boldsymbol{J}(\boldsymbol{N})$ such that $p x p \leqq y$ by [8 , Theorems 6.2 and $4.3(\mathrm{~b})$]. Thus

$$
x \leqq 2(p x p+(1-p) x(1-p)) \leqq 2 y+2\|x\|(1-p)
$$

Let $\varepsilon>0$ and let $1 / n<\varepsilon$. Because $p \sim 1$ and N is properly infinite, we can find as in the proof of [5, Proposition 5] n unitary operators $u_{i} \in N$ such that $\left\{u_{i}(1-p) u_{i}^{*} \mid i=1, \cdots, n\right\}$ are mutually orthogonal. Let $f \in \boldsymbol{F}$
be such that $f \cdot z=(1 / n) \sum_{i=1}^{n} u_{i} z u_{i}^{*}$ for all $z \in M$. Then

$$
\|f \cdot(1-p)\|=(1 / n)\left\|\sum_{i=1}^{n} u_{i}(1-p) u_{i}^{*}\right\| \leqq(1 / n) \sup \left\|u_{i}(1-p) u_{i}^{*}\right\| \leqq 1 / n<\varepsilon
$$

As $f \cdot y \in \boldsymbol{J}(\boldsymbol{N})$ we have that $0 \in K(f \cdot y)$ and hence there is a $g \in \boldsymbol{F}$ such that $\|(g \circ f) \cdot y\|<\varepsilon$. By the order preserving property of the action of $g \circ f$, we have that

$$
\|(g \circ f) \cdot x\| \leqq 2\|(g \circ f) \cdot y\|+2\|x\|\|(g \circ f) \cdot(1-p)\| \leqq 2(1+\|x\|) \varepsilon
$$

Therefore $0 \in K(x)$.
Theorem 2.10. Let $x \in M^{+}$. Then the following conditions are equivalent:
(a) $x \in K^{+}$,
(b) $0 \in K(f \cdot x)$ for all $f \in \boldsymbol{F}$,
(c) $K(y) \cap \boldsymbol{N}^{\prime}=\{0\}$ for all $y \in K(x)$.

Proof. (a) \Rightarrow (b) Assume that $x \in \boldsymbol{K}^{+}$and let $f \in \boldsymbol{F}$. Then $f \cdot x \in K^{+}$ by Proposition 2.7 (c); but then $0 \in K(E(f \cdot x))$ and hence $0 \in K(f \cdot x)$ by Proposition 2.9.
(b) \Rightarrow (c) Let $y \in K(x)$ and let $\varepsilon>0$. Then there is an $f \in \boldsymbol{F}$ such that $\|f \cdot x-y\|<\varepsilon$. Choose any $g \in \boldsymbol{F}$; then by hypothesis $0 \in K((g \circ f) \cdot x)$. Hence, there is an $h \in \boldsymbol{F}$ such that $\|(h \circ g \circ f) \cdot x\|<\varepsilon$. Thus, we obtain

$$
\|h \cdot(g \cdot y)\| \leqq\|(h \circ g) \cdot(f \cdot x-y)\|+\|(h \circ g \circ f) \cdot x\|<2 \varepsilon,
$$

whence $0 \in K(g \cdot y)$. From Lemma $2.8(\mathrm{~b})$ it follows that $K(y) \cap \boldsymbol{N}^{\prime}=\{0\}$.
Clearly (c) $\Rightarrow(b)$.
(b) \Rightarrow (a) By Lemma 2.8 (a) and (b), we have $\{0\}=K(x) \subset N^{\prime}=C(x) \cap$ \boldsymbol{N}^{\prime}. Therefore $x \in \boldsymbol{K}^{+}$by Theorem 2.6.

Notice that the equivalence of (b) and (c) holds also for a nonpositive x. If $N \subset M$ had the relative Dixmier property, then (b) and (c) would also be equivalent to the condition $K(x) \cap \boldsymbol{N}^{\prime}=C(x) \cap \boldsymbol{N}^{\prime}=\{0\}$, which by Corollary 2.4, is equivalent to $C(E(x)) \cap N^{\prime}=\{0\}$ and hence to $E(x) \in J(N)$. This leads us to study the class:

Definition 2.11. $K^{\sim}=\left\{x \in M \mid K(y) \cap \boldsymbol{N}^{\prime}=\{0\}\right.$ for all $\left.y \in K(x)\right\}$.
As noted above, $\boldsymbol{K}^{\sim}=\{x \in \boldsymbol{M} \mid 0 \in K(f \cdot x)$ for all $f \in \boldsymbol{F}\}$. In the next proposition we shall see that K^{\sim} satisfies a form of the Weyl Perturbation Theorem [10, Theorem 3.3].

Proposition 2.12. (a) K^{\sim} is a selfadjoint Banach space containing K,
(b) $K(x+y) \cap \boldsymbol{N}^{\prime}=K(x) \cap \boldsymbol{N}^{\prime}$ for all $x \in \boldsymbol{M}$ and $y \in K^{\sim}$.

Proof. (a) Let $x_{1}, x_{2} \in \boldsymbol{K}^{\sim}, f \in \boldsymbol{F}$ and $\varepsilon>0$. Then there are $g_{1}, g_{2} \in \boldsymbol{F}$ such that $\left\|\left(g_{1} \circ f\right) \cdot x_{1}\right\|<\varepsilon,\left\|\left(g_{2} \circ g_{1} \circ f\right) \cdot x_{2}\right\|<\varepsilon$ and hence $\|\left(g_{2} \circ g_{1} \circ f\right) \cdot\left(x_{1}+\right.$ $\left.x_{2}\right) \|<2 \varepsilon$. Therefore $0 \in K\left(f \cdot\left(x_{1}+x_{2}\right)\right)$ and thus $x_{1}+x_{2} \in K^{\sim}$. Clearly $\alpha x \in \boldsymbol{K}^{\sim}$ and $x^{*} \in \boldsymbol{K}^{\sim}$ for all $\alpha \in \mathbb{C}$ and $x \in \boldsymbol{K}^{\sim}$, so that \boldsymbol{K}^{\sim} is a linear, selfadjoint space. As $\left(\boldsymbol{K}^{\sim}\right)^{+}=\boldsymbol{K}^{+}$by Theorem 2.10, $\boldsymbol{K}^{\sim} \supset \boldsymbol{K}$ by Proposition 2.7 (b). Let now x be in the norm closure of K^{\sim} and choose any $f \in \boldsymbol{F}$. For every $\varepsilon>0$ there is a $y \in \boldsymbol{K}^{\sim}$ such that $\|x-y\|<\varepsilon$, and since $0 \in K(f \cdot y)$, there is a $g \in \boldsymbol{F}$ such that $\|(g \circ f) \cdot y\|<\varepsilon$. But then

$$
\|g \cdot(f \cdot x)\| \leqq\|(g \circ f) \cdot y\|+\|(g \circ f) \cdot(x-y)\|<2 \varepsilon
$$

Therefore $0 \in K(f \cdot x)$ and hence $x \in \boldsymbol{K}^{\sim}$.
(b) Since $-y \in \boldsymbol{K}^{\sim}$, it is enough to prove that $K(x) \cap \boldsymbol{N}^{\prime} \subset K(x+y) \cap \boldsymbol{N}^{\prime}$. Let $z \in K(x) \cap \boldsymbol{N}^{\prime}$ and let $\varepsilon>0$; then there are $f, g \in \boldsymbol{F}$ such that $\| f \cdot x-$ $z \|<\varepsilon$ and $\|(g \circ f) \cdot y\|<\varepsilon$. Thus, we obtain

$$
\|(g \circ f) \cdot(x+y)-z\| \leqq\|g \cdot(f \cdot x-z)\|+\|(g \circ f) \cdot y\|<2 \varepsilon
$$

whence $z \in K(x+y)$.
We have shown in [9, Theorem 3.5], that if a unitary $v \in \boldsymbol{M}$ implements a properly outer automorphism of N, then v belongs to K^{\sim}. Thus in particular, we have that $u \in \boldsymbol{K}^{\sim}$.
3. Wandering projections. In this section we let N be any countably decomposable von Neumann algebra with a given faithful semifinite normal trace τ (f.s.n. for short) and scaling automorphism θ (i.e., $\tau \circ \theta \leqq \lambda_{0} \tau$ for some fixed $0<\lambda_{0}<1$). In particular the results of this section will apply to the algebra N of the rest of this paper.

Definition 3.1. (a) A nonzero projection $p \in \boldsymbol{N}$ is called a θ-wandering projection (or simply a wandering projection) if $p \theta^{n}(p)=0$ for all nonzero integers n.
(b) Let $q \in \boldsymbol{N}$ be a projection. Then we call θ-span of q the projection $q_{\theta}=\sup \left\{\theta^{n}(q) \mid n \in \mathbb{Z}\right\}$.

Let us collect in the following lemma some simple facts about wandering projections and θ-spans.

Lemma 3.2. (a) A nonzero projection p is wandering if and only if $p \theta^{n}(p)=0$ for all positive integers.
(b) For every projection q in $\boldsymbol{N}, q_{\theta} \in \boldsymbol{N}^{\theta}=\{x \in \boldsymbol{N} \mid x=\theta(x)\}$ and q is wandering if and only if it is nonzero and $q_{\theta}=\sum_{n=-\infty}^{\infty} \theta^{n}(q)$.
(c) Nonzero subprojections of wandering projections are wandering.
(d) For all projections p, q in $N, p q_{\theta}=0$ if and only if $p_{\theta} q_{\theta}=0$.
(e) The sum of wandering projections is wandering if and only if
their θ-spans are mutually orthogonal.
Theorem 3.3. Every nonzero projection of N majorizes a wandering projection.

Proof. Let q be a nonzero projection. By the semifiniteness of τ, we can assume without loss of generality that $\tau(q)<\infty$. Let k be a positive integer such that $\lambda_{0}^{k+1} \leqq\left(1-\lambda_{0}\right) / 2$. Let us denote by $l(x)$ the left support of x, i.e., the range projection of x. Define $p_{0}=q$,

$$
\begin{gathered}
p_{j}=p_{j-1}-l\left(p_{j-1} \theta^{j}\left(p_{j-1}\right)\right) \text { for } j=1,2, \cdots, k \\
p=p_{k}-l\left(p_{k} \sup \left\{\theta^{j}\left(p_{k}\right) \mid j \geqq k+1\right\}\right) .
\end{gathered}
$$

By construction $p \leqq p_{k} \leqq p_{k-1} \leqq \cdots \leqq p_{0}=q$. Since $p\left(p_{k} \sup \left\{\theta^{j}\left(p_{k}\right) \mid j \geqq\right.\right.$ $k+1\})=0$, we have that $p \theta^{j}\left(p_{k}\right)=0$, hence $p \theta^{j}(p)=0$ for $j \geqq k+1$. Similarly, for $j=1,2, \cdots, k$ we have that $p_{j} \theta^{j}\left(p_{j}\right)=0$, hence $p \theta^{j}\left(p_{j}\right)=0$, and thus $p \theta^{j}(p)=0$. Therefore $p \theta^{j}(p)=0$ for all $j>0$ and hence for all $j \neq 0$. We have to prove now that $p \neq 0$. Recall that $l(x) \sim l\left(x^{*}\right)$ for all $x \in N$. Then

$$
\tau\left(l\left(p_{j-1} \theta^{j}\left(p_{j-1}\right)\right)\right)=\tau\left(l\left(\theta^{j}\left(p_{j-1}\right) p_{j-1}\right)\right) \leqq \tau\left(\theta^{j}\left(p_{j-1}\right)\right) \leqq \lambda_{0}^{j} \tau\left(p_{j-1}\right)
$$

Therefore,

$$
\tau\left(p_{j}\right) \geqq \tau\left(p_{j-1}\right)-\lambda_{0}^{j} \tau\left(p_{j-1}\right)=\left(1-\lambda_{0}^{j}\right) \tau\left(p_{j-1}\right)
$$

and hence $\tau\left(p_{k}\right) \geqq \alpha \tau(q)$ where $\alpha=\left(1-\lambda_{0}\right)\left(1-\lambda_{0}^{2}\right) \cdots\left(1-\lambda_{0}^{k}\right)$. Similarly,

$$
\begin{aligned}
& \tau\left(l\left(p_{k} \sup \left\{\theta^{j}\left(p_{k}\right) \mid j \geqq k+1\right\}\right)\right) \\
& \leqq \tau\left(\sup \left\{\theta^{j}\left(p_{k}\right) \mid j \geqq k+1\right\}\right) \leqq \sum\left\{\tau\left(\theta^{j}\left(p_{k}\right)\right) \mid j \geqq k+1\right\} \\
& \leqq \sum\left\{\lambda_{0}^{j} \tau\left(p_{k}\right) \mid j \geqq k+1\right\} \leqq \tau\left(p_{k}\right) / 2
\end{aligned}
$$

Thus

$$
\tau(p)=\tau\left(p_{k}\right)-\tau\left(l\left(p_{k} \sup \left\{\theta^{j}\left(p_{k}\right) \mid j \geqq k+1\right\}\right)\right) \geqq \tau\left(p_{k}\right) / 2 \geqq \alpha \tau(q) / 2>0
$$

whence $p \neq 0$.
Corollary 3.4. Every nonzero projection $q \in N$ with finite trace majorizes a wandering projection $p \in \hat{N}=\left\{\theta^{n}(q) \mid n \in \mathbb{Z}\right\}^{\prime \prime} \subset q_{\theta} N q_{\theta}$.

Proof. It is easy to see that \hat{N} is θ-invariant and contained in $q_{\theta} N q_{\theta}$; thus the restriction of θ to \hat{N} is an automorphism. Since the generators of $\hat{\boldsymbol{N}}$ have all finite trace, as $\tau\left(\theta^{n}(q)\right) \leqq \lambda_{0}^{n} \tau(q)<\infty$, the restriction of τ to $\hat{\boldsymbol{N}}$ is semifinite. Clearly it is also faithful, normal and scaled by θ. Thus Theorem 3.3 applied to \hat{N} guarantees that the wandering projection p is in \hat{N}.

Notice that if $\tau(q)=\infty$, the restriction of τ to $\hat{\boldsymbol{N}}$ may not be
semifinite and then $\hat{\boldsymbol{N}}$ may fail to contain any wandering projections. As an example, consider a projection $0 \neq q \in \boldsymbol{N}$ such that $q \theta(q)=0$ and $\theta^{2}(q)=q$; then $\tau(q)=\infty$ and $\hat{N}=\mathbb{C} q \oplus \mathbb{C} \theta(q)$ does not contain wandering projections.

The following proposition will be used in the next section.
Proposition 3.5. Let q be a nonzero projection of \boldsymbol{N}^{θ} (i.e., $\theta(q)=q$). Then there is a wandering projection p with finite trace such that $q=p_{\theta}$.

Proof. Let $\left\{p_{i} \mid i=1,2, \cdots, n \leqq \infty\right\}$ be a maximal family (at most countable since \boldsymbol{H} is separable) of wandering projections majorized by q and having mutually orthogonal θ-spans and finite traces. Since $p_{i} \leqq q$, we have $\left(p_{i}\right)_{\theta} \leqq q_{\theta}=q$. Let $q_{0}=q-\sum_{i=1}^{n}\left(p_{i}\right)_{\theta}$. If $q_{0} \neq 0$, then by Theorem 3.3 and Lemma 3.2 (c) there is a wandering projection $p_{0} \leqq q_{0}$ with finite trace. Since $q_{0} \in \boldsymbol{N}^{\theta}$, it follows that $\left(p_{0}\right)_{\theta} \leqq q_{0}$ and hence $\left(p_{0}\right)_{\theta}$ is orthogonal to $\sum_{i=1}^{n}\left(p_{i}\right)_{\theta}$, contradicting the maximality of the family (see Lemma 3.2 (e)). Thus $q=\sum_{i=1}^{n}\left(p_{i}\right)_{\theta}$. Choose now for each i an integer $m(i)$ such that $\tau\left(\theta^{m(i)}\left(p_{i}\right)\right) \leqq 2^{-i}$ and let $p=\sum_{i=1}^{n} \theta^{m(i)}\left(p_{i}\right)$. Then p has finite trace, $p \leqq q$ and p is wandering (Lemma $3.2(\mathrm{e})$). Finally, we have

$$
\begin{aligned}
p_{\theta} & =\sum_{j=-\infty}^{\infty} \theta^{j}\left(\sum_{i=1}^{n} \theta^{m(2)}\left(p_{\imath}\right)\right)=\sum_{i=1}^{n} \sum_{j=-\infty}^{\infty} \theta^{j+m(i)}\left(p_{i}\right)=\sum_{i=1}^{n} \sum_{j=-\infty}^{\infty} \theta^{j}\left(p_{i}\right)=\sum_{\imath=1}^{n}\left(p_{i}\right)_{\theta} \\
& =q .
\end{aligned}
$$

Remark 3.6. (a) Assume that N is a continuous algebra. Then the wandering projection p such that $p_{\theta}=q$ can be chosen to have infinite trace.

Indeed, by decomposing if necessary the wandering projection p_{i} in the proof of Proposition 3.5 into infinitely many subprojections, and by using Lemma 3.2 (c) and (e), we can assume that the maximal family $\left\{p_{i}\right\}$ constructed in the above proof is infinite. Since $\tau \circ \theta^{-1} \geqq \lambda^{-1} \tau$, we can choose integers $m(i)$ so that $\tau\left(\theta^{m(i)}\left(p_{i}\right)\right) \geqq 1$ and define $p=\sum_{i=1}^{\infty} \theta^{m(i)}\left(p_{i}\right)$. Then $\tau(p)=\infty$ and, as in the above proof, we see that p is wandering and $p_{\theta}=q$.
(b) Assume furthermore that $\tau \circ \theta=\lambda \tau$. Then, for any preassigned number $\alpha>0$, the wandering projection p such that $p_{\theta}=q$ can be chosen to have trace $\tau(p)=\alpha$.

Indeed, by (a) we can first find a wandering projection r with infinite trace, such that $r_{\theta}=q$. We then decompose r into an infinite sum of mutually orthogonal projections $p_{2}, i=0,1, \cdots$ with trace $\alpha(1-\lambda)$ and we define $p=\sum_{i=0}^{\infty} \theta^{i}\left(p_{i}\right)$. Then $\tau(p)=\alpha$ and the same argument as above shows that $p_{\theta}=q$.
(c) If \boldsymbol{N} is not a continuous algebra, then the properties in Remarks 3.6(a) and (b) may be false.

Indeed, consider $N=l^{\infty}(\mathbb{Z})$, with the canonical basis $\left\{m_{n} \mid n \in \mathbb{Z}\right\}$ of rank one projections. Let the automorphism θ and the trace τ be defined by $\theta\left(m_{n}\right)=m_{n+1}$ and $\tau\left(m_{n}\right)=\lambda^{n}$ for all $n \in \mathbb{Z}$. Then $\tau \circ \theta=\lambda \tau$, but the set of wandering projections of N is $\left\{m_{n} \mid n \in \mathbb{Z}\right\}$ and hence neither (a) nor (b) is true.

Another way of generating wandering projections is the following generalization of a technique used by Dye for abelian algebras [18, Lemma 8.8].

Proposition 3.7. Let q be a projection of \boldsymbol{N} with finite trace. Then there is a wandering projection p with finite trace such that $q \leqq \sum_{n=0}^{\infty} \theta^{n}(p)$.

Proof. Let $r=\sup \left\{\theta^{n}(q) \mid n \geqq 0\right\}$. Then

$$
\tau(r) \leqq \sum_{n=1}^{\infty} \tau\left(\theta^{n}(q)\right) \leqq \sum_{n=0}^{\infty} \lambda_{0}^{n} \tau(q)=\left(1-\lambda_{0}\right)^{-1} \tau(q)<\infty .
$$

Clearly $\theta(r) \leqq r$ and thus $\left\{\theta^{n}(r) \mid n \geqq 0\right\}$ is monotone decreasing, whence it is easy to verify that $p=r-\theta(r)$ is wandering. Now $r \geqq \theta^{n}(r) \geqq \theta^{n}(p)$ for $n \geqq 0$, hence $r \geqq \sum_{n=0}^{\infty} \theta^{n}(p)$. But $\sum_{k=0}^{n-1} \theta^{k}(p)=r-\theta^{n}(r)$, and hence

$$
\tau\left(\sum_{n=0}^{\infty} \theta^{n}(p)\right)=\lim \tau\left(r-\theta^{n}(r)\right) \geqq \lim \left(1-\lambda_{0}^{n}\right) \tau(r)=\tau(r),
$$

whence $\tau\left(r-\sum_{n=0}^{\infty} \theta^{n}(p)\right)=0$. Therefore $q \leqq r=\sum_{n=0}^{\infty} \theta^{n}(p)$.
Notice also that for abelian algebras, the wandering projection p constructed in Proposition 3.7 also satisfies $p \leqq q$ since then

$$
r=\sup \{q, \theta(r)\}=q+\theta(r)-q \theta(r)
$$

implies

$$
p=r-\theta(r)=q(1-\theta(r)) \leqq q
$$

4. Type I subfactors of M. For the rest of this paper, we use explicitly the discrete crossed product decomposition of $\boldsymbol{M}=\boldsymbol{N} \otimes_{\theta} \mathbb{Z}$ where θ is a (properly outer) automorphism that scales the trace τ of N. If N acts on the separable Hilbert space \boldsymbol{H}, then \boldsymbol{M} acts on $\boldsymbol{H} \otimes l^{2}(\mathbb{Z})$ which we identify with $l^{2}(\boldsymbol{H}, \mathbb{Z})$ via the correspondence $(\zeta \otimes \eta)(n)=\eta(n) \zeta$ for $\zeta \in \boldsymbol{H}$, $\eta \in l^{2}(\mathbb{Z})$ and $n \in \mathbb{Z}$. We shall henceforth distinguish between N and its isomorphic image $\pi(\boldsymbol{N}) \subset \boldsymbol{M}$, where for all $x \in \boldsymbol{N}, \pi(x)$ is defined by:

$$
(\pi(x) \xi)(n)=\theta^{-n}(x) \xi(n) \text { for all } \xi \in l^{2}(\boldsymbol{H}, \mathbb{Z}) \text { and } n \in \mathbb{Z} .
$$

Recall that the unitary operator u which, together with $\pi(N)$,
generates M is given by $u=1 \otimes w$, where w is the bilateral shift on $l^{2}(\mathbb{Z})$, i.e., $(u \xi)(n)=\xi(n-1)$ for all $\xi \in l^{2}(\boldsymbol{H}, \mathbb{Z})$ and $n \in \mathbb{Z}$. Recall also the covariance formula

$$
\operatorname{Ad} u(\pi(x))=\pi(\theta(x)) \quad \text { for all } x \in N
$$

and the characterization of M as

$$
\boldsymbol{M}=\left\{x \in \boldsymbol{N} \otimes \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right) \mid\left(\theta \otimes \operatorname{Ad} w^{-1}\right)(x)=x\right\} .
$$

For these and further properties of crossed products, see [3], [17].
For the remainder of this section, let $p \in \boldsymbol{N}$ be a wandering projection with finite trace such that $p_{\theta}=\sum_{n=-\infty}^{\infty} \theta^{n}(p)=1$ (see Proposition 3.5). Define $p_{i}=\pi\left(\theta^{i}(p)\right)$ for all $i \in \mathbb{Z}$. A useful tool for studying M is given by the following embedding of type I factors in M.

Definition 4.1. Let $\rho: \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right) \rightarrow \boldsymbol{N} \otimes \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ be defined by

$$
\rho(a)=\sum_{n=-\infty}^{\infty} \theta^{-n}(p) \otimes \operatorname{Ad} w^{n}(a) \quad \text { for every } \quad a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)
$$

Remark 4.2. Since the projections $\theta^{-n}(p)$ are mutually orthogonal and $\left\|\operatorname{Ad} w^{n}(a)\right\|=\|a\|$, we see that the series converges in the strong topology and thus $\rho(a)$ belongs to $\boldsymbol{N} \otimes \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$. We actually have more: the convergence is unconditional, in the sense that the net of the finite partial sums converges strongly to $\rho(a)$. Notice in particular that if $\zeta \in \boldsymbol{H}, \eta \in$ $l^{2}(\mathbb{Z})$ and $k \in \mathbb{Z}$ then

$$
(\rho(a) \zeta \otimes \eta)(k)=\sum_{n=-\infty}^{\infty}\left(\operatorname{Ad} w^{n}(a) \eta\right)(k) \theta^{-n}(p) \zeta
$$

where the convergence is unconditional in the strong topology of \boldsymbol{H}.
For every $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ let $\left[a_{i j}\right]$ be the matrix representation of a with respect to the canonical basis $\left\{\mu_{i} \mid i \in \mathbb{Z}\right\}$ of $l^{2}(\mathbb{Z})$ and let $\left\{m_{i} \mid i \in \mathbb{Z}\right\}$ be the corresponding canonical decomposition of the identity in rank one diagonal projections. Then we have:

THEOREM 4.3. (a) ρ is a normal isomorphism of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right.$) into \boldsymbol{M}.
(b) $\rho(w)=u$ and $\rho\left(m_{i}\right)=p_{i}$ for all $i \in \mathbb{Z}$.
(c) $E(\rho(a))=\sum_{n=-\infty}^{\infty} a_{n n} p_{n}$ for all $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$.

Proof. (a) Given the unconditional strong convergence of the series, it is easy to verify that ρ is indeed a ${ }^{*}$-isomorphism and hence an isometry. Let $a, a_{r} \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ and assume that a_{r} is increasing to a. Then for every $k \in \mathbb{Z}, \zeta_{k} \in \theta^{-k}(p) \boldsymbol{H}$ and $\eta \in l^{2}(\mathbb{Z})$ we have:

$$
\begin{aligned}
\left(\rho(a)-\rho\left(a_{r}\right)\right)\left(\zeta_{k} \otimes \eta\right) & =\sum_{n=-\infty}^{\infty} \theta^{-n}(p) \zeta_{k} \otimes \operatorname{Ad} w^{n}\left(a-a_{r}\right) \eta \\
& =\zeta_{k} \otimes \operatorname{Ad} w^{k}\left(a-a_{r}\right) \eta \rightarrow 0
\end{aligned}
$$

in the strong topology. Since the span of the vectors $\zeta_{k} \otimes \eta$ is dense (by definition) in $\boldsymbol{H} \otimes l^{2}(\mathbb{Z})$ and since $\rho(a)-\rho\left(a_{r}\right)$ is bounded by $2\|a\|$, we see that $\rho\left(a_{r}\right) \rightarrow \rho(a)$, which proves the normality of ρ. Moreover, for all $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$, we have by the normality of $\theta \otimes \operatorname{Ad} w^{-1}$ that

$$
\left(\theta \otimes \operatorname{Ad} w^{-1}\right)(\rho(a))=\sum_{n=-\infty}^{\infty} \theta\left(\theta^{-n}(p)\right) \otimes \operatorname{Ad} w^{-1}\left(\operatorname{Ad} w^{n}(a)\right)=\rho(a)
$$

whence by the above mentioned characterization of M, we see that $\rho(a) \in M$.
(b) We have that

$$
\rho(w)=\sum_{n=-\infty}^{\infty} \theta^{-n}(p) \otimes \operatorname{Ad} w^{n}(w)=\sum_{n=-\infty}^{\infty} \theta^{-n}(p) \otimes w=1 \otimes w=u
$$

Let $\zeta \in \boldsymbol{H}$ and $i, j, k \in \mathbb{Z}$. Then by Remark 4.2 we have

$$
\begin{aligned}
\left(\rho\left(m_{j}\right) \zeta \otimes \mu_{i}\right)(k) & =\sum_{n=-\infty}^{\infty}\left(\operatorname{Ad} w^{n}\left(m_{j}\right) \mu_{i}\right)(k) \theta^{-n}(p) \zeta=\sum_{n=-\infty}^{\infty}\left(m_{j+n} \mu_{i}\right)(k) \theta^{-n}(p) \zeta \\
& =\delta_{k, i} \theta^{j-k}(p) \zeta=\left(\theta^{-k}\left(\theta^{j}(p)\right)\left(\zeta \otimes \mu_{i}\right)\right)(k)=\left(\pi\left(\theta^{j}(p)\right) \zeta \otimes \mu_{i}\right)(k) \\
& =\left(p_{j}\left(\zeta \otimes \mu_{i}\right)\right)(k)
\end{aligned}
$$

Since the span of the vectors $\zeta \otimes \mu_{i}$ is dense in $\boldsymbol{H} \otimes l^{2}(\mathbb{Z})$, we have that $\rho\left(m_{j}\right)=p_{j}$ for all j.
(c) Let R be the map from $l^{2}(\boldsymbol{H}, \mathbb{Z})$ onto \boldsymbol{H} given by $R \xi=\xi(0)$ for all $\xi \in l^{2}(\boldsymbol{H}, \mathbb{Z})$. Then $R^{*} \zeta=\zeta \otimes \mu_{0}$ for all $\zeta \in \boldsymbol{H}$. Moreover, $E(x)=\pi\left(R x R^{*}\right)$ for all $x \in M$ ([19, Ch. V, §7] or [14, Ch. 7, §11]). Therefore, for every $\boldsymbol{a} \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ and every $\zeta \in \boldsymbol{H}$, we have

$$
\begin{aligned}
\left(R \rho(a) R^{*}\right) \zeta & =(R \rho(a)) \zeta \otimes \mu_{0}=R\left(\sum_{n=-\infty}^{\infty} \theta^{-n}(p) \zeta \otimes \operatorname{Ad} w^{n}(a) \mu_{0}\right) \\
& =\sum_{n=-\infty}^{\infty} R\left(\theta^{-n}(p) \zeta \otimes \operatorname{Ad} w^{n}(a) \mu_{0}\right)=\sum_{n=-\infty}^{\infty}\left(\operatorname{Ad} w^{n}(a) \mu_{0}\right)(0) \theta^{-n}(p) \zeta \\
& =\sum_{n=-\infty}^{\infty}\left(a \mu_{n}\right)(n) \theta^{n}(p) \zeta=\left(\sum_{n=-\infty}^{\infty} a_{n n} \theta^{n}(p)\right) \zeta .
\end{aligned}
$$

Therefore

$$
E(\rho(a))=\pi\left(R \rho(a) R^{*}\right)=\pi\left(\sum_{n=-\infty}^{\infty} a_{n n} \theta^{n}(p)\right)=\sum_{n=-\infty}^{\infty} a_{n n} p_{n}
$$

Recall that every $x \in \boldsymbol{M}$ has a generalized Fourier series $x=$ $\sum_{n=-\infty}^{\infty} \pi\left(x_{n}\right) u^{n}$ where the series converges in the N-Bures topology and $\pi\left(x_{n}\right)=E\left(x u^{-n}\right)$ for all $n \in \mathbb{Z}$ [13]. Then we easily obtain the following corollary:

Corollary 4.4. (a) For every $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ the generalized Fourier series of $\rho(a)$ is given by $\rho(\alpha)=\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} a_{k, k-n} p_{k}\right) u^{n}$.
(b) $\boldsymbol{D}=\rho\left(\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)\right)$ is a type I factor with matrix units $\left\{u^{i} p_{0} u^{-j} \mid i\right.$, $j \in \mathbb{Z}\}$.

The following construction will help shed more light on the pair $\{\rho, D\}$. Let us define the von Neumann subalgebras of N :
$\boldsymbol{L}_{0}=\mathrm{C} 1$,
$\boldsymbol{D}_{0}=\sum_{n=-\infty}^{\infty} \bigoplus \mathbb{C} \theta^{n}(p)=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n} \theta^{n}(p)\left|\alpha_{n} \in \mathbb{C}, \sup \right| \alpha_{n} \mid<\infty\right\}$,
$\boldsymbol{N}_{0}=\sum_{n=-\infty}^{\infty} \oplus \boldsymbol{N}_{\theta^{n}(p)}$ where $\boldsymbol{N}_{\theta_{(p)}}$ is the restriction of $\theta^{n}(p) \boldsymbol{N} \theta^{n}(p)$ to $\theta^{n}(p) \boldsymbol{H}$.
Clearly $L_{0} \subset D_{0} \subset N_{0} \subset N$ are globally θ-invariant algebras and thus we can form the crossed products

$$
\boldsymbol{L}=\boldsymbol{L}_{0} \otimes_{\theta} \mathbb{Z}, \quad \boldsymbol{D}^{\sim}=\boldsymbol{D}_{0} \otimes_{\theta} \mathbb{Z} \quad \text { and } \quad \boldsymbol{M}_{0}=\boldsymbol{N}_{0} \otimes_{\theta} \mathbb{Z} .
$$

Therefore we have

$$
\boldsymbol{L} \subset \boldsymbol{D}^{\sim} \subset \boldsymbol{M}_{0} \subset \boldsymbol{M}
$$

Notice the \boldsymbol{L}_{0} and \boldsymbol{N} are independent of the wandering projection p, hence \boldsymbol{L} and \boldsymbol{M} do not depend on p, while the other algebras do.

Since the action of θ on \boldsymbol{L}_{0} is trivial, \boldsymbol{L} is the von Neumann algebra generated by u, hence $L=1 \otimes \mathscr{L}$ where \mathscr{L} is the algebra of Laurent operators, i.e., the algebra generated by the bilateral shift w.

Notice that by the definition of the isomorphism ρ we easily obtain that $\rho(a)=1 \otimes a$ for all $a \in \mathscr{L}$. The expression $1 \otimes a$ is independent of the wandering projection p. In Proposition 6.2, we shall use this fact to study the module and ideal structure of J.

As \boldsymbol{D}_{0} is generated by $\left\{\theta^{n}(p) \mid n \in \mathbb{Z}\right\}, \quad \boldsymbol{D}^{\sim}$ is generated by u and $\left\{p_{n} \mid n \in \mathbb{Z}\right\}$, hence has the same generators as \boldsymbol{D} (see Corollary 4.4(b)) and therefore $\boldsymbol{D}^{\sim}=\boldsymbol{D}$.

REMARK 4.5. There is an isomorphism of $l^{\infty}(\mathbb{Z})$ (realized as an algebra of operators acting on $l^{2}(\mathbb{Z})$) onto \boldsymbol{D}_{0} under which Ad w corresponds to θ and thus by [3, Proposition 2.13] there is an isomorphism between the crossed products, namely $l^{\infty}(\mathbb{Z}) \otimes_{\mathrm{Ad} w} \mathbb{Z}$ and \boldsymbol{D}. It is then easy to verify that ρ is the composite of this isomorphism with the isomorphism of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto $l^{\infty}(\mathbb{Z}) \otimes_{\mathrm{Ad} w} \mathbb{Z}$ mapping the matrix units $\left\{w^{i} m_{0} w^{-j} \mid i, j \in \mathbb{Z}\right\}$ onto $\left\{\left(1 \otimes w^{i}\right) \pi_{(\mathrm{Ad} w)}\left(m_{0}\right)\left(1 \otimes w^{-j}\right) \mid i, j \in \mathbb{Z}\right\}$. Notice that this last isomorphism maps the algebra $\boldsymbol{A}=\left\{m_{j} \mid j \in \mathbb{Z}\right\}^{\prime \prime}$ of the diagonal operators of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto the image in $l^{\infty}(\mathbb{Z}) \otimes_{\mathrm{Ad} w} \mathbb{Z}$ of $l^{\infty}(\mathbb{Z})$ and intertwines the corresponding conditional expectations. Thus if $\widetilde{E}: \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right) \rightarrow \boldsymbol{A}$ is the conditional expectation given by $\widetilde{E}(a)=\sum_{n=-\infty}^{\infty} a_{n n} m_{n}$ (i.e., $\widetilde{E}(a)$ "is the main diagonal of
the matrix a "), then ρ intertwines \widetilde{E} and E. This is actually part (c) of Theorem 4.3.
5. Classes of finite rank, finite trace and compact projections. For the remainder of this paper we shall assume that $0<\lambda<1$. Thus N is a factor and $\tau \circ \theta=\lambda \tau$. In this section we shall use the embedding of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ in \boldsymbol{M} introduced in $\S 4$ in order to separate the classes of the projections of $\boldsymbol{I}, \boldsymbol{M}_{\varphi}, \boldsymbol{K}$ and \boldsymbol{J}. In particular this will show that $\boldsymbol{K} \neq \boldsymbol{J}$.

Let us choose a wandering projection p with finite trace such that $p_{\theta}=1$ and let ρ be the corresponding isomorphism of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto $\boldsymbol{D} \subset \boldsymbol{M}$.

Theorem 5.1. Let $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)^{+}$. Then
(a) $\rho(a) \in I$ if and only if $\left\{n \in \mathbb{Z} \mid a_{n n} \neq 0\right\}$ is bounded below;
(b) $\rho(a) \in \boldsymbol{M}_{\varphi}$ if and only if $\sum_{n=-\infty}^{\infty} \lambda^{n} a_{n n}<\infty$;
(c) $\rho(a) \in \boldsymbol{K}$ if and only if $a_{n n} \rightarrow 0$ for $n \rightarrow-\infty$.

Proof. (a) $\rho(a) \in I$ if and only if

$$
E(\rho(a))=\sum_{n=-\infty}^{\infty} a_{n n} p_{n}=\pi\left(\sum_{n=-\infty}^{\infty} a_{n n} \theta^{n}(p)\right) \in \pi(\mathbf{I}(\boldsymbol{N}))
$$

(by Theorem $4.3(c)$ and the definition of I^{+}), if and only if the range projection $\sum\left\{\theta^{n}(p) \mid a_{n n} \neq 0\right\}$ of $\sum_{n=-\infty}^{\infty} a_{n n} \theta^{n}(p)$ is finite, if and only if (using the fact that N is a factor)

$$
\tau\left(\sum\left\{\theta^{n}(p) \mid a_{n n} \neq 0\right\}\right)=\sum\left\{\lambda^{n} \mid a_{n n} \neq 0\right\} \tau(p)<\infty,
$$

if and only if $a_{n n} \neq 0$ for only finitely many negative integers n.
(b) $\rho(a) \in \boldsymbol{M}_{\varphi}$ if and only if

$$
\varphi(E(\rho(a)))=\varphi\left(\sum_{n=-\infty}^{\infty} a_{n n} p_{n}\right)=\sum_{n=-\infty}^{\infty} a_{n n} \lambda^{n} \tau(p)<\infty
$$

(c) $\rho(a) \in K$ if and only if $E(\rho(\alpha))=\sum_{n=-\infty}^{\infty} a_{n n} p_{n} \in \pi(J(N))$ if and only if the spectral projection

$$
\sum\left\{p_{n} \mid a_{n n}>\varepsilon\right\}=\pi\left(\sum\left\{\theta^{n}(p) \mid a_{n n}>\varepsilon\right\}\right)
$$

of $E(\rho(\alpha))$ corresponding to the interval ($\varepsilon, \infty)$ is finite for every $\varepsilon>0$ [10, Propositions 3.8, 3.9], if and only if (again using the fact that N is a factor)

$$
\tau\left(\sum\left\{\theta^{n}(p) \mid a_{n n}>\varepsilon\right\}\right)=\sum\left\{\lambda^{n} \mid a_{n n}>\varepsilon\right\} \tau(p)<\infty
$$

for every $\varepsilon>0$, if and only if $a_{n n} \rightarrow 0$ for $n \rightarrow-\infty$.
Notice that since $\boldsymbol{I}, \boldsymbol{M}_{\varphi}$ and \boldsymbol{K} are the span of their positive parts, the conditions in Theorem 5.1 are necessary also for nonpositive operators in $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$. Clearly, they are not sufficient, as the example of the bilateral
shift $w \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ shows. Indeed $w_{n n}=0$ for all $n \in \mathbb{Z}$, however \boldsymbol{K} (and hence I and \boldsymbol{M}_{φ}) is a ${ }^{*}$-algebra that does not contain the identity and hence does not contain any unitary operator.

The following characterization of $D \cap J$ will establish a further link between the class \boldsymbol{J} of \boldsymbol{M} and the ideal of compact opertors $\boldsymbol{K}\left(l^{2}(\mathbb{Z})\right)$ of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$.

The notion of relative weak (RW for short) vector convergence, introduced by the second named author in [11], plays a role in the theory of compact operators in von Neumann algebras similar to the role that the weak vector convergence plays in $\boldsymbol{B}(\boldsymbol{H})$. A net $\xi_{2} \in \boldsymbol{H}$ converges to 0 weakly relatively to a semifinite algebra $N\left(\xi_{2} \rightarrow 0(N R W)\right.$) if it is norm bounded and if for every finite projection q in $N,\left\|q \xi_{2}\right\| \rightarrow 0$. A generalized Hilbert condition holds for semifinite algebras [11, Theorem 7]. For the case of a type III $_{\lambda}(0<\lambda<1)$ factor, we also have that $x \in J^{+}$if and only if $\left\|x \xi_{\lambda}\right\| \rightarrow 0$ for every $\xi_{\lambda} \rightarrow 0(\pi(N) R W)$, [8, Proposition 5.6]. This property is used in the following theorem in order to characterize $\boldsymbol{D} \cap \boldsymbol{J}^{+}$.

Theorem 5.2. Let $\boldsymbol{r}_{-}=\sum_{i=0}^{\infty} m_{-i}$ and let $a \in \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)^{+}$. Then $\rho(a) \in \boldsymbol{J}$ if and only if $r_{-} a r_{-} \in K\left(l^{2}(\mathbb{Z})\right)$.

Proof. For every positive integer n, let $q_{n}=\sum\left\{m_{-i} \mid i \geqq n\right\}$. Then $q_{n} \leqq r_{-}$and q_{n} decreases to zero. Notice that by Theorem $5.1(\mathrm{a}), 1$ $\rho\left(q_{n}\right) \in I$ for all n (actually, $1-\rho\left(q_{n}\right) \in \pi(\boldsymbol{I}(\boldsymbol{N}))$ by Theorem 4.3 (b)). Assume that $r_{-} a r_{-}$is compact in $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$. Then $q_{n} a q_{n}=q_{n} r_{-} a r_{-} q_{n}$ converges in norm to zero and hence

$$
\left\|a-\left(1-q_{n}\right) a\left(1-q_{n}\right)\right\|=\left\|\rho(a)-\left(1-\rho\left(q_{n}\right)\right) \rho(a)\left(1-\rho\left(q_{n}\right)\right)\right\| \rightarrow 0
$$

As

$$
\left(1-\rho\left(q_{n}\right)\right) \rho(a)\left(1-\rho\left(q_{n}\right)\right) \leqq\|a\|\left(1-\rho\left(q_{n}\right)\right) \in I
$$

we conclude that $\rho(a) \in J$.
Conversely, suppose that $r_{-} a r_{-}$is not compact in $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$. Now by a routine argument, we can find an $\alpha>0$ and a strictly increasing sequence $\left\{n_{j}\right\}$ of positive integers such that

$$
\left\|\left(q_{n_{j}}-q_{n_{j+1}}\right) a\left(q_{n_{j}}-q_{n_{j+1}}\right)\right\|>\alpha
$$

for each j. Let ν_{j} be a unit vector in the range of $q_{n_{j}}-q_{n_{j+1}}$ such that

$$
\omega_{\nu_{j}}(a)=\left(a \nu_{j}, \nu_{j}\right)>\alpha
$$

Let $0 \neq \zeta_{0} \in p \boldsymbol{H}$ be such that $\omega_{\xi_{0}} \leqq \tau(p \cdot p)$. Since \boldsymbol{N} is a factor and

$$
\tau(p)<\tau\left(\theta^{-j}(p)\right)=\lambda^{-j} \tau(p) \quad \text { for } \quad j=1,2, \cdots
$$

we have that $p<\theta^{-j}(p)$. Thus there is a partial isometry $u_{j} \in N$ such
that $p=u_{j}^{*} u_{j}$ and $u_{j} u_{j}^{*}<\theta^{-j}(p)$. Setting $\zeta_{j}=u_{j} \zeta_{0}$, we see that $\zeta_{j} \in \theta^{-j}(p) \boldsymbol{H}$ and that for every $x \in N^{+}$and $j=1,2, \cdots$, we have

$$
\omega_{\zeta_{j}}(x)=\omega_{5_{0}}\left(u_{j}^{*} x u_{j}\right) \leqq \tau\left(p u_{j}^{*} x u_{j} p\right)=\tau\left(u_{j} u_{j}^{*} x u_{j} u_{j}^{*}\right) \leqq \tau\left(\theta^{-j}(p) x \theta^{-j}(p)\right)
$$

In other words,

$$
\omega_{\mathfrak{r}_{j}} \leqq \tau\left(\theta^{-j}(p) \cdot \theta^{-j}(p)\right) \quad \text { for all } j
$$

Define $\xi_{j}=\zeta_{j} \otimes w^{j} \nu_{j}$ for $j=1,2, \cdots$. Then by using the strong convergence of the series giving $\rho(a)$, we obtain

$$
\begin{aligned}
\left(\rho(a) \xi_{j}, \xi_{j}\right) & =\sum_{n=-\infty}^{\infty}\left(\left(\theta^{-n}(p) \otimes \operatorname{Ad} w^{n}(a)\right) \zeta_{j} \otimes w^{j} \nu_{j}, \zeta_{j} \otimes w^{j} \nu_{j}\right) \\
& =\sum_{n=-\infty}^{\infty}\left(\left(\theta^{-n}(p) \zeta_{j}, \zeta_{j}\right)\left(\operatorname{Ad} w^{n-j}(a) \nu_{j}, \nu_{j}\right)=\left\|\zeta_{j}\right\|^{2}\left(a \nu_{j}, \nu_{j}\right)>\alpha\left\|\zeta_{0}\right\|^{2}\right.
\end{aligned}
$$

Thus, in view of [8, Proposition 5.6], in order to obtain that $\rho(a)$ is not in J, it is enough to show that $\xi_{j} \rightarrow 0(\pi(N) R W)$. Notice that ξ_{j} is bounded since $\left\|\xi_{j}\right\|=\left\|\zeta_{0}\right\|$ for all j. Let s be any finite projection in N. Then we have:

$$
\begin{aligned}
\left\|\pi(s) \xi_{j}\right\|^{2} & =\sum_{n=-\infty}^{\infty}\left\|\left(\pi(s) \xi_{j}\right)(n)\right\|^{2}=\sum_{n=-\infty}^{\infty}\left\|\theta^{-n}(s) \xi_{j}(n)\right\|^{2} \\
& =\sum_{n=-\infty}^{\infty}\left\|\theta^{-n}(s) \zeta_{j}\right\|^{2}\left|\nu_{j}(n-j)\right|^{2} \leqq \sum_{n=0}^{\infty}\left\|\theta^{n}(s) \zeta_{j}\right\|^{2},
\end{aligned}
$$

from the fact that $\left|\nu_{j}(k)\right| \leqq\left\|\nu_{j}\right\|=1$ for all k and from the fact that $\nu_{j}(k)=0$ for $k>-j$, because $\nu_{j} \in q_{n_{j}} \boldsymbol{H} \subset q_{j} \boldsymbol{H}$. Summing over j, we obtain:

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left\|\pi(s) \xi_{j}\right\|^{2} & \leqq \sum_{j=1}^{\infty} \sum_{n=0}^{\infty}\left\|\theta^{n}(s) \xi_{j}\right\|^{2}=\sum_{n=0}^{\infty} \sum_{j=1}^{\infty} \omega_{\zeta_{j}}\left(\theta^{n}(s)\right) \leqq \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} \tau\left(\theta^{-j}(p) \theta^{n}(s) \theta^{-j}(p)\right) \\
& \leqq \sum_{n=0}^{\infty} \tau\left(\theta^{n}(s)\right)=\left(\sum_{n=0}^{\infty} \lambda^{n}\right) \tau(s)<\infty
\end{aligned}
$$

from the fact that the finite projection s in the factor N has finite trace. Thus $\left\|\pi(s) \xi_{j}\right\| \rightarrow 0$ and hence $\xi_{j} \rightarrow 0(\pi(N) R W)$.

As a consequence of Theorems 5.1 and 5.2 we obtain the following corollary:

Corollary 5.3. The set of the projections in the classes $\boldsymbol{I} \subset \boldsymbol{M}_{\varphi} \subset \boldsymbol{J} \subset \boldsymbol{K}$ are all distinct; hence, the inclusions are proper.

Proof. Let ζ be any unit vector in $l^{2}(\mathbb{Z})$; the one-dimensional projection s on span ζ has matrix representation $s_{i j}=\zeta(i) \overline{\zeta(j)}$. Choose $\zeta(n)=$ $\lambda^{|n|} \beta,(n \in \mathbb{Z})$ with $\beta=\left(1+2 \sum_{n=1}^{\infty} \lambda^{2 n}\right)^{-1 / 2}$; then $\sum_{n=-\infty}^{\infty} \lambda^{n} s_{n n}<\infty$ but $s_{n n} \neq 0$ for all n. Thus by Theorem 5.1 (a) and (b), $\rho(s) \in \boldsymbol{M}_{\varphi}$ but $\rho(s) \notin I$. Choose now $\zeta(n)=\lambda^{|n| / 2} \nu,(n \in \mathbb{Z})$ with $\nu=\left(1+2 \sum_{n=1}^{\infty} \lambda^{n}\right)^{-1 / 2}$; then $\sum_{n=-\infty}^{\infty} \lambda^{n} s_{n n}=\infty$.

Hence by Theorems 5.1(b) and $5.2 \rho(s) \in J$ but $\rho(s) \notin M_{\varphi}$. For any infinite projection $s \leqq r_{-}$such that $s_{n n} \rightarrow 0$ for $n \rightarrow-\infty$, we have $\rho(s) \in \boldsymbol{K}$ but $\rho(s) \notin J$. Choose for example

$$
s_{i, j}= \begin{cases}2^{-k}, & \text { for } i, j=-2^{k}-1, \cdots,-2^{k+1} \text { and } k=0,1,2, \cdots \\ 0, & \text { otherwise } .\end{cases}
$$

Then s is the direct sum of $2^{k} \times 2^{k}$ blocks each of whose entries is equal to 2^{-k} and thus each block is a rank one projection and s is an infinite dimensional projection. We see that $s_{n n} \rightarrow 0$ as $n \rightarrow-\infty$; hence $\rho(s) \in K$ but $\rho(s) \notin J$.

We conclude this section with an example of two projections in \boldsymbol{M}_{φ} whose supremum is the identity of \boldsymbol{M}; this shows that unlike their analogue in a semifinite algebra and unlike I, the classes of the projections in $\boldsymbol{M}_{\varphi}, \boldsymbol{J}$ and \boldsymbol{K} are not closed under supremum, (see also [8, Example 7.4]).

Example 5.4. Consider for $k \in \mathbb{N}$ the rank one projection s_{k} on the unit vector $\alpha_{k} \mu_{-k}+\beta_{k} \mu_{k}$ where $\left\{\mu_{k} \mid k \in \mathbb{Z}\right\}$ is the canonical basis of $l^{2}(\mathbb{Z})$ and choose $0 \neq \alpha_{k}$ small enough so that $\sum_{k=1}^{\infty} \lambda^{-k}\left|\alpha_{k}\right|^{2}<\infty$. Let $s=\sum_{k=1}^{\infty} s_{k}$ and let $m=\sum_{k=0}^{\infty} m_{k}$; since $\sup \left\{s_{k}, m_{k}\right\}=m_{-k}+m_{k}$ for all k, we have that $\sup \{s, m\}=1$ and thus $\sup \{\rho(s), \rho(m)\}=1$. On the other hand we already know that $\rho(m) \in \pi(\boldsymbol{I}(\boldsymbol{N}))$ and we see that $\rho(s)$ satisfies by construction the condition of Theorem 5.1 (b). Thus, both projections are in \boldsymbol{M}_{φ}.
6. Multipliers of the hereditary algebra J. In this section we investigate module and ideal structures for J. We have already considered in $\S 4$ the algebra $\mathscr{L} \subset \boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ of Laurent operators generated by the bilateral shift w. There is an isomorphism $L: L^{\infty}(\mathbb{T}) \rightarrow \mathscr{L}$ given by $L_{f}=\sum_{n=-\infty}^{\infty} \widehat{f}(n) w^{n}$ where $\{\hat{f}(n) \mid n \in \mathbb{Z}\}$ are the Fourier coefficients of $f \in L^{\infty}(T)$ and the series is the generalized Fourier expansion of L_{f}. The matrix representation of L_{f} relative to the standard basis of $l^{2}(\mathbb{Z})$ is $\left(L_{f}\right)_{i j}=\hat{f}(i-j)$ for $i, j \in \mathbb{Z}$.

If we let $r_{+}=\sum_{n=0}^{\infty} m_{n}, r_{-}=\sum_{n=0}^{\infty} m_{-n}$, then the compression of L_{f} to $r_{+} l^{2}(\mathbb{Z})$ is the Toeplitz matrix $T_{f}=r_{+} L_{f} r_{+}$with symbol f. Since we have to consider (because of Theorem 5.2) compressions to $r_{-} l^{2}(\mathbb{Z})$, let us define $S \in B\left(l^{2}(\mathbb{Z})\right)$ to be the (unitary) reflection operator, i.e.,

$$
(S \mu)(n)=\mu(-n) \text { for all } \mu \in l^{2}(\mathbb{Z}) \text { and } n \in \mathbb{Z}
$$

Let f^{*} be the reflexion of $f \in L^{\infty}(\mathbb{T})$, i.e.,

$$
f^{*}(t)=f(\bar{t}) \quad \text { for } \quad t \in \mathbb{T}
$$

Then it is easy to verify that $\operatorname{Ad} S\left(r_{+}\right)=r_{-}$and that for all $f \in L^{\infty}(\mathbb{T})$
we have $\operatorname{Ad} S\left(L_{f^{*}}\right)=L_{f}$ and thus $r_{-} L_{f} r_{-}=\operatorname{Ad} S\left(T_{f^{*}}\right)$. Let us finally recall that by [20, Theorems A and 1) if $f, g \in L^{\infty}(T)$ then

$$
T_{f g}-T_{f} T_{g} \in K\left(l^{2}(\mathbb{Z})\right)
$$

if and only if

$$
H[\bar{f}] \cap H[g] \subset H^{\infty}(\mathbb{T})+C(\mathbb{T})
$$

where $H^{\infty}(\mathbb{T})$ is the Hardy space of the functions $f \in L^{\infty}(\mathbb{T})$ with $\hat{f}(n)=0$ for $n<0, C(\mathbb{T})$ is the space of continuous complex-valued functions on \mathbb{T} and $H[\bar{f}]$ (resp. $H[g]$) is the subalgebra of $L^{\infty}(\mathbb{T})$ generated by $H^{\infty}(\mathbb{T})$ and \bar{f} (resp. g).

Proposition 6.1. Let $f \in L^{\infty}(\mathbb{T})$, let $p \in \boldsymbol{N}$ be any wandering projection with finite trace and $\theta-\operatorname{span} p_{\theta}=\sum_{n=-\infty}^{\infty} \theta^{n}(p)=1$, let ρ be the corresponding isomorphism from $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto $\boldsymbol{D} \subset \boldsymbol{M}$ and let $x=\rho\left(L_{f} r_{+}\left(L_{f}\right)^{*}\right)$. Then
(a) $x \in K$,
(b) $x \in J$ if and only if $f \in H^{\infty}(\mathbb{T})+C(\mathbb{T})$.

Proof. (a) The (n, n)-entry of the matrix representation of $L_{f} r_{+}\left(L_{f}\right)^{*}$ is

$$
\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty}\left\{\hat{f}(n-i)\left(\sum_{k=0}^{\infty} m_{k}\right)_{i j} \hat{f}(n-j)^{-}\right\}=\sum_{i=0}^{\infty}|\hat{f}(n-i)|^{2} \rightarrow 0 \quad \text { for } \quad n \rightarrow-\infty
$$

as $\hat{f} \in l^{2}(\mathbb{Z})$. Thus $x \in K$ by Theorem 5.1 (c).
(b) $x \in J$ if and only if $r_{-} L_{f} r_{+}\left(L_{f}\right)^{*} r_{-} \in K\left(l^{2}(\mathbb{Z})\right)$ (Theorem 5.2). But $r_{-} L_{f} r_{+}\left(L_{f}\right)^{*} r_{-}=r_{-} L_{f}\left(1-r_{-}+m_{0}\right) L_{\bar{f}} r_{-}=r_{-}\left(L_{|f|^{2}}-L_{f} r_{-} L_{\bar{f}}\right) r_{-}+r_{-} L_{f} m_{0} L_{\bar{f}} r_{-}$ $=\operatorname{Ad} S\left(T_{\left|f^{*}\right|^{2}}-T_{f^{*}} T_{\bar{f}}\right)+r_{-} L_{f} m_{0} L_{\bar{f}} r_{-} \in K\left(l^{2}(\mathbb{Z})\right)$,
if and only if $T_{\left|f^{*}\right|^{2}}-T_{f^{*}} T_{\overline{\left(\bar{f}^{*}\right)}} \in K\left(l^{2}(\mathbb{Z})\right.$) (using $\overline{\left(f^{*}\right)}=\bar{f}^{*}$), if and only if $H\left[\bar{f}^{*}\right] \subset H^{\infty}(\mathbb{T})+C(\mathbb{T})\left[20\right.$, Theorems A and 1], if and only if $f \in H^{\infty}(\mathbb{T})+$ $C(\mathbb{T})$.

Recall that $\rho\left(L_{f}\right)=1 \otimes L_{f} \in \boldsymbol{L}$ for all $f \in L^{\infty}(\mathbb{T})$. The set $H^{\infty}(\mathbb{T})+$ $C(\mathbb{T})$ is a closed subalgebra of $L^{\infty}(\mathbb{T})$, thus its image $1 \otimes L\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)$ under $\rho \circ L$ is a closed subalgebra of L. Likewise $\rho \circ L(C(\mathbb{T}))=1 \otimes L(C(\mathbb{T}))$ is a C^{*}-subalgebra of \boldsymbol{L}.

Proposition 6.2. J is a left module over $1 \otimes L\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)$ and a two sided module over $1 \otimes L(C(\mathbb{T}))$.

Proof. Let $a=1 \otimes L_{f}$ for some $f \in H^{\infty}(\mathbb{T})+C(\mathbb{T})$ and let $x \in J$. Then we have, by [8, Proposition 4.1 (b)], that $a x \in J$ if and only if both $x^{*} a^{*} a x$ and $a x x^{*} a^{*}$ are in \boldsymbol{J}^{+}. But $x^{*} a^{*} a x \in \boldsymbol{J}^{+}$, since

$$
x^{*} a^{*} a x \leqq\|a\|^{2} x^{*} x \in J^{+}
$$

As $x x^{*} \in J^{+}$, we can find, by [8, Theorem $4.3(\mathrm{~b})$], some $z \in \pi\left(J(N)^{+}\right)$such that $x x^{*} \leqq z$ and hence $a x x^{*} a^{*} \leqq a z a^{*}$. Let $\varepsilon>0$ and let q be the spectral projection of z corresponding to the interval $[\varepsilon, \infty)$. We shall prove that $a q a^{*} \in J^{+}$. Notice first that q is finite in $\pi(N)$ [10, Propositions 3.8 and 3.9] and hence has finite trace. By Proposition 3.7, there is a wandering projection p^{\prime} with finite trace such that $q \leqq \pi\left(\sum_{n=0}^{\infty} \theta^{n}\left(p^{\prime}\right)\right)$. There is also a second wandering projection $p^{\prime \prime}$ with finite trace such that $\left(p^{\prime \prime}\right)_{\theta}=$ $1-\left(p^{\prime}\right)_{\theta}$ (Proposition 3.5). Thus $p=p^{\prime}+p^{\prime \prime}$ is also wandering projection with finite trace (Lemma $3.2(\mathrm{e})), p_{\theta}=1$ and $q \leqq \pi\left(\sum_{n=0}^{\infty} \theta^{n}(p)\right)$. Let ρ be the isomorphism corresponding to p. Then $a=1 \otimes L_{f}=\rho\left(L_{f}\right)$ and $\pi\left(\sum_{n=0}^{\infty} \theta^{n}(p)\right)=\rho\left(r_{+}\right)$. Therefore

$$
a z q a^{*} \leqq\|z\| a q a^{*} \leqq\|\boldsymbol{z}\| \rho\left(L_{f} r_{+}\left(L_{f}\right)^{*}\right) \in J^{+}
$$

by Proposition 6.1 (b). Hence we have $a z q a^{*} \in J^{+}$. Since

$$
\left\|a z a^{*}-a z q a^{*}\right\| \leqq \varepsilon\|a\|^{2}
$$

and ε is arbitrary, we obtain that $a z a^{*}$ and hence $a x x^{*} a^{*}$ are in J^{+}. Thus $a x \in J$ and consequently J is a left module over $1 \otimes L\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)$ and in particular over $1 \otimes L(C(T))$.

Since both J and $1 \otimes L(C(\mathbb{T}))$ are selfadjoint, J is also a two sided module over $1 \otimes L(C(T))$.

Corollary 6.3. The C^{*}-subalgebra \boldsymbol{J} of \boldsymbol{K} is not an ideal of \boldsymbol{K}.
Proof. Choose a wandering projection p with finite trace and $p_{\theta}=1$, and let ρ be the corresponding isomorphism of $\boldsymbol{B}\left(l^{2}(\mathbb{Z})\right)$ onto $\boldsymbol{D} \subset \boldsymbol{M}$. Let $q=\rho\left(r_{-}-m_{0}\right)$; recall that $1-q$ is finite in $\pi(\boldsymbol{N})$. Let f be a function in the complement of $H^{\infty}(\mathbb{T})+C(\mathbb{T})$ in $L^{\infty}(\mathbb{T})$ and let $a=1 \otimes L_{f}=\rho\left(L_{f}\right)$ and $y=q a(1-q)$. Then

$$
(1-q) a(1-q) a^{*}(1-q) \leqq\|a\|^{2}(1-q) \in J^{+}
$$

and

$$
a(1-q) a^{*} \leqq 2\left(q a(1-q) a^{*} q+(1-q) a(1-q) a^{*}(1-q)\right)
$$

Since $a(1-q) a^{*}$ is not in J (Proposition $\left.6.1(\mathrm{~b})\right)$, we conclude that also $y y^{*}=q a(1-q) a^{*} q$ is not in J. Thus y is not in J.

On the other hand, $y y^{*} \in \boldsymbol{K}^{+}$as $a(1-q) a^{*} \in \boldsymbol{K}$ (Proposition 6.1 (a)) and \boldsymbol{K} is a $\pi(\boldsymbol{N})$-module. Moreover,

$$
y^{*} y=(1-q) a^{*} q a(1-q) \leqq\|a\|^{2}(1-q) \in \boldsymbol{K}^{+}
$$

hence $y^{*} y \in \boldsymbol{K}^{+}$and thus $y \in \boldsymbol{K}$. Therefore $y=y(1-q)$ is the product
of an element in \boldsymbol{K} and an element in \boldsymbol{J} (actually a finite projection in $\pi(\boldsymbol{N})$) and does not belong to J.

Bibliography

[1] J. Anderson, Extensions, restrictions and representations of states on C^{*}-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329.
[2] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ec. Norm. Sup. 6 (1973), 133-252.
[3] A. van Daele, Continuous Crossed Products and Type III von Neumann Algebras, London Math. Soc. Lecture Notes Series 31, Cambridge University Press, Cambridge, 1978.
[4] J. Dixmier, Les Algèbres d'Opérateurs dans l'Éspace Hilbertien, Gauthier-Villars, Paris, 1972.
[5] H. Halpern, Commutators modulo the center in a properly infinite von Neumann algebra, Trans. Amer. Math. Soc. 150 (1970), 55-68.
[6] H. Halpern, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math. 43 (1972), 349-380.
[7] H. Halpern, Essential central range and self-adjoint commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 238 (1977), 117-146.
[8] H. Halpern and V. Kaftal, Compact operators in type III_{2} and type III_{0} factors, Math. Ann. 273 (1986), 251-270.
[9] H. Halpern, V. Kaftal and G. Weiss, The relative Dixmier property in discrete crossed products, J. Functional Analysis, 69 (1986), 121-140.
[10] V. Kaftal, On the theory of compact operators in von Neumann algebras I, Indiana Univ. Math. J. 26 (1977), 447-457.
[11] V. Kaftal, Relative weak convergence in semifinite von Neumann algebras, Proc. Amer. Math. Soc. 84 (1982), 89-94.
[12] R. Longo, A rigidity theorem for infinite factors, Preprint.
[13] R. Mercer, Convergence of Fourier series in discrete cross products of von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 254-258.
[14] G. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, London, 1979.
[15] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19-26.
[16] S. Stratila, Modular Theory of von Neumann Algebras, Abacus Press, Bucharest, 1981.
[17] S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Abacus Press, Bucharest, 1979.
[18] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.
[19] M. Takesaki, Theory of Operator Algebras, I, Springer-Verlag, New York, 1979.
[20] A. Volberg, Two remarks concerning the theorem of S. Axler, Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218.
Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221,
USA

