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1. Introduction. The pair of the period integrals

f o r a l . c y c l e 7

of the family of elliptic curves

w

2 = 4z3 — xz — y ,

parametrized by {x, y) e C2 with Δ = x* — 2Ίy2 Φ 0, is known to satisfy
the following differential equation of Fuchsian type of rank two on the
complex protective plane P 2 = P\C):

(1.1) dY=YΩ.

Here Ω is a (2 x 2)-matrix-valued meromorphic 1-form on P2 defined by

jl2)dΔ (3/S)(xydx - (2/3)x2dy) \
Δ Δ

(-9/2)(ydx- (2/S)xdy) (l/12)dΔ
Ω =

I
The differential equation (1.1) has regular singularity along

where C is the closure in P2 of the affine curve {(#, y) e C2 \ Δ = 0} and LM

is the line at infinity.
For {y19 72} which gives rise to a Z-basis for the first homology group

of the elliptic curve with the intersection number 7i 72 = 1, the multi-
valued map

which sends {x, y) to

dz\
h w J

has the single-valued inverse map
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which sends (u, v) to (x, y), where

D = {(u, v)eC2\uv^0, Im(v/u) > 0}

is the image of S and Im(z) is the imaginary part of zeC.
S"1 can in fact be written as the Eisenstein series:

V = 140Σ-
(mu + nvY ' (mu + nvf

with the summation taken over all pairs (m, n) of integers with (m, n) Φ
(0, 0).

The purpose of this paper is to discuss a wider class of differential
equations

(1.2) dY=YΩ

of Fuchsian type of rank two on P2 with regular singularity along
o, which contains the differential equation (1.1) as a special case.

We discuss the multi-valued map

S:P2-

which sends (x, y) to (u, v) = (flf gx), where (fltf2) and (glf g2) are linearly
independent solutions of (1.2). We give a criterion for the single-
valuedness of the inverse map S"1 from the image of S to P2 — CULoo.

Finally, using (1.2) and Selberg's theorem, we give an existence
theorem for finite Galois coverings π:X->P2 with the branch locus

2. Differential equations of Fuchsian type. Let p be a point of a
connected complex manifold M of dimension n. Let Ω be an (rxr)-
matrix-valued meromorphic 1-form on a neighborhood U of p in M satis-
fying the integrability condition

(2.1) dΩ + Ω A Ω = 0 .

Suppose that Ω can be written as

(2.2) Ω = B^dz, + + BnM)dzn.x + Bn(z)dzjzn ,

where z = (zlf- , z j is a local coordinate system in Z7 with p = (0, , 0),
and Bs(z) (1 ̂  i ^ n) are (r x r)-matrix-valued holomorphic functions on
U. Then we say that the differential equation

(2.3) dY=YΩ

in an unknown vector-valued function Y= (ylt •• ,^/r) has regular sin-
gularity along {z\zn = 0}. It can be easily seen that this definition is
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independent of the choice of a coordinate system (zlf •• ,2n) In this
case, the following is known:

THEOREM 1 (Gerard [2], Yoshida-Takano [7]). There is a fundamental
matrix solution F(z) on U of (2.3) of the form

F(z) = (exp(Clogzn))(exp(Nlogzu))G(z) ,

where C is a constant matrix, N is a diagonal matrix whose components
are non-negative integers and G{z) is a matrix-valued holomorphic func-
tion on U with detG(z) nowhere vanishing. Moreover, if none of the
differences of the eigenvalues of BJjή are non-zero integers, then N and
C can be so chosen that N = 0 and C is equivalent to Bn(p).

Next, let B be a hyper surf ace in a connected complex manifold M
of dimension n. Let Ω be an (r x r)-matrix-valued meromorphic 1-form
on M such that

(2.4) dΩ + Ω A Ω = 0

Suppose that (i) Ω is holomorphic on M - B and (ii) for every point
p in the set RegB of all non-singular points of B, there exists a neigh-
borhood U of p in M such that Ω has regular singularity along Bf] U.
Then we say that the differential equation

(2.5) dY=YΩ

in an unknown vector-valued function Y= (ylf , yn) is of Fuchsian type.
We say that the equation (2.5) has regular singularity along B.

Let p0 be a fixed point of M — B. The monodromy representation

R .πάM- B, po)->GL(r, C)

of the equation (2.5) is defined by

Sing J3

FIGURE 1
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σ*F(: = Fo σ) = R(σ)F for σ e πx(M - B, p0) ,

where F is a fundamental matrix solution of (2.5) in a neighborhood of

P
Let B = Bx (J U B8 be the decomposition of B into irreducible com-

ponents. Let Gj be a loop starting and terminating at p0, encircling a
point peBj— SingJS in the positive sense as in Figure 1, where Sing B
is the singular locus of B.

We identify 07 with its homotopy class. Then, by Theorem 1, R(as)
is equivalent to exp(2τπ/^TC).

3. A class of Fuchsian differential equations on P2. We now re-
strict ourselves to the case M = P2. For complex numbers a, β,Ί (ΎΦ 0),
d, ε and ε', consider the following (2 x 2)-matrix-valued meromorphic 1-
form on P2:

βjxydx + εx*dy)

(3.1) Ω =
Δ Δ

Ύ(ydx + e'xdy) ddΔ

\ Δ Δ

which generalizes Ω appearing in (1.1), where (x, y) is an afBne coordinate
system and Δ = x* — 21y2. Ω is holomorphic on P2 — C U!/«, with C and
Loo defined as in §1. For such Ω, consider the differential equation

(3.2) dY=YΩ

in an unknown vector-valued function Y.

THEOREM 2. Suppose βφQ and 7 ^ 0 . Then the equation (3.2) is
of Fuchsian type if and only if (i) ε = ε' = —2/3 and (ii) d = a + 1/6.

PROOF. We first examine the regular singularity condition (2.2) and
then the integrability condition (2.4). Let (Xo: Xx\ X2) be the homogeneous
coordinate system on P2 such that

x = XJX0 and y = XJX0.

The singular locus of B=C[JLOO consists of two points (1:0:0) and
(0: 0:1). (See Figure 2.)
Take a point p = (α, b) e C - Sing B. Then α3 - 27δ2 = 0. Put

zλ = x — a and 22 = Δ = #3 — 27i/2.

Then (slf «2) is a local coordinate system around p = (0, 0) such that,
locally, C = {(zlf z2)\z2 = 0}. i2 is then written as
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( l : 0 : 0 ) = ( 0 , 0 )

where

FIGURE 2

ίωn ω12

\ω21 a

ωn = adzjz2 ,

α>21 = [7{(2 + 3ε')(Zi + a)3 - 2z2}dz1 - 7ε'(zx

ω1 2 = [yβ{(2 + 3ε)(^ + α)4 - 2z2(z1 + a)i}dz1

O)22 = δdzjz2 ,

a)dz2]/54hz2 ,

zλ + a)2dz2]/5Ahz2

Hence Ω can be written as

Ω = B1{z)dz1 + B2{z)dz2\z2 ,

where Bλ(z) and B2(z) are (2 x 2)-matrix-valued holomorphic functions around

p, if and only if

(3.3) e = e' = -2/3 .

If this is the case, then

0

(3.4)
27h

— 7

27h

and
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(3.5)

In particular,

(3.6)

Biz) =
a

af
Slh

Tfe + a)
\ 81h

a
816

816

For a complex number c, consider a point

q = (0:1: 0 ) e L M - SingB , (see Figure 2) .

Put

ti = (y/ίc) — c and ί2 = 1/x .

Then (t lf t2) is a local coordinate system around q = (0, 0) such that, locally,
Loo — {(t19 t2)\t2 = 0}. Ω is written around p as

Ω = C^dt, + C2(t)dtjt2 , with t = (tlf t2) ,

where

d(ί) = — f / 2 ]

and

f c)% — 3a —β(l + e)(ίi + c)\c a) = l
g

(
\-7(l c) 2 ί 2 -

with g = 1 — 27ί2(ί1 + c)\ Hence Cx(ί) and C2(ί) are (2 x 2)-matrix-valued
holomorphic functions around p. In particular,

(3.7) CM =
-Sa - ε)c

0 ~3δ

Next, by simple calculation, we obtain

'in £i2\ dx A dy
dΩ + Ω A Ω =

where

In = βv(ε' - ε)x2y ,

ξn = 7(e» - 1 + 3s'(δ - α - l))a;3 + 277(1 - e' + 2(δ - a - 1M

fM = /3(2s - 1 + 3e(α - 8 - l))xι + 27/9(1 - 2ε + 2(α - δ -
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Since β Φ 0 and 7 Φ 0, we have dΩ + Ω A Ω = 0 if and only if ε = e' =
-2/3 and δ - a = 1/6. q.e.d.

If /3 = 0, then the above proof also shows:

THEOREM 2'. T%e differential equation (3.2), where Ω is as defined
in (3.1) with β = 0 αwei 7 =£ 0, is o/ Fuchsian type if and only if e' =
-2/3 αtid δ - a = 1/6.

Henceforth, we only consider the differential equation (3.2), where

adΔ βjxydx - (2/3)x2dy) *

(3.8) Ω =
Ύjydx - (2/S)xdy) (a

Δ Δ I

with 7 ^ 0 . This equation is of Fuchsian type by Theorems 2 and 2'.

Let p0 be a fixed point of P2 — CllLoo. Let σ (resp. σ'', resp. τ) be
a loop starting and terminating at p0, encircling the point (x, y) =
(3, -1) e C (resp. (x, y) = (3, 1) e C, resp. (Xo: jζ: X2) = (0:1:1) 6 £,«,) in the
positive sense as in Figure 3.

FIGURE 3

Then it is known (see Van Kampen [6]) thatfπΛP2

erated by σ, σ' and τ with the relations
o, 3>β) is gen-
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oσ'σ = σ W = τ

Note that σ and σr are conjugate, since σ' = {σσ^σiσσ'Y1. Let

22: ̂ ( P 2 - C U Loo, pβ) -> GL(2, C)

be the monodromy representation of the differential equation (3.2). Then,
by (3.6), (3.7) and Theorem 1, R{σ) and R(σ') are both equivalent to

(3.9) exp2πv/— = exp2ττv/ —
a

Ύa
\ 816

βa2

816

α + 1/6

unless 2i/Z) is a non-zero integer, where

D = (1/12)2 + /37/243 ,

while R{τ) is equivalent to

(3.10) exp2πl/^ΊC2(#) = exp2πv/^H\ , .
\ 0 -3α - 1/2/

4. The single-valuedness of the inverse map. Let (f19 f2) and (glf g2)

be linearly independent solutions of the equation (3.2), where Ω is given

by (3.8). Consider the multi-valued map

. ± — W U -LΌo —* ^

which sends (a?, j/) to (/̂ a?, y), ^(a?, y)).

LEMMA 1. // aΦ 0 αwc? 7 ^ 0 , ίfee^ S is locally biholomorphίc.

PROOF. Put flx = dfjdx, etc. Since

dA = Λa(dΔ/Δ) + f2Ύ(ydx - (2/3)xdy)/Δ
and

we have

Hence

dg1 = gxa{dΔ/Δ) + g{f(ydx - (2/S)xdy)/Δ ,

flχ = , fly = (-54OKΛ - (2JS)7xft)/Δ ,

, gly = {-Uayg, - (2β)yχg2)/Δ .

/»,

ft*

-2α7 / l

ft
Λ
ft

q.e.d.

Henceforth, we assume and 7 Φ 0. The image
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W= S(P2- CULJ

is an open set of C2. Consider the inverse map

399

In general, S"1 is also a multi-valued map.

THEOREM 3. Let p be a non-zero integer and q be either +00 or an
integer greater than one. If a = 1/Qp and βΎ = 27(36 — q2)/16q2, (while
7 ^ 0 and βΎ = —27/16 if q — +°°), then S'1 is single-valued.

PROOF. Consider the following coordinate transformation:

where

and so

x Φ 0, yφO, xzΦ 27y2

t =£0, , t Φl .

Using the new coordinate system (t, λ), the (2 x 2)-matrix-valued 1-form
Ω is written as

6adx a(3t2 - 2t)dt βxdt

(4

is

(4

.1) Ω =

81λ(f -

The restriction Ωλ of

Lλ

written as

.2) Ωχ =

/α(3ί2 -

1 Ίdt
\ 81λ(f -

ί3-

-t)

Ω to

= {(t,

2t)dt
t*

-t)

-f

the line

λ) |λ is

3 ( ί -

V λ

constant}

βxdt
3(ί - 1)

\ f — i

(W - 2t)dt
f-t*

\

? )/

•

For an unknown vector-valued function Ϋ = (h^t), K2(t)), consider the
differential equation

(4.3) = ΫΩλ.

Eliminating h2 from (4.3), we get the following ordinary differential
equation of second order for Kx:
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(-6α

(9α 2 -

+ 3/2)ί
t(t-

(3/2)α)t

M.

+ (4a-
-1)
2 + (-1Σ

NAMBA

2/3) / d£:Λ
/

/37/243)ί

Note that the equation (4.4) does not involve λ. Hence, using the symbol
of Riemann-Papperitz (see Hochstadt [3]), we can write %1 as

= P

0

2a a + (l/12)-VΌ (1/2) - 3α ί

.(1/3)+ 2α α + ( l/12)- i/ΰ -3α

where
Z> = (1/12)2 + /37/243 .

By a well-known transformation, we get

0 1 oo "

0 0 (7/12) + VΌ t

.1/3 -2VΌ (1/12) + 1/5" j

Hence a pair of linearly independent solutions of (4.4) is given by

to = 9(0^(7/12) + VΌ, (1/12) + VΌ, 2/3; ί) ,

to = f (t)F((U/12) + VΌ, (5/12) + i/2T, 4/3; t)

in terms of Gauss' hypergeometric function F(a, b,c;t) and

<p{t) = t (1 — t

We put

Then

(4.5)

α = (7/12) + VΊ> , 6 = (1/12) + VΌ , c = 2/3 .

l - c - 1 / 3 , e-a-b= -2VΊ) , 6 - a = -1/2 .

Hence, by Schwarz' theory, the inverse of the multi-valued map

S:C-{0,1}-*C

is single-valued, if (and only if) 2VΌ~ iswhich sends t to
written as

2VΌ~ = ±l/q,

where q is either +oo or an integer greater than one. This last con-
dition means
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(4.6) βj = 2 7 ( 3 6 - 92> .

16q2

Note that the functions K2(t) and ίc2(t) appearing in the linearly independent
solutions (Klf h2) and (Jeί9 k2) of (4.3), where h1 and k1 are given above, can
be given by

K2(t) = 81λ(ί2 - t)y-\dhjdt) -

ίc2(t) = 81λ(ί2 - t)y-\dϊcjdt) - 81αλ(3ί -

Next, for an unknown vector-valued function Y, consider the differ-
ential equation

(4.7) dY=YΩ,

where Ω is given by (4.1). We show that linearly independent solutions
(hlf h2) and (klf k2) of the equation (4.7) are given by

K(t, λ) = φ(t, \)F((7/12) + VD, (1/12) + v<D, 2/3; t) ,

, λ) = 81λ(ί2 - t)y-\dhJ3t) - 81αλ(3ί - 2)7"1Λ1,
(4.8)

kx(t, λ) - ψ(ί, λ)F((ll/12) + VΌ, (5/12) + VD, 4/3; ί) ,
t, X) = 81λ(£2 - t)y-\dkjdt) -

where

φ% λ) = λ

ψ(ί, λ) = >

Indeed, the vector-valued 1-form d(hlf h2) — (hlf h2)Ω vanishes on every
line Lλ, since h1\Lx = hlf h2\Lx = fe2 and i2|Lλ = Ωx. On the other hand,
this vector-valued 1-form vanishes on every line L\ — {(ί, λ) |t is constant},
since

Qadx π \

X I
Hence we identically have d(hl9 h2) = (Λlf /t2)^. In a similar way, (k19 k2)
is also a solution of (4.7), which clearly is linearly independent of
(hί9 h2).

Now, consider the multi-valued map

S': C2 - {(«, λ) 6C 2 | ί =̂ 0, λ ^ 0, ί ^ 1}-^C2

which sends (ί, λ) to (fex(ί, λ)/Λi(ί, λ), λ^ΐ, λ)). We show that the inverse
S'"1 of S' is single-valued if (4.6) is satisfied and a — l/6p for a non-zero
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integer p. Suppose the contrary. Then we may assume that, for distinct
points (£, λ) and (f, λ')»

(h(fi, \)IUt, λ), W, λ)) = (ftx(ίf

f λO/^ί', λ'), ΛΛί', λ')) .

Note that the function kjht = kjh1 is independent of λ, (see (4.8) and

(4.5)). By the assumption (4.6), the equality £i(ί)/£i(ί) = &i(ί')Ai(O implies

t = t\ Then we have ^(ί , λ) = ^(ί, λ') By (4.8), this implies λβα = λ'6α.

If a = l/6p for a non-zero integer p, then x1/p = xn/p. Hence λ = λ', a

contradiction. Hence S'"1 is single-valued.
It is clear that if S'"1 is single-valued, then so is S"1 on the set

S(P2 - CuLoo - {(x, y)eC2\xy = 0}) .

By Lemma 1, S is locally biholomorphic. If there exist distinct points
(a?, y) and (a?', j/') in P2 - COL,* such that S(a?, y) = S(x', yr), then there
must exist disjoint neighborhoods U and U' of (ίc, y) and («', ί/') in
P2 - CULoo, respectively, such that (i) S(U) = S(?7') and (ii) S: U->S(U)
and S: U'—>S(U) are biholomorphic. Since the set {(», 2 / ) e C 2 | ^ = 0} is
nowhere dense in P 2 , there must exist a point (xlf yt) in Z7 (resp. (x[, y[)
in Z7') with x1y1 Φ 0 (resp. x[y[ Φ 0) such that S(xlf yt) = S(x[, y[). Thus
S'1 is single-valued on S(P2 - CUL^), if S'"1 is single-valued. q.e.d.

Under the assumption of Theorem 3, we write

S"1: {u, v) h-> (a?, 2/) = (a?(w, v), y(u, v)) .

Then the functions x(u, v) and j/(w, v) are automorphic with respect to
the monodromy group. That is, putting

(a b

for 7 6π x (P 2 - CULoo, pβ), where R: π,(P2 - CULoo, ?>0)-^GL(2, C) is the
monodromy representation of the equation (3.2) with Ω as in (3.8), we have

x(au + bv, cu + dv) = a?(w, v) and y(au + 6v, cu + dv) = j/(w, v) .

For example, if

α = 1/6, β = 0 and 7 = 9/2, (i.e., p = 1, 9 = 6) ,

then, for a suitable choice of linearly independent solutions (flf f2) and
(Hit Qz) of the equation (3.2) with Ω as in (3.8), the functions x(u, v) and
y(u, v) satisfy

x{ζu, —u + Qv) = x(—u, v) = x(u, v) ,

y(ζu, —u + ζ2v) = y(—u, v) = y(u, v) ,
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where

ζ = exp(27rt/^I/6) .

(See (3.9) and (3.10).)

5. Branched finite Galois coverings. A branched finite covering of
a connected compact complex manifold M is, by definition, an irreducible
normal complex space X together with a surjective proper finite holomorphic
map π:X—>M. The sets

Rπ — {peX\π*: έ?M,π[p)-*έ?xiP is not isomorphic} ,

Bκ = π(Rπ) ,

where έ?XyP is the local ring of germs at p of holomorphic functions, are
hypersurfaces of X and M, called the ramification locus and the branch
locus of π, respectively. For a non-singular point q of Bκ, every point
p in π~\q) is non-singular as a point of both π~\Bπ) and X. Choosing
suitable local coordinate systems (zlf ••-,£„) around p = (0, -- ,0) and
(w19 , wn) around q — (0, , 0) such that

τ r - m ) = {(«» •••,«.)I«. = 0} f

Bπ = {(w19 •••, wn)\wn = 0} ,

locally, we can write the map π locally as

π: (zlf , zn) -* (wx, , wn) = («lf •£„_!, «;)

for a positive integer e, which is constant on each irreducible component
C of π " 1 ^ ) and is called the ramification index of π along C. For any
irreducible hypersurface C of X which is not contained in π~\Bπ), the
ramification index of π along C is defined to be one.

For branched finite coverings π:X—>M and π':X'—>M, a morphism
(resp. isomorphism) of π to π' is a sur jective holomorphic (resp. biholo-
morphic) map

φ:X->X'

such that π = π' °φ. The group Gr of all isomorphisms of π to itself is
called the covering transformation group, π: X-+Mis said to be a Galois
covering if Gπ acts transitively on every fiber of π.

Let Dd (1 ^ i ^ s) be distinct irreducible hypersurfaces of M. For
positive integers e3- (1 ^ i ^ s), put

B = JDX U U D8 (a hypersurface of M) ,

D — ej)^ + + e8D8 (a positive divisor on M) .
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A branched finite covering π: X—>M is said to branch along D (resp. at
most along D) if (i) Bπ = B (resp. BπczB) and (ii) for every irreducible
component C of n"\Bs)f the ramification index of π along C is e, (resp.
divides eά) for 1 <; j" ̂  s.

Denote also by σ, (1 ^ j ^ s) the homotopy classes of the loops σ3-
defined in §2. (See Figure 1.) Let

be the smallest normal subgroup of πx{M—B, p0) which contains σl1, , σe

s*.
For the proof of the following theorem, see Namba [4].

THEOREM 4. There is a one-to-one correspondence π H-> N = N(π)
between the set of all isomorphism classes of finite Galois coverings
π:X->M which branch at most along D and the set of all normal
subgroups N of πx(M — B, p0) of finite index such that JaN. The cor-
respondence satisfies (i) Gπ ^ πλ{M — B, po)jN{π) and (ii) π branches along
D if and only if, for every j (1 <£ j <£ s), the following condition for
N(π) is satisfied:

σj e N(π) if and only if d = 0 (mod es) .

We recall the following theorem of Selberg [5], (see also Borel [1]):

THEOREM 5 (Selberg). For any finitely generated subgroup Γ(Φ{1})
of GL(r, C), there exists a normal torsion free subgroup H (ΦΓ) of Γ
of finite index.

Combining Theorems 4 and 5, we have:

THEOREM 6. Assume that nx{M— B, p0) is finitely generated. Suppose
that there exists a homomorphism R: πx(M — B, p0) —> GL(r, C) such that
R{Gj) has order eβ for 1 ^ j ^ s. Then we have a finite Galois covering
π: X->M which branches along D — eJDx + + e8D8.

REMARK. If M = Pn, then πx{Pn — B, p0) is generated by σl9 , σ8

and a finite number of their conjugates. M. Oka informed us that
πλ(M — B, p0) is finitely generated in general, if M is a protective mani-

fold.

Now we apply Theorem 6 to the monodromy represention

R: π^P2 - C U L., p.) -> GL(2, C)

of the differential equation (3.2), where Ω is given by (3.8) and satisfies
the condition of Theorem 3. Suppose that q Φ + oo.

By (3.9) and (3.10), the orders of R(σ) and R(τ) are given by
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ordR(σ) = ordR(σ') = m0 , ordR(τ) = 2\p| ,

where m0 is the smallest among positive integers m such that m/6p +
m/12 ± m/2q are integers. In particular, putting β = 0 (i.e., g = 1/6),
we have ordi2(σ) = 6 |p | . Thus we have:

THEOREM 7. For any positive integer k, there exists a finite Galois
covering π: X->P2 which branches along 6kC + 2kL^.

6 A generalization. For positive integers a and b with a ^ 2 and
a ^ 6, let C be the closure in P 2 of the affine curve

For non-negative integers k and ϊ, consider the following differential
equation

(6.1) dY = YΩ,

where

ladflf βxkω/f\

Wωlf ddf/f I

for complex numbers α, β, 7, <?, ε and ω — ydx + xdy. Then Ω is holo-
morphic on ? 2 - CULoo. As in Theorem 2, we have:

THEOREM 8. The equation (6.1) is of Fuchsian type if and only if
(i) ε = -6/α, (ii) £(1 - (fc + l)/α - 1/δ - α + δ) = 0, (iii) 7(1 - (I + l)/α -1/6
+ α - δ) = 0, (iv) k^a-2ifβΦb and (v) ϊ ^ a - 2 i/ 7 Φ 0.

In particular, let us assume

/9 = 0, 7^=0, α > 6 , 1 = a - 2 and α = 1/em ,

where e is the least common multiple of a and 6, and m is a positive
integer. Then we have the following generalization of Theorem 7.

THEOREM 9. Assume a > b. Then, for any positive integer m,
there exists a finite Galois covering π:X-+P2 which branches along
em(C1 + + Cs) + (e/a)mLoo, where e is the least common multiple of a
and 6, and C = CΊU UCβ is the irreducible decomposition of C.
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