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1. Introduction. The pair of the period integrals

Y = (ST%, Sr%) for a 1l-cycle 7

of the family of elliptic curves
wr=42— 2z — vy,

parametrized by (z, y)€C?® with 4 = a* — 27y* = 0, is known to satisfy
the following differential equation of Fuchsian type of rank two on the
complex projective plane P* = P*C):

(1.1) dY=YQ.
Here 2 is a (2x2)-matrix-valued meromorphic 1-form on P? defined by

(—1/12)d4 (3/8)(xydx — (2/3)x*dy)
4 4
(=9/2)(ydx — (2/3)xdy) (1/12)d4
4 4

The differential equation (1.1) has regular singularity along CU L.,
where C is the closure in P* of the affine curve {(x, y) € C*|4 = 0} and L,
is the line at infinity.

For {v, 7,} which gives rise to a Z-basis for the first homology group
of the elliptic curve with the intersection number 7, -7, = 1, the multi-
valued map

Q=

S:P*—- CUL,—C*?

(, v) = (Srl%z_’ Srz—(qi,{—;z_)

has the single-valued inverse map
S*tD—-P*—-CUL,,

which sends (z, ) to
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which sends (u, v) to (x, y¥), where
D = {(u, v) € C*|uv # 0, Im(v/u) > 0}

is the image of S and Im(2) is the imaginary part of zeC.
S~! can in fact be written as the Eisenstein series:

1 1
=60, ——— =140, —Mm—M
v Y (mu + no)t Y % (mu + nv)°

with the summation taken over all pairs (m, n) of integers with (m, n) #
(0, 0).

The purpose of this paper is to discuss a wider class of differential
equations

1.2) dY=YQ

of Fuchsian type of rank two on P? with regular singularity along
CU L., which contains the differential equation (1.1) as a special case.
We discuss the multi-valued map

S:P*—-CUL.—C*,

which sends (x, ) to (u, v») = (f3, 9,), where (f,, f.) and (g,, g,) are linearly
independent solutions of (1.2). We give a criterion for the single-
valuedness of the inverse map S~ from the image of S to P*— CUL..

Finally, using (1.2) and Selberg’s theorem, we give an existence
theorem for finite Galois coverings #: X — P?* with the branch locus
CUL..

2. Differential equations of Fuchsian type. Let » be a point of a
connected complex manifold M of dimension n. Let £ be an (rxr)-
matrix-valued meromorphic 1-form on a neighborhood U of p» in M satis-
fying the integrability condition

(2.1) dQ+2/N2=0.
Suppose that 2 can be written as
(2.2) 2 = B\(2)dz, + - -+ + B,,(2)dz,_, + B.(2)dz,/z, ,
where z = (2, + -, 2,) is a local coordinate system in U with p = (0,---, 0),

and B;(z) 1 £ j < n) are (rXxr)-matrix-valued holomorphic functions on
U. Then we say that the differential equation

(2.3) dY =YQ

in an unknown vector-valued function Y = (y, +--, 9¥,) has regular sin-
gularity along {z|z, = 0}. It can be easily seen that this definition is
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independent of the choice of a coordinate system (z, :-:-, 2,). In this
case, the following is known:

THEOREM 1 (Gérard [2], Yoshida-Takano [7]). There is a fundamental
matriz solution F(z) on U of (2.3) of the form

F(z) = (exp(Clog z,))(exp(N log 2,))G(z) ,

where C is a constant matrix, N is a diagonal matrix whose components
are non-negative integers and G(z) is a matriz-valued holomorphic func-
tion on U with det G(z) nowhere vanishing. Moreover, if mone of the
differences of the eigenvalues of B,(p) are nonm-zero integers, then N and
C can be so chosen that N =0 and C i3 equivalent to B,(p).

Next, let B be a hypersurface in a connected complex manifold M
of dimension n. Let 2 be an (r Xr)-matrix-valued meromorphic 1-form
on M such that

(2.4) a2 +2NQ2=0.

Suppose that (i) 2 is holomorphic on M — B and (ii) for every point
p in the set Reg B of all non-singular points of B, there exists a neigh-
borhood U of p in M such that 2 has regular singularity along BN U.
Then we say that the differential equation
(2.5) dY=YQ

in an unknown vector-valued function Y = (y,,--, ¥,) is of Fuchsian type.
We say that the equation (2.5) has regular singularity along B.
Let p, be a fixed point of M — B. The monodromy representation

R: (M — B, p,)— GL(r, C)
of the equation (2.5) is defined by

B,—Sing B

\

Py

Ficure 1
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0*F(:= Foo) = R(o)F for oen,M— B, p,),

where F' is a fundamental matrix solution of (2.5) in a neighborhood of
D,.

Let B= B,U::+-UB, be the decomposition of B into irreducible com-
ponents. Let o; be a loop starting and terminating at p,, encircling a
point p e B; — Sing B in the positive sense as in Figure 1, where Sing B
is the singular locus of B.

We identify ¢; with its homotopy class. Then, by Theorem 1, R(s;)
is equivalent to exp(2x1 —1C).

3. A class of Fuchsian differential equations on P*. We now re-
strict ourselves to the case M = P%. For complex numbers a, B, ¥ (¥ #0),
0, ¢ and ¢', consider the following (2 2)-matrix-valued meromorphic 1-
form on P?:

add Blxydxr + ex’dy)
4 4
3.1 Q= )
3.1 Y(ydx + &'xdy) od4
4 4

which generalizes Q appearing in (1.1), where (x, %) is an affine coordinate
system and 4 = 2* — 27y%. Q is holomorphic on P? — CUL, with C and
L., defined as in §1. For such 2, consider the differential equation
(8.2) dYy=YQ

in an unknown vector-valued function Y.

THEOREM 2. Suppose B3+ 0 and ¥+# 0. Then the equation (3.2) is
of Fuchsian type if and only if (i) ¢ =& = —2/3 and (ii) 6 = a + 1/6.

PrROOF. We first examine the regular singularity condition (2.2) and
then the integrability condition (2.4). Let (X,: X;: X,) be the homogeneous
coordinate system on P? such that

z=X/X, and y = X,/X,.

The singular locus of B = CUL., consists of two points (1:0:0) and
(0: 0:1). (See Figure 2.)
Take a point p = (a, b) e C — Sing B. Then a® — 270> = 0. Put

zz=2—a and z,=4=2x— 27y*.

Then (z, 2,) is a local coordinate system around » = (0, 0) such that,
locally, C = {(z, 2,)|2, = 0}. £ is then written as
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\ (0:0:1)
q=(0:1:¢)
p=(a, b)
(1:0: 0)=(0,0)
C L.
FIGURE 2

Q= <wn a)m) ,
@y @y
where
W, = adz,/z, ,
@, = [Y{(2 + 3&")(z, + a)® — 2z,}dz, — V' (2, + a)dz,]/54hz, ,
W, = [BI2 + 3e)(z, + a) — 22,(2, + a)'}dz, — Be(z, + a)’dz,]/54hz, ,
W,y = 0dz,/2, ,
h = [((z, + a)® — 2,)/27]*.

Hence 2 can be written as
2 = B,(2)dz, + B,(2)dz,/z, ,
where B,(z) and B,(z) are (2 X 2)-matrix-valued holomorphic functions around
p, if and only if
(3.3) e=¢ = —2/8.
If this is the case, then

0 —B(z + a)

27h
(3.4) B\(2) =

27h

and
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" B + ay
81h
3.5 B,(2) =
(3.5) 2(2) e + a) 5
81h
In particular,
Ba’
81b
(3.6) B,(p) =
81b

For a complex number ¢, consider a point
q=(0:1:0e L, — Sing B, (see Figure 2) .
Put
t,= (y/x) —c¢ and ¢, =1/x.
Then (¢, t,) is a local coordinate system around q = (0, 0) such that, locally,
L. = {(t, t,)|t, = 0}. Q2 is written around p as
Q = C@t)dt, + C,t)dt,/t,, with t=(t,t,),

where
i) = 1 (—54a(t1 + o), Be )
9 vé't, —b40(t, + c)t,
and
C6) = 1 <54a:(t1 + ¢)*t, — 3a —B1 + &), + c))
g\—v1 + )¢, + e)t, 546(t, + e)’t, — 3

with g =1 — 27T¢,(¢, + ¢)®.. Hence C,(t) and Cy(t) are (2x2)-matrix-valued
holomorphic functions around p. In particular,
—8a —pB1+ s)c)
0 —30 )
Next, by simple calculation, we obtain

éu Eu)M
Su n £ ’

3.7 Cie) = (

A2+ 2N Q2 = (
where
&u = B — e)ry ,
En=7E"—14+38'0—a—1)r*+27TvA — " + 206 — a — 1))y
&, =82 — 1+ 3s(a— 06— D)t + 2781 — 28 + 2(a — 6 — 1))xy?,
& = BY(e — &N’y .
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Since 8+ 0 and ¥ # 0, we have d2 + 2 A2 =0 if and only if e =¢ =

—2/3 and ¢ — a = 1/6. g.e.d.
If 8 =0, then the above proof also shows:

THEOREM 2. The differential equation (3.2), where 2 s as defined
wn (8.1) with 83 =0 and ¥+ 0, is of Fuchsian type if and only if ¢ =
—2/8 and 6 — a = 1/6.

Henceforth, we only consider the differential equation (3.2), where

add Blxydx — (2/3)x*dy)
y y
3:8) 2=\ ywde — @3)dy) (o + 1/6)d4 /
y y

with v %= 0. This equation is of Fuchsian type by Theorems 2 and 2.

Let p, be a fixed point of P* — CUL.. Let o (resp. ¢’, resp. ) be
a loop starting and terminating at p,, encircling the point (z, ¥) =
8, —1)eC (resp. (%, ¥) = (8,1)eC, resp. (X;: X;: X;) = (0:1:1) e L,,) in the
positive sense as in Figure 3.

FIGURE 3

Then it is known (see Van Kampen [6]) thatUz,(P*— CU L., p,) is gen-
erated by o, ¢’ and ¢ with the relations
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o0'c = o'oo’ =77t
Note that ¢ and ¢’ are conjugate, since ¢’ = (00')o(o0’)™. Let
R: 7z (P*—- CU L., p,) —GL(2, C)

be the monodromy representation of the differential equation (3.2). Then,
by (3.6), (3.7) and Theorem 1, R(s) and R(c¢’) are both equivalent to

Ba’
_ | “ 810
(3.9 exp 2V —1B,(p) = exp 271 —1 .y ,
a
1/6
s oY
unless 2D is a non-zero integer, where
D = (1/12)* + Bv/243 ,
while R(z) is equivalent to
S —(—3a —pc/3 )
3.10 27V —1C,(q) = 271 —1 .
(3.10) exp 2x (¢) = exp 271/ ( 0 —3a_12

4. The single-valuedness of the inverse map. Let (f, f,) and (g,, 9,)
be linearly independent solutions of the equation (3.2), where £ is given
by (8.8). Consider the multi-valued map

S:P*—CUL.—C*
which sends (z, y) to (fi(x, ¥), 9.(x, ¥)).
LEMMA 1. If a+# 0 and v+ 0, then S is locally biholomorphic.
ProOF. Put f,, = of,/ox, etc. Since
df, = fia(dd/4) + fr(yde — (2/3)xdy)/4

and
dg, = g.a(dd/4) + g,7(ydx — (2/3)xdy)/4 ,
we have
S = Gax’fy + Yyf)ld, fu = (—ddayf, — (2/3)1xfy)/4,
9. = (Bax’g, + 7y9,)/4 , g, = (—bdayg, — (2/38)vxyg,)/4 .
Hence
fio S _ —2a’>’,f1 f;’¢0.
Gz iy 4 g g,

q.e.d.

Henceforth, we assume a # 0 and v % 0. The image
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is an open set of C*. Consider the inverse map
S*tW—-P:—-CUL.,.

In general, S is also a multi-valued map.

THEOREM 3. Let p be a non-zero integer and q be either + o or an
integer greater than ome. If a = 1/6p and BY = 27(36 — ¢*)/16¢*, (while
v# 0 and By = —27/16 if q = + =), then S is single-valued.

Proor. Consider the following coordinate transformation:
(@, y) (& N) = (@)2TY, y/x) ,
where
x#0, y=+#0, 2* £ 27Ty*
and so
t+0, n#0,t+1.

Using the new coordinate system (¢, \), the (2x2)-matrix-valued 1-form
2 is written as

6ady | a(3t' — 20)dt Andt
x &1 3¢ — 1)
(4.1) 2= vdt 6dn | (3t — 2t)dt
__ydt 1/6 -
8INE — 1) (@ + /)< N T )

The restriction 2, of 2 to the line
L, = {(t, )| is constant}

is written as

a(8t* — 2t)dt Andt
ws 0 £ g 3¢ — 1)
’ 1= vdt (8t* — 2t)dt
8INGE — ©) (@+1/ 6)( £ _p )

For an unknown vector-valued function ¥ = (%,(t), i,(t)), consider the
differential equation

(4.8) a¥y="%o,.

Eliminating ﬁz from (4.3), we get the following ordinary differential
equation of second order for 4,:
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d h (—6a + 3/2)t + (4a — 2/3) ( dh,
4.4 .
wd) G+ o (&)
n 9a? — (3/2)a)t* + (—12a° + o — B7/[243)t + 4a® + (2/3)af,, —0.
t3(t — 1)
Note that the equation (4.4) does not involve A. Hence, llsing the symbol
of Riemann-Papperitz (see Hochstadt [3]), we can write h, as

0 1 -
ht)=P 20 a+(1/12)—v'D 1/2)—38a t|,
(1/3) + 2¢ a + (1/12) —v'D —3a

where
= (1/12)* + Bv/243 .
By a well-known transformation, we get
0 1 oo
hi(t) = 21 — t)y=r2+5pl 0 0 (T12) +v'D t|.
13 -2 D (@1/12)+ v D
Hence a pair of linearly independent solutions of (4.4) is given by
k() = e)F((7/12) + V' D, 1/12) + v'D, 2/3;t) ,
E(t) = v@)F((11/12) + V' D, (5/12) + v'D, 4/3;t)
in terms of Gauss’ hypergeometric function F(a, b, ¢;t) and
¢(t) — tm(l _ t)a+(1/12)+~/3 ,
m[r(t) — tza+(1/s)(1 . t)a+(1/12)+v/3 .

(4.5)

We put
a=T12)+vD, b=@1/12)+VvD, c¢=2/3.
Then
1—-¢=13, ¢c—a—b=—-2VD, b—a=—1/2.
Hence, by Schwarz’ theory, the inverse of the multi-valued map
-{0,1}—-C
which sends ¢ to k,(t)/k,(t) is single-valued, if (and only if) 2D is
written as
2v'D = x1/q,

where ¢ is either + or an integer greater than one. This last con-
dition means
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— 27(36 — ¢
(4.6) By = e

Note that E_he functions~ ﬁzst) and k,(t) appearirlg in th~e linearly independent
solutions (h,, h,) and (k,, k,) of (4.3), where h, and k, are given above, can
be given by
hy(t) = 8IN({E: — tyv N (dh,/dt) — 8lan(8t — 2)7h, ,
k() = 8I\(&* — t)v~(dk,/dt) — 8lan(3t — 2k, .
Next, for an unknown vector-valued function Y, consider the differ-
ential equation

4.7 dYy=YQ2,
where Q is given by (4.1). We show that linearly independent solutions
(hy, hy) and (k,, k,) of the equation (4.7) are given by

hy(t, N) = @, MF(7/12) + VD, (1/12) + V' D, 2/8;t),

hy(t, N) = 8IN(* — )Y (0h,/0t) — 8lan(3t — 2)Y7'h, ,

k(t, N) = ¥(t, MF((11/12) +v'D, (5/12) + V'D, 4/8;t),

k,(t, A) = 8In(t* — t)v " (0k,/ot) — 8lan(3t — 2)Y7 'k, ,

4.8)

where

P(t, N) = At (1 — t)r+u+D

P, ) = keat2u+(1/s)(1 _ t)a+(1/12)+‘/3 .
Indeed, the vector-valued 1-form d(k,, k,) — (h,, k,)2 vanishes on every
line L,, since h;]Lz = h,, hzle = h, and Qle — Q.. On the other hand,
this vector-valued 1-form vanishes on every line L; = {(¢, \)|¢ is constant},
since

6ad) 0
’ ’r __ A
@ =20lLi= 0 (6 + 1)dx |
N

Hence we identically have d(h,, h,) = (b, h,)2. In a similar way, (k, k,)
is also a solution of (4.7), which clearly is linearly independent of
(B ho).

Now, consider the multi-valued map

S:C*— {tNeCt#0,v=0,t+1}—>C*

which sends (¢, \) to (k.(t, N)/h,(t, N), h,(t, \)). We show that the inverse
S'-* of S’ is single-valued if (4.6) is satisfied and a = 1/6p for a non-zero
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integer p. Suppose the contrary. Then we may assume that, for distinct
points (¢, 1) and (¢, \)),
(ku(Ey M)[hy(E, N, By, W) = (R, ND/B(E, N), By, M)
Note that the function k,/h, = k,/k, is independent of A, (see (4.8) and
(4.5)). By the assumption (4.6), the equality &,(t)/k.(t) = k,(¢')/k,(t") implies
t =t’. Then we have h(t, \) = h,(t, \)). By (4.8), this implies A% = \"®,
If « =1/6p for a non-zero integer p, then \“? = )\Y», Hence A =)/, a
contradiction. Hence S'* is single-valued.
It is clear that if S’ is single-valued, then so is S~ on the set
S(P* — CUL., — {(x, y) eC?|lxy = 0}) .

By Lemma 1, S is locally biholomorphie. If there exist distinect points
(x, ¥) and (2/, 9¥') in P?*— CUL, such that S(x, ¥) = S, ¥’), then there
must exist disjoint neighborhoods U and U’ of (x,%) and (&, %¥') in
P? — CU L., respectively, such that (i) S(U) = S(U’) and (ii) S: U— S(U)
and S: U’ — S(U) are biholomorphic. Since the set {(z, ¥) € C*|zy = 0} is
nowhere dense in P?, there must exist a point (x, %,) in U (resp. (i, ¥:)
in U’) with xy, #0 (resp. zy, +# 0) such that S(x, y,) = S(xi, y1). Thus
St is single-valued on S(P* — CU L..), if S’ is single-valued. q.e.d.

Under the assumption of Theorem 3, we write
S~ (u, v) = (2, ¥) = (@(u, v), Y(u, v)) .

Then the functions «(u, v) and y(u, v) are automorphic with respect to
the monodromy group. That is, putting

a b
- (* )

for vyen,(P*— CU L., p,), where R:z,(P®— CU L., p,)— GL(2, C) is the
monodromy representation of the equation (3.2) with 2 as in (3.8), we have

x(au + bv, cu + dv) = x(u, v) and ylau + bv, cu + dv) = y(u, v) .
For example, if
a=1/6, 3=0 and v =09/2, (i.e., p=1, ¢q=6),

then, for a suitable choice of linearly independent solutions (f,, f.) and
(9,, 9,) of the equation (8.2) with 2 as in (8.8), the functions x(u, v) and
y(u, v) satisfy

o(Cu, —u + C) = o(—u, v) = «(u, v) ,

yCu, —u + &) = y(—u, v) = y(u, v) ,
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where

¢ = exp(2xV/ —1/6) .
(See (3.9) and (3.10).)

5. Branched finite Galois coverings. A branched finite covering of
a connected compact complex manifold M is, by definition, an irreducible
normal complex space X together with a surjective proper finite holomorphic
map 7: X— M. The sets

R, = {pe X|n*: Ourmn — Tx,» is not isomorphic} ,
B:r = ﬂ(th) ’

where 7y, is the local ring of germs at p of holomorphic functions, are
hypersurfaces of X and M, called the ramification locus and the branch
locus of w, respectively. For a non-singular point ¢ of B,, every point
p in ©7%q) is non-singular as a point of both z7*(B,) and X. Choosing
suitable local coordinate systems (z, :---, 2,) around p = (0, ---,0) and
(wy, *++, w, around q = (0, ---, 0) such that

TE_I(B,,) = {(zl’ D) zn)‘zn = 0} ’
B, = {(wv Tt wn)lwn = 0} ’

locally, we can write the map x locally as
T2 (Ry 00y 20) > (Wyy o0y W,) = (2 * 2y, 20)

for a positive integer e, which is constant on each irreducible component
C of n7%(B;,) and is called the ramification index of z along C. For any
irreducible hypersurface C’ of X which is not contained in n~%(B,), the
ramification index of = along C’ is defined to be one.

For branched finite coverings n: X — M and n': X' — M, a morphism
(resp. isomorphism) of m to =’ is a surjective holomorphic (resp. biholo-
morphic) map

p: X— X'

such that 7 = n’o@. The group G, of all isomorphisms of 7z to itself is
called the covering transformation group. z: X — M is said to be a Galois
covering if G, acts transitively on every fiber of =.

Let D; (1 £ j £ s) be distinet irreducible hypersurfaces of M. For
positive integers e¢; (1 < j < s), put

B=DuU---UD, (a hypersurface of M),
D=¢eD, + +++ +e,D, (a positive divisor on M) .
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A Dbranched finite covering z: X — M is said to branch along D (resp. at
most along D) if (i) B, = B (resp. B,CB) and (ii) for every irreducible
component C of 77'(B;), the ramification index of x along C is e¢; (resp.
divides ¢;) for 1 < j <s.

Denote also by ¢; (1 = j < s) the homotopy classes of the loops o;
defined in §2. (See Figure 1.) Let

J = <0'i’1, cee, o-:a>7fl

be the smallest normal subgroup of x,(M— B, p,) which contains %, - - -, o2s.
For the proof of the following theorem, see Namba [4].

THEOREM 4. There is a one-to-one correspondence w+— N = N(x)
between the set of all isomorphism classes of finite Galois coverings
w: X —> M which branch at most along D and the set of all normal
subgroups N of n, (M — B, p,) of finite index such that JCN. The cor-
respondence satisfies (i) G, = m,(M — B, p,)/N(z) and (ii) = branches along
D if and only if, for every j (1 < j =< s), the following condition for
N(z) is satisfied:

oieNx) if and only if d=0 (mode;).
We recall the following theorem of Selberg [5], (see also Borel [1]):

THEOREM 5 (Selberg). For any finitely generated subgroup I'(#{1})
of GL(r,C), there exists a mormal torsion free subgroup H (#I') of I
of finite index. ‘

Combining Theorems 4 and 5, we have:

THEOREM 6. Assume that (M — B, p,) is finitely generated. Suppose
that there exists a homomorphism R:z,(M — B, »,) — GL(r, C) such that
R(o;) has order e; for 1 £ j <s. Then we have a finite Galois covering
w: X — M which branches along D = e, D, + -+ + e,D,.

REMARK. If M = P~, then #,(P" — B, p,) is generated by o, :--, g,
and a finite number of their conjugates. M. Oka informed us that
w,(M — B, p,) is finitely generated in general, if M is a projective mani-
fold.

Now we apply Theorem 6 to the monodromy represention
R: n(P*— CUL., p,)—GL(2, C)

of the differential equation (8.2), where 2 is given by (3.8) and satisfies
the condition of Theorem 3. Suppose that q # + .
By (3.9) and (8.10), the orders of R(s) and R(z) are given by



DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE 405

ord R(¢) = ord R(¢’) = m,, ordR(z) =2|p|,

where m, is the smallest among positive integers m such that m/6p +
m/12 &= m/2q are integers. In particular, putting 8 =0 (i.e., ¢ = 1/6),
we have ord R(g) = 6 |p|. Thus we have:

THEOREM 7. For any positive integer k, there exists a finite Galois
covering w: X — P? which branches along 6kC + 2kL...

6. A generalization. For positive integers ¢ and b with a =2 and
a =b, let C be the closure in P? of the affine curve

{(, )| f(x, y) = &* — y* =0} .
For non-negative integers k and [, consider the following differential
equation
6.1) dYy =YY@,
where
o (adf/f Bx"w/f)
ve'wlf  odflf
for complex numbers a, 8,7, 0, ¢ and @ = yd® + xdy. Then 2 is holo-
morphic on P> — CUL,. As in Theorem 2, we have:

THEOREM 8. The equation (6.1) is of Fuchsian type if and only if
(i) e = —bja, (i) BA—(k+1)/a—1/b—a+4d) =0, (i) vA—-I+1)/a—1/b
+a—-0)=0,iVVEkZa—-2if B#0and V) IZa—-214f v+#0.

In particular, let us assume
B=0,v#0,a>b,l=0a—2 and a=1l/em,

where ¢ is the least common multiple of @ and b, and m is a positive
integer. Then we have the following generalization of Theorem 7.

THEOREM 9. Assume a >b. Then, for any positive integer m,
there exists a finite Galois covering mw: X — P? which branches along
em(C, + -+ + C,) + (e/a)mL.., where e is the least common multiple of a
and b, and C = C,U---UC, 18 the irreducible decomposition of C.
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