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1. Introduction and results. In this paper we study the L, -estimates for the
solution of the equations

u,+ Au=F,(u, 0u)+ F,(u), t>0,
1.D u(0)=a,
u=w!, ---,u®) (NeN)

in the (L,())"-space. Here Q is a bounded domain in R" with smooth boundary, or
R" itself (n>2). We assume that 4 is of the form

(1.2) A=—PL,

where L is the realization in (L,(R2))" of an elliptic operator of the second order (with

certain boundary condition if 0Q # &) and P is a bounded operator from (LP(Q))" into
the closed subspace (PL,(22))". The non-linear terms F; and F, of the types

( Fy(u, 0u)=PN(u, 0u) ,

Nl(u, au)= Z aijkuiajuk N

i,j,k
(1.3) @Gu=@u),j=1, -, mk=1,--,N),
Fy(u)=PN,(u),

N,(u)= Z bijkuiujuk >
ij.k

where a;; and b, are bounded functions, and 9;=0/0x; (j=1,2, - - -, n).

Our main purpose is to establish the L, -estimates for solutions to this system.
We know some examples of such a system in mathematical physics and differential
geometry (see Section 2). For the Navier-Stokes system, which is one of the typical
examples, the L, ,-estimates play an important role in showing the regularity of weak
solutions [2], [3]. Kato [4] and Giga [3] obtained such estimates for the system using
certain special feature of non-linear terms. We shall show similar results using only the
non-linearity (1.3). We shall also study an application of our results to the system of
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semi-linear heat equations having the non-linearity (1.3), because the gradient flow of
the Yang-Mills functional is described by such a system.

Before stating our results, we describe our assumption more precisely. We denote
(Lp({)))” simply by L,(£), and utilize other notation basically found in [7]. We assume
that the restriction of P to Cy(Q2) is independent of p, 1 <p< oo, and that the space
Co(2)n PL,(Q) is dense in PL(RQ).

A defined by (1.2) is assumed to have the following property: — 4 is an infinitesimal
generator of a strongly continuous semigroup {e~*4} simultaneously on PL (<) for all
pe(l, o) satisfying

(1.4) le™ ull o< C(p, g, n, Qt~a7"PR |y, o,
(1.5) o™ 4ull , o< C(p, g, n, @)t~ FHa=WP 2y g,

(I1<g<p<o, 0<t<T, Te(0, co]) for ue PL(L). Since our system is parabolic type,
the equation (1.1) can be converted into

[ u(t)=e""a+S,(u)+S,u),

(1.6) | Siw= ﬂe““”‘ﬂ(u(r), du(r))dr

S,(u)= f e CTIF (u(t))dr .

Our'examples in §2 below satisfy the above assumptions for T'=co.
We first establish the existence theorem.

THEOREM 1.1. Let a be in PL,(Q). Then there exists a positive constant A such that
if llall,o<A then there exists a unique solution to (1.1) satisfying

(1="P2y e BC([0, T); PL(R))  for n<p<ow,
1M 5y e BC([0, T); PLq(Q)) for n<g<o
with values zero at t=0 except w(0)=a in the case p=n.

ProOOF. The solution is constructed by means of a standard successive
approximation

ug=e "a,
(1.7)
um+ 1 =uO_*_ Sl(um)+S2(um) (m=0a 1’ 2a o ) .
Our result then follows from an argument analogous to that in [6, Theorem 2 (i)]. W

Let Q7:=Q2x(0,T). We would like to establish the L, -estimates for u and its
derivatives du. To begin with, we have the following:

ProPOSITION 1.1.  Assume that ae PL,(Q2) and that its norm is sufficiently small.
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Let py, p,, q, and q, be positive numbers satisfying the relations

1_(1 l)n 1_<2 1>n
a9 n o p/2’ UF) n o p)2’

with
n
max{3, n} <p; <3p,, ?<p2,
3 1 1
max{3,n}<q,, n<q,, ———<—,
P1 p2 n
and
1 1
—+—x<1.
P1 D2

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies
€Ly, 0, T; PL, (Q) =Ly, 4,(Q1) »
OueL,,(0,T; PL,(Q)<L,, (07,
and \ullp, 4,0, + 10Ul 5, 4,.0, 0 as llall, o—0.
To show this proposition we need the following lemma:
LemMa 1.1. Let p,, p,, q, r and s satisfy
1 1 1\n 1 1 1 1\n
P e R e
and
n s

+e)
D1, g, r>s>1, P>\ —+— .

Then we have
le ™ ull 5, 0.0 <C(P1, q, 5,1, Q) |t »

(1.8)
(1.9) 0e ™ ull,r.0r < C(p2r, 5,1, Q)lulls 0
for ue PL(Q).
ProorF. We find in [3] the proof of (1.8) by means of the Marcinkiewicz
]

interpolation theorem and (1.4). (1.9) is proved in a similar manner.

PROOF OF PrOPOSITION 1.1. We prove that {u,} defined by (1.7) satisfies

”um”Pl“IvaT + ”aum”IJZ‘QZ,QTS K,
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where K is a positive constant independent of m. Since u,, converges to u, we get the
first part of our assertions from this estimate.
First we have the estimate

I4oll .10+ 100l pr.g2.0r < Cllalln0

by Lemma 1.1 with s=n.
By (1.4) with p=p,, g=r, where 1/r=1/p, +1/p,, we have

t
ISl p,.0<C J (=) """ (Dl 0| O], 00 -
0
An application of the Hardy-Littlewood-Sobolev inequality [8, Corollary 1 of Lemma

7.1] gives us

"SI(um)”pl,q,,QT < C“um"pl,ql,Q-p“aum“pz,qz,QT .

Similarly we obtain
t
ISl p.0<C J (=) """ up(D)|| 3, ade
0

and

”SZ(um)”PI,qvaT < C ”um” 31vPvaT .

By suitable use of (1.5), we can get similar estimates for 4S;’s, i.e.,

t
108 (@m)llp,.0<C f (=) TR (D), 0| OO, 0
0

t
108 2(tm)l 50 < CJ (t—m)~ ORIy (7)) 3, odr -
o

These yield
IlaSI(um)”pz,qz,QT < C ”umllln,ql,QT"aum"pz,qz,QT ’
108 2(tm) |l p2.g2.02 < Clttmll 5, 0101 -
Summing up these estimates, we get

”um+ 1 "pl,q,,QT + ”aum+ 1 "pz,qz,QT
3
S Cl "a“n,ﬂ+ CZ(”um"pl,ql,QT"aum"pz,qz,QT + "um” pl,ql,QT) .

In the same manner as in [6, Lemma 3.3], we get the desired estimate if |all,q is
sufficiently small. It is easy to see |lull,, 4,0+ 104ll,, 4,0.—0 as llall, o—0 from the
above argument. B
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n+1
p1=q;=n+2, P2=——2 , qy=n+l

satisfy the conditions in Proposition 1.1, in view of our basic assumption # > 2. Therefore
we have:

COROLLARY 1.1. The solution u to (1.1) has properties
UELHZ(QT) s ouelL,,0,T; PL(n+1)/2(Q)) s
lulln+ 2,0+ 10Ul n+ 12,8+ 1,070 as |all,qo—0.
We are in a position to state one of our results.

THEOREM 1.2. Assume that ae PL (Q)n PL() (s> 1) and that | a|, q is sufficiently
small. Suppose p and q satisfy the relations

1 <1 1>n {n+l}
—=—]—, p>max{—-—, ¢,
q s p)?2 n—1
{n+1 }
g>maxq——, S, .
n

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies

and

ue L0, T; PL(Q))= L, (Qr) -
Proor. By Lemma 1.1, we get

4ol p.q.0r<Cllalsg-

Making use of (1.4), we obtain

t
1S:@)l,0< Cf (=) DYu(D)|| ol 0u(T) | ot 1)y2,047
0
and

”Sl(u)”p,q,QT <C "u"p,q,QT"au“(n +1)/2,n+1,071 *
Similarly we get

t

182l p,0<C J (=)~ 2N (@), ol u(T) |34 2, 0

0

and

1820 p.0.0r < Clullp g0, 1l 2+ 204207 -
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If ||al|,.q is sufficiently small, we then obtain the boundedness of the L, ,-norm for u
by virtue of Corollary 1.1. [ ]

For s> (n?+n)/(n*+n—-2),

_s(n+2)
2

fulfill the conditions in Theorem 1.2. Thus we have:

COROLLARY 1.2. If the hypotheses of Theorem 1.2 for s>(n*+n)/(n*+n—2) are
satisfied, then

UE Lisns 2)ym(0s T PL5(5 4 29n(82))  Ligin+ 2)n(Q71) »
ull s+ 20ym0r =0 as  lallno+llal;o—0

hold for the solution u to (1.1).

Making use of Corollaries 1.1 and 1.2, we get an esyimate for du.

THEOREM 1.3.  Assume that ae PL(Q)n PL(Q) (s>(n*+n)/(n*+n—2)) and that
llall,.q is sufficiently small. Let p and r be positive numbers satisfying

1 <1 1 1) n {n+2 <1 1)—1} {n+2 }
—=—+— =, p>max{——, | —+— s r>max{—-— S,
r n s p)?2 n n s n+1

and
1 1 1 ( n) 1 1
——<—| 24— )<—F—.
p n n+2 s p n

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies
6HGL,(0, T, PLp(Q))ch,r(QT) .

ProoOF. By (1.5), we have
”auo “p,r,Q-r < C”a”s,ﬂ )

and
t
0S|, 0<C f (t—7) VD) y(7) ||, 4 5,0l 0u(T) || 5 0 -
0

By virtue of Corollary 1.1,

“ aSl(u)”p,r,QT < C ” u” n+2,0r ” au”p,r,QT

holds.
Let s’ be a positive number satisfying
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3 2 1

!

N n N

Since s’ is between n and s, ae PL(Q) and s’ >min{n, s} > (n* +n)/(n* + n—2). It follows
from Corollary 1.2 that u€ L+ 23n(0, T5 PL(g(s+ 2(2)). By (1.5), we have

t
" aSz(“)“p,n <C j (t — T) —(1+(3n2)/(s'(n+2)) —n/p)/2 “ u(t) ” (SS’(” . 2))/n,gdr .
0

In view of our assumption
2
0<i<1 L n —i><1 ,
2 s'(n+2) p

108211 1,07 < Cllel Fn+ 29ym.0

by [8, Corollary 1 to Lemma 7.1]. Hence our assertion follows if |al|, g, is sufficiently
small. |

we get

2. Applications. In this section we study some applications of our theorems.

2.1 The Navier-Stokes system. The motion of incompressible viscous fluid in Q

(with fixed boundary condition) is described by the following system of equations, called
the Navier-Stokes system:

u,=Au—(u-grad)u—grad p,

divu=0,
(2.1.1)
ul)=a,
ul,o=0 if 0Q#.
Here, u=(u!, ---,u") and p represent the velocity and the pressure of the fluid,

respectively. Let X, by the closure in L,(®) of all C*-solenoidal functions with compact
support in Q. We define G, by

G,={f=grad ¢ |pe Wi(Q)}.
It is well-known that the Helmholtz decomposition
L(Q)=X,0G,

holds and that the projection P from L,(Q) to X, is a bounded operator (cf. e.g., [1]).
Applying P to both sides of the first equation of (2.1.1), we have

2.12) U+ Au= — P(u-grad)u ,
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where 4= — PA is the Stokes operator with domain
D(A)=PL(2n{ue Wi(Q)|ul,n=0if 0Q# &} .

We can check our assumptions with T=00 on 4 and on the non-linear terms
described in the previous section (see [4], [3]). Therefore we get the existence of a unique
solution u to (2.1.2) with initial value @ by Theorem 1.1 and the L, -estimates for u
and du by Theorems 1.2 and 1.3. Looking at the proof of Theorem 1.3 more carefully,
we find that the assumptions in the theorem

2 1 1 1 1 1
s>u, ———<—<2+£><——+—
n’+n-—2 p n n+2 s p n

are needed only for the estimate for [|0S,(u)| ..o, Since the term F,(u) does not appear
in the Navier-Stokes system, we can replace the above conditions by s > 1. Thus we have:

THEOREM 2.1. (i) Assume that a is in PL,(Q) and that its norm is sufficiently
small. Then there exists a unique solution u to (2.1.2) with initial value a satisfying

14 ~"Pi2y e BC([0, 0); PL(RQ))  for n<p<oo,
14 -"CDgy e BC([0, 0); PL(R))  for n<g<oo

with values zero at t=0 except w(0)=a in the case p=n.
(i) Assume that ae PL(Q)n PL(Q) (s> 1) and that ||a|, o is sufficiently small. Let
D1, P2> q and r be positive numbers satisfying

<1 1>n 1_<1+1 1>n
s p)2° r n s p)2°

1_
q
{n+1 } {n+1 } {n+2 (l 1)‘1}
py>max{—-— 8¢, g >max , S0, D, >max |\ —+— s
n—1 n n n s

{n+2 }
r>max{——, §;.
n+1

Then the solution u constructed in (i) has the properties
ueLy0, oo; PL, (Q)=L,, Q) ,
oue L0, co; PL, ()<L, (Q,) -

Kato [4] and Giga [3] already obtained similar results, using the special feature of
the non-linear term

and

(u-grad)u'=div(u'u) ,

whereas we do not need such a feature.
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The L, ;-estimates for the Navier-Stokes system give the criteria for the regularity
of weak solutions. For various regularity theorems on this system, the reader is referred
to [2], [3] and references cited therein.

2.2 Semi-linear heat equations. The second example is the simplest case 4= —A
(P=identity, A=Laplacian (with the Dirichlet condition if dQ # &&)), i.e.,

u,=Au+ N,(u, 0u)+ N,(u) ,
2.2.1) u(0)=a,
u|ag:0 if ag#g .

As is shown in [6], our assumptions on 4 are fulfiled for 7= co. Theorems 1.2 and 1.3
yield the regularity of the solutions which are constructed in Theorem 1.1. For simplicity,
Wwe assume ae ﬂ L(Q). For ¢€(0, 1), k, l€(0, 2), set

s=>n

_ n? _2n
P =k T Tra=e’
B n? _2n
P o=  TTI1=e’
S1=8,= n
1 2_1—8'

If 1 —¢ is sufficiently small, the conditions in Theorem 1.2 hold for (p, q, s)=(p;, 41, 51)
and those in Theorem 1.3 do for (p, , s)=(p;, q,, 5,). Hence we have N, (u, du)e L, (Q.,),
where 1/p=1/p,+1/p,, 1/g=1/q,+1/q,. If k+1 is sufficiently small, then p<gq holds.
Therefore N,(u, ou)e L,(Qr) is valid for any Te(0, ). For any 6>0, we take 1 —¢
and k+1 so small that p>(n+2)/(2+J) holds. We choose ¢ sufficiently small.

On the other hand, Corollary 1.2 gives us N,(u) e n,z(n +2y3L/(Q ). Therefore the
nonlinear terms belong to L,(Qy). A priori estimate of W2!(Qr)-type [7, IV, Theorem
9.1 or VII, Theorem 10.4] gives ue W2'(Qy) provided ae W2~ 2/*(Q). Using [7, 11,
Lemma 3.3], we have N,(u, ou)+ N,(u)e L,(Qy) for some p’>(n+2)/2, and therefore
ue W% (Qy) provided ae W2~ 2/P(Q). By the same procedure we obtain ue W2*'(Qy)
provided ae W2~2"(Q) for some r>n+2. By virtue of [7, II, Lemma 3.3] again, the
Holder continuity of non-linear terms follows from the Holder continuity of the
coefficients a;j, b;j;. Finally the Schauder estimate [7, IV, Theorems 5.1/5.2 or VII,
Theorems 10.1/10.2] gives the fact ue H**2%2+1(Q,) for some ae(0, 1) provided that
a is Holder continuous up to its second orderderivatives. Hence we have:

THEOREM 2.2. We assume that a;; and b, are Hélder continuous in 0., If abelongs
10 )2, W2 2%(Q), if |all,.q is small, and if it is holder continuous up to its second order
derivatives, then there exists a unique global classical solution to (2.2.1).
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ReEMARK. Looking at the above argument more carefully, we find that we can
weaken the assumption on a.

Using a standard bootstrap argument, we get:

THEOREM 2.3. Suppose that the hypotheses of Theorem 2.2 are satisfied and that

Qijus biji, a and 09 (if it exists) are C®-smooth. Moreover when 0Q # (5, we assume that
the compatibility conditions of any order hold between the initial and boundary data. Then
the solution is also C*.

2.3 The equations of Yang-Mills’ gradient flow. Let (@, dx?) be a smooth (=C®)
n-dimensional Riemannian manifold. E=(2 x R™, {, ) is a Riemannian vector bundle
over Q of rank m. € is the space consisting of all smooth metric connections on E.
For Ve %, we define the Hom(E, E)-valued 2-form RY, called the curvature, by

Rg,w = VVVW - VWVV - V[V,W]

for any smooth vector fields ¥, W on Q. The Yang-Mills functional #.# : €y—[0, 0]
is defined by the square integral of RY:

@J/[(V)=% J (R%,R">,.
(o]

We call V the Yang-Mills connection, if it is a critical point of the functional. To find
such a connection and to study its stability, we consider the flow
dv(t)

(2.3.1) ——~=—grad % .#(V(t)) .
dt

In [6], we studied the asymptotical stability of the flat connection V,, by reducing (2.3.1)
to certain system of heat equations. Taking the gauge invariance of the functional into
consideration, we put

V() =g(tXVo+A)g~'(t) ,
where A(t)e Qi(gg), g(t)e % (see [6, §1] for the definition of Q}(gz) and ¥). Then the
principal part of the right-hand side of (2.3.1) is
—o%°d™ A(t)+[Vo + A1), Y1),

where Y(t)=g~ !(t)dg(t)/dt, and  ¥° is a formal adjoint operator of the covariant derivative
d"°. This does not satisfy our assumption because of the lack of ellipticity. We impose
Yokotani’s idea [9] on ¢(t), i.e., it satisfies

dg(t)

(2.3.2) =9 Vod(r),  g(0)=identity .

This condition makes —d"°6V°A(t) of the term [V,,, Y(t)]. Since —(6Y°d%° +d"°5 Vo) =A,
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the principal part recovers the ellipticity, and (2.3.1) is reduced to the following system
of heat equations:

[ 20— A4+ LA, —3%A0] 5™ [A), A)

@33 |+ I A0dA 01+ 3[40, [4.0, 40T,

| 4),0=0 if0Q#Q,

where {e,},-1.... , is an orthonormal basis on T,Q. For the detailed derivation of above
system, the reader is referred to [9] and [5].

Our results are applicable to the equations (2.3.3). The global solvability and the
stability of (2.3.2) and (2.3.3) with the given initial data A(0) are established in [6,
Theorem 1], provided that the components of 4(0) belong to W1(Q) and 140, o is
sufficiently small. (It is enough to assume A(0)e L,(Q) to solve (2.3.3), but it is not
sufficient to solve (2.3.2)).

The Sobolev imbedding theorem gives the fact W1(Q)c N
can apply the argument of the previous subsection.

L (). Therefore we

s=n

THEOREM 2.4. If A(0) belongs to Wi(Q)n N s W27 H(Q), if | AO)|| . is small and
if it is Holder continuous up to its second order derivatives, then there exists a unique
global classical solution to (2.3.2)~(2.3.3). Moreover if A(Q) is C* and the compatibility
conditions of any order hold between the initial and boundary data in the case 0Q+ 3,
then the solution is also C®.

Proor. It is enough to see the regularity of g(t). This follows from the theorems
of regularity and continuous dependence on parameters of ordinary differential
equations. ]
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