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1. Introduction and results. In this paper we study the Lpq-estimates for the
solution of the equations

(1.1)

ut + Au = Fx(u, du) +F2(u\ t >0 ,

,uN) (NGN)

in the (Lp(Ω))N-space. Here Ω is a bounded domain in Rn with smooth boundary, or
Rn itself (n>2). We assume that A is of the form

(1.2) A=-PL,

where L is the realization in (Lp(Ω))N of an elliptic operator of the second order (with
certain boundary condition ΊϊdΩΦ0) and P is a bounded operator from (Lp(Ω))N into
the closed subspace (PL (Ω))N. The non-linear terms Fx and F2 of the types

(1.3)

N1(u,δu)= X a^d^,

(du — (djUk),j= 1, - - ,n; k=l,

(u) = /W2(u),

where aijk and bijk are bounded functions, and dj = d/dXj (j= 1, 2, •••,«).
Our main purpose is to establish the Lp^-estimates for solutions to this system.

We know some examples of such a system in mathematical physics and differential
geometry (see Section 2). For the Navier-Stokes system, which is one of the typical
examples, the L^-estimates play an important role in showing the regularity of weak
solutions [2], [3]. Kato [4] and Giga [3] obtained such estimates for the system using
certain special feature of non-linear terms. We shall show similar results using only the
non-linearity (1.3). We shall also study an application of our results to the system of
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semi-linear heat equations having the non-linearity (1.3), because the gradient flow of

the Yang-Mills functional is described by such a system.

Before stating our results, we describe our assumption more precisely. We denote

(Lp(Ω))N simply by Lp(Ω), and utilize other notation basically found in [7]. We assume

that the restriction of P to C0(Ω) is independent of/?, 1 </?<oo, and that the space

C0(Ω) n PLp(Ω) is dense in PLp(Ω).

A defined by (1.2) is assumed to have the following property: —A is an infinitesimal

generator of a strongly continuous semigroup {e~tA} simultaneously on PLp(Ω) for all

/?e(l, oo) satisfying

(1-4) \\e-tAu\\P,Ω<C(p, q, n, O ) r ^

(1.5) \\de-tAu\\P,Ω<C(p, q, n, fl)r(1+"'«-"'rt'2N|€.o ,

(1 <q<p<oo, 0<α< Γ, Γe(0, oo]) for uePLq(Ω). Since our system is parabolic type,

the equation (1.1) can be converted into

u(t) = e-tΛa + S

(")= Γe-i'-
JoU °)

Our*examples in §2 below satisfy the above assumptions for T= oo.

We first establish the existence theorem.

THEOREM 1.1. Let a be in PLn(Ω). Then there exists a positive constant λ such that

if \\a\\n,Ω<λ then there exists a unique solution to (1.1) satisfying

,(i -n,p),2ueBC^ Γ ) ; PLp(Q)) for n<p<oo,

td -n/(2q))duE BC(IO, T); PLq(Ω)) for n <q< oo

with values zero at t = 0 except u(0) = a in the case p = n.

PROOF. The solution is constructed by means of a standard successive

approximation

f uo = e~tAa,
(1.7) \ °

U 5 Ί ( ) ^ ( O ( Ή = 0 , 1 , 2 , •••)•

Our result then follows from an argument analogous to that in [6, Theorem 2 (i)]. •

Let Qτ: — Ω x (0, T). We would like to establish the L^-estimates for u and its

derivatives du. To begin with, we have the following:

PROPOSITION 1.1. Assume that asPLn(Ω) and that its norm is sufficiently small
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Let /?1? /?2, #i and q2 be positive numbers satisfying the relations

(
n pj 2 ' q2 \n p2) 2

with

max{3, « < 3p2

f, i 3 1 1
max{3, n)<q1 , n<q2, < — ,

Pi Pi n
and

Pi Pi

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies

ueLqμ,T;PLPi{Ω))^Lpuqί{Qτ),

dueLq2(0,T;PLP2(Ω))CLP2tq2(Qτ),

a n d MU,β.,Qτ+ll5 MllP 2, ί 2,eτ^0 ™ N L . Ω - 0 .

To show this proposition we need the following lemma:

LEMMA 1.1. Let pu p2, q, r and s satisfy

I-lYϋ-, λJλ+1-1
s pj 2 ' r \n s p2

and

ί\ l X " 1

\n s

Then we have

(1.8) \\e-tAu\\Pί,q,Qτ<C(Pu q, 5, n, β) | |n | | β f O ,

(1.9) \\de-tAu\\P2,r,QT<C(p2,r, s, n9 Ω)\\u\\,tΩ

foruePLs(Ω).

PROOF. We find in [3] the proof of (1.8) by means of the Marcinkiewicz

interpolation theorem and (1.4). (1.9) is proved in a similar manner. •

PROOF OF PROPOSITION 1.1. We prove that {um} defined by (1.7) satisfies
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where K is a positive constant independent of m. Since um converges to u, we get the

first part of our assertions from this estimate.

First we have the estimate

by Lemma 1.1 with s = n.

By (1.4) with p=pl9 q = r, where l/r= \/p1 + l/p2, we have

Jo

An application of the Hardy-Littlewood-Sobolev inequality [8, Corollary 1 of Lemma

7.1] gives us

Similarly we obtain

and

By suitable use of (1.5), we can get similar estimates for dS/s, i.e.,

These yield

Summing up these estimates, we get

\\um+ 1 Wpι,quQτ + W^Um+l \\p2,q2,Qτ

In the same manner as in [6, Lemma 3.3], we get the desired estimate if | |α | | Π j β is

sufficiently small. It is easy to see l|κ||Pl,βl f(*Γ+l|3κ|| l,2fβ2fQτ--»0 as ||tfL,β->0 from the

above argument. •
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satisfy the conditions in Proposition 1.1, in view of our basic assumption n > 2. Therefore

we have:

COROLLARY 1.1. The solution u to (1.1) has properties

ueLn + 2(Qτ), dueLn+1(0, T; PL(n + ί)/2(Ω)),

as \\a\\ntΩ-+0.

We are in a position to state one of our results.

THEOREM 1.2. Assume that a e PLn(Ω) n PLS(Ω) (s>\) and that ||a\\nΩ is sufficiently

small. Suppose p and q satisfy the relations

1 / I \\n
— = I—, /?>max

q \s p) 2

and

(n+ln

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies

ueLq(O,T;PLp(Ω))czLp,q(Qτ).

PROOF. By Lemma 1.1, we get

Making use of (1.4), we obtain

Jo

and

Similarly we get

\\S2(u)\\P,Ω<

and
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If \\a\\n,Ω is sufficiently small, we then obtain the boundedness of the Lpq-noτm for u

by virtue of Corollary 1.1. •

For s > (n2 + n)/(n2 + n - 2),

fulfill the conditions in Theorem 1.2. Thus we have:

COROLLARY 1.2. If the hypotheses of Theorem 1.2 for s>(n2 + n)/(n2 + n — 2) are

satisfied, then

U e ^(s(n + 2))/n(, \ (s(n

ll«ll(s(i.+2))/n,QT-^0 as \\a\\ΛtΩ+ |

hold for the solution u to (1.1).

Making use of Corollaries 1.1 and 1.2, we get an esyimate for du.

THEOREM 1.3. Assume that a e PLn(Ω) n PLS(Ω) (s > (n2 + n)/(n2 + n - 2)) and that

\\a\\ΛtΩ is sufficiently small. Let p and r be positive numbers satisfying

1 / 1 1 1 \ Λ ί« + 2 / I l \ - n
— = — + — , /?>max< , — + — >,
r \n s pj 2 [ n \n s J J

ί
r>max<

[n+l

1 1 1 / n\ 1 1
< 2 + — ) < — + — .

p n n + 2\ s J p n

Then the solution u to (1.1) which is constructed in Theorem 1.1 satisfies

dueLr(0, Γ,PLp(Ω))czLp,(Qτ).

PROOF. By (1.5), we have

\\duo\\PtrfQτ<C\\a\\StΩ9

and

o

By virtue of Corollary 1.1,

Jo

holds.

Let s' be a positive number satisfying
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3 2 1
— I

s' n s

Since s' is between n and s,ae PLS,{Ω) and sf > min{w, s] > (n2 + n)/(n2 + n — 2). It follows

from Corollary 1.2 that ueLis,(n+2))/n(0, Γ; PL ( s, ( w + 2 ) ) / π(Ω)). By (1.5), we have

+(3π2)/(s'(n + 2))-n/p)/2 ιι (\ ιι 3
ft

ΛW <C it —-

Jo

In view of our assumption

3n2

+
sXn + 2) p

we get

by [8, Corollary 1 to Lemma 7.1]. Hence our assertion follows if | |α | | n t f l is sufficiently

small. •

2. Applications. In this section we study some applications of our theorems.

2.1 The Navier-Stokes system. The motion of incompressible viscous fluid in Ω

(with fixed boundary condition) is described by the following system of equations, called

the Navier-Stokes system:

ut = Δw — (w grad)w — grad p ,

div w = 0,
(2.1.1)

u\dΩ = 0 if dΩφ0.

Here, u = (u1, •••,«") and p represent the velocity and the pressure of the fluid,

respectively. Let Xp by the closure in Lp(Ω) of all C°°-solenoidal functions with compact

support in Ω. We define Gp by

It is well-known that the Helmholtz decomposition

holds and that the projection P from Lp(Ω) to Xp is a bounded operator (cf. e.g., [1]).

Applying P to both sides of the first equation of (2.1.1), we have

(2.1.2) ut + Au = - P(u grad)w ,
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where A = — PA is the Stokes operator with domain

9{A) = PLP(Ω) n{ue W2(Ω) \ u \dΩ = 0 if dΩ Φ 0} .

We can check our assumptions with Γ = oo on A and on the non-linear terms

described in the previous section (see [4], [3]). Therefore we get the existence of a unique

solution u to (2.1.2) with initial value a by Theorem 1.1 and the Lp>(Γestimates for u

and du by Theorems 1.2 and 1.3. Looking at the proof of Theorem 1.3 more carefully,

we find that the assumptions in the theorem

1 1 1 / n\ 1 1
< 2 + —)< — + —

2\ )H2 + H - 2 ' p n n + 2\ sj p

are needed only for the estimate for \\dS2(u)\\PtrtQτ. Since the term F2(u) does not appear

in the Navier-Stokes system, we can replace the above conditions by s > 1. Thus we have:

THEOREM 2.1. (i) Assume that a is in PLn{Ω) and that its norm is sufficiently

small. Then there exists a unique solution u to (2.1.2) with initial value a satisfying

t{1-n/p)/2ueBC([0, oo); PLp(Ω)) for n<p< oo ,

td-n/(2q))due£C([0? QQ). PLq(Q)) far n<q<oo

with values zero at t = 0 except M(0) = a in the case p — n.

(ii) Assume that ae PLn(Ω) n PLS(Ω) (s>l) and that \\a\\ΛtO is sufficiently small. Let

Pu Pi> 4 and r be positive numbers satisfying

q \s pj 2 ' r \n s p2j 2 '

ί« + 7 } f/i + 1 ] ίn + 2 / 1
Λ , s > 9 ^>max< , ̂ >, /?2>max< , — I —

In— 1 J I n ) I n \n s
and

r>max

solution u constructed in (i) has the properties

ueLq(09oo;PLPl(Ω))c:LPitq(QJ9

dueLr(0, αo; PL

Kato [4] and Giga [3] already obtained similar results, using the special feature of

the non-linear term

(u grad)wf = div(w lu),

whereas we do not need such a feature.
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The Lp^-estimates for the Navier-Stokes system give the criteria for the regularity

of weak solutions. For various regularity theorems on this system, the reader is referred

to [2], [3] and references cited therein.

2.2 Semi-linear heat equations. The second example is the simplest case A = — Δ

(P — identity, Δ = Laplacian (with the Dirichlet condition if dΩφ0)), i.e.,

ut = Δw + Nx(u9 du) + N2(u),

u(0) = a,(2.2.1)

As is shown in [6], our assumptions on A are fulfiled for T= oo. Theorems 1.2 and 1.3

yield the regularity of the solutions which are constructed in Theorem 1.1. For simplicity,

we assume ae f)s>nLs(Ω). For εe(0, 1), k, /e(0, 2), set

n2 In

P l (

k) k(\-ε)

n2 In

1-ε

If 1 — ε is sufficiently small, the conditions in Theorem 1.2 hold for (p, q, s) = (pu qx, sx)

and those in Theorem 1.3 do for (/?, r, s) = (pί9 q2, s2). Hence we have Nγ(u, du) e Lp^Q^),

where l//? = ̂ //?i + l//?2> l/# = l /#i + l/#2 If fe-h/ is sufficiently small, then p<q holds.

Therefore Λ^w, du)eLp(Qτ) is valid for any Γe(0, oo). For any δ>0, we take 1—ε

and k + l so small that p>(n + 2)/(2 -f δ) holds. We choose δ sufficiently small.

On the other hand, Corollary 1.2 gives us N2(u)e[}r>(n+2)/3Lr(Qo0). Therefore the

nonlinear terms belong to LP(QT). A priori estimate of WlΛ(Qτ)~type 17, IV, Theorem

9.1 or VII, Theorem 10.4] gives ueW2

p

Λ(Qτ) provided aeW2

p~
2lp(Ω). Using [7, II,

Lemma 3.3], we have Nγ{u, du) + N2(u) e Lp,(Qτ) for some p'>(n +2)/2, and therefore

we Wy(Qτ) provided ae W2

pr
2lp\Ω). By the same procedure we obtain we W2Λ(QT)

provided ae W2~2/r(Ω) for some r>n + 2. By virtue of [7, II, Lemma 3.3] again, the

Holder continuity of non-linear terms follows from the Holder continuity of the

coefficients aijk, bijk. Finally the Schauder estimate [7, IV, Theorems 5.1/5.2 or VII,

Theorems 10.1/10.2] gives the fact w e # α + 2 ' α / 2 + 1 (2 ί ) for some αe(0, 1) provided that

a is Holder continuous up to its second orderderivatives. Hence we have:

THEOREM 2.2. We assume that aijk andbijk are Holder continuous inQ^. If a belongs

to f | s > Λ ^ s " 2 / W if \\a\\n,Ω is small, and if it is holder continuous up to its second order

derivatives, then there exists a unique global classical solution to (2.2.1).
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REMARK. Looking at the above argument more carefully, we find that we can
weaken the assumption on a.

Using a standard bootstrap argument, we get:

THEOREM 2.3. Suppose that the hypotheses of Theorem 2.2 are satisfied and that
aijk> bijk, a and dΩ (if it exists) are C™-smooth. Moreover when dΩΦ0, we assume that

the compatibility conditions of any order hold between the initial and boundary data. Then

the solution is also C°°.

2.3 The equations of Yang-Mills' gradient flow. Let (Ω, dx2) be a smooth (= C00)
^-dimensional Riemannian manifold. E=(Ω x Rm, < , » is a Riemannian vector bundle
over Ω of rank m. (€E is the space consisting of all smooth metric connections on E.
For V G #£, we define the Hom(£", E)-valued 2-form Rw, called the curvature, by

for any smooth vector fields V, W on Ω. The Yang-Mills functional WJi: #£-•[(), oo]
is defined by the square integral of Ry:

We call V the Yang-Mills connection, if it is a critical point of the functional. To find
such a connection and to study its stability, we consider the flow

(2.3.1)
dt

In [6], we studied the asymptotical stability of the flat connection Vo by reducing (2.3.1)
to certain system of heat equations. Taking the gauge invariance of the functional into
consideration, we put

where A(t)eΩl(QE), g(ήe9 (see [6, §1] for the definition of Ωέ(g£) and <$). Then the
principal part of the right-hand side of (2.3.1) is

where Y(t) = g~ i(t)dg(t)/dt, and δ v° is a formal adjoint operator of the covariant derivative
ί/v°. This does not satisfy our assumption because of the lack of ellipticity. We impose
Yokotani's idea [9] on g(t\ i.e., it satisfies

(2.3.2) Ά= -g(ήδ^A(t), 0(O) = identity.
dt

This condition makes -d*°δv°A(t) of the term [Vo, Y(t)]. Since -
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the principal part recovers the ellipticity, and (2.3.1) is reduced to the following system
of heat equations:

-δ*°lA(t\A(t)}

of heat equations:

• dA(ή

dt

(2.3.3)

where {eα}α = i, ..,π is an orthonormal basis on TXΩ. For the detailed derivation of above

system, the reader is referred to [9] and [5].

Our results are applicable to the equations (2.3.3). The global solvability and the

stability of (2.3.2) and (2.3.3) with the given initial data A(0) are established in [6,

Theorem 1], provided that the components of A(0) belong to W\(Ω) and M(0) | | Λ f β is

sufficiently small. (It is enough to assume A(0)eLn(Ω) to solve (2.3.3), but it is not

sufficient to solve (2.3.2)).

The Sobolev imbedding theorem gives the fact W\(Ω)ci ^\s>nLs(Ω). Therefore we

can apply the argument of the previous subsection.

THEOREM 2.4. IfA(0) belongs to W\ (Ω) n f| s > n W\ ~ V\Ω\ if || A(0) || ΠfO is small and

if it is Holder continuous up to its second order derivatives, then there exists a unique

global classical solution to (2.3.2)-(2.3.3). Moreover if A(0) is C 0 0 and the compatibility

conditions of any order hold between the initial and boundary data in the case dΩΦ0,

then the solution is also C 0 0 .

PROOF. It is enough to see the regularity of g(t). This follows from the theorems

of regularity and continuous dependence on parameters of ordinary differential

equations. •
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