Tohoku Math. J.
42 (1990), 475-516

ON SURFACES OF CLASS VII, WITH CURVES, I

Dedicated to Professor Friedrich Hirzebruch on his sixtieth birthday

Ixu NAKAMURA

(Received February 25, 1989)

Introduction. This paper is a continuation of [14]. A compact complex surface
is in class VII, if it is minimal and if its first Betti number b, is equal to one. We know
many examples of surfaces of class VII, (VII, surfaces, for short) with the second Betti
number b, positive [2]-[8], [15]-[18]. They are minimal surfaces with global spherical
shells [7]. Any minimal surface with a global spherical shell is a VII, surface
diffeomorphic to a blown-up primary Hopf surface and it is obtained as a smooth
deformation of certain singular rational surfaces [7], [15], [16], [17]. Some of them
have been characterized as VII, surfaces with certain kinds of curves on them [1], [13],
[14]. For instance, a hyperbolic (or parabolic) Inoue surface is characterized as a VII,
surface with a pair of cycles of rational curves (or a pair of a smooth elliptic curve and
a cycle of rational curves). Any VII, surface with b, positive which we know so far
has a global spherical shell and b, (possibly singular) rational curves, and a cycle of

rational curves (possibly with branches). So it might not be too bold to pose the following
conjecture:

CONJECTURE 1. For an arbitrary V11, surface with b, positive the following three
conditions are equivalent.

(1) It has a cycle of rational curves.

(2) It has at least b, rational curves.

(3) It contains a global spherical shell.

The implications from (3) to the others and from (2) to (1) are known (see (3.4)).
The implication from (2) to (3) was conjectured by Masahide Kato. When (2) is true,
the surface is referred to as a special VII, surface. The main purpose of this article is
to study special VII, surfaces and to give supporting evidences for the conjecture of
Kato. This might be viewed as a step towards an affirmative solution of the conjecture
of Kato. The consequences of this article were announced in [13, II]. See also [18].

The main consequences of this article are as follows: Let S be a VII, surface with
a cycle C of rational curves. Then the deformation functor of S is unobstructed and
the cycle C is deformed into a nonsingular elliptic curve in a suitable smooth family of
deformations of the surface S. If a small deformation of S has a smooth elliptic curve
which is an extension (a deformation) of the cycle C, it is isomorphic to either a blown-up
parabolic Inoue surface or (generically) a blown-up primary Hopf surface. We see:
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THEOREM. Any VII, surface with a cycle of rational curves is a global analytic
deformation of (hence is diffeomorphic to) a blown-up primary Hopf surface.

If moreover S is special, that is, if S has at least b, (possibly singular) rational
curves, then S has exactly b, rational curves and the weighted dual graph of the curves
is completely determined. More precisely we show:

THEOREM. Let S be a special V11, surface. Then the weighted dual graph of all the
curves on S is the same as that of the dual graph of the maximal reduced curve on a
minimal surface with a global spherical shell.

The above theorems support Conjecture 1 and the conjecture of Kato. Except in
some particular cases discussed in (2.1), S has a unique cycle of rational curves
with nonempty branches, and the maximal reduced curve of S is connected. Thus the
dual graph of curves is one of (3.8), (3.9), (4.2) and (4.11), which we call global spherical
graphs. See also [4, pp. 144, 145], [15, (3.2)]. In view of these consequences, we are led
to the following more precise conjectures.

CoNJECTURE 2 (Existence). Let A be an arbitrary global spherical graph with n
vertices, U a strongly pseudoconvex open surface whose maximal curve has A as its
weighted dual graph (or more precisely let U be a germ of a neighborhood of the maximal
curve). Then there exists a minimal surface with b, equal to n containing a global spherical
shell whose maximal curve (=the union of the n curves) has an open neighborhood
isomorphic to U.

CoNJECTURE 3 (Uniqueness). If two special V11, surfaces with equal positive b,
are isomorphic to each other on sufficiently small neighborhoods of their maximal curves,
then they are isomorphic globally. The local isomorphism near the maximal curves extends
to a global one.

Conjecture 2 will be discussed in a forthcoming article (part III in preparation).

This article is organized as follows: In Section 1, we recall some basic facts from
[10] and [14] and verify two vanishing theorems for obstructions H?*(S, @) and
H*(S, O4(—1log 0)), (1.2), (1.3). It follows from this that any cycle of rational curves
on a VII surface S can be deformed into a smooth elliptic curve by deforming S, (1.4),
(1.5). This also proves the existence, unique up to permutation, of a sort of an
“orthonormal” basis (referred to as a canonical basis) of H2(S, Z) which serves as a
fundamental tool in subsequent study.

In Section 2, we study expressions of cohomology classes of rational curves on S
in terms of the canonical basis of H%(S, Z).

In Sections 3-5, we study dual graphs of curves on a special VI, surface with b,
positive. Then we see that S has exactly b, rational curves and at least a cycle of rational
curves. We give a complete list of dual graphs of b, curves when S has a unique cycle
of rational curves with at least a branch, see (3.8), (3.9), (4.2), (4.11). When a special
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VII, surface S has a cycle C with no branches, then S is either a half Inoue surface
(6.1), or C*=0, or the surface S has another cycle of rational curves. See [1], [14, §6,
(8.1), (10.3)] for the last two cases. See also (2.1) and (6.3) in this article. In Section 5,
we construct minimal surfaces with global spherical shells so as to show that an arbit-
rary dual graph in the above list really appears on special VII, surfaces. See Figure
5.4 and (5.7)~(5.14).

In Section 6, we give a numerical characterization of Inoue surfaces with b,
positive. More precisely, we see that a VII, surface S is isomorphic to an Inoue surface
with b, positive if and only if the. Dloussky number DI(S) of S (roughly speaking, the
sum of (— 1) times the self-intersection numbers of all the curves on S) is equal to the
possible maximum value 35,(S).
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at Bonn University SFB 40 Theoretische Mathematik, and Max Planck Institut fiir
Mathematik in 1981-1982. He is grateful to Professor F. Hirzebruch and others at both
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Professor G. Barthel for his constant encouragement and interest in the subject.

NotaTiON. We use the usual notation in analytic geometry or the same notation
as in [14]. In addition to these, we use the following:
S, S*, X, Y compact complex surfaces.

b,(CO) the number of irreducible components of a divisor C.
¢, (D) the first Chern class in H*(S, Z) of De H(S, O%).
D~E ¢,(D)=c,(E) for D, E€ H'(S, O%).

[a, b] :={keZ, ask<b}.

A;, B, I see (2.9)-(2.10).

L, M, see (2.4), (4.1).

U; see (4.1), (4.6).

E#F see (5.7).

1. Smoothing a cycle of rational curves by deforming surfaces. First we recall
some basic facts from [10] and [14].

(1.1) LemMMA. Let S be a V11, surface with b,>0. Then
(1.1.1) %S, Q) =0 (g=0, 2), h(S, Q})=b,,
(1.1.2) KOS, mKg)=0  for m>0,

(1.1.3) KgE=0, —E?Z=0 for an effective divisor E on S. Moreover E*>=0 if and only
if E=0in H*(S, R),

(1.1.4) S has no meromorphic functions except constants and h°(S, L)< 1 for any line
bundle L on S.
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See [10, I, p. 755 & 11, p. 683] or [14, (2.5), (12.1)] for the proofs.
(1.2) THEOREM. Let S be a VI, surface with b,>0. Then H*(S, O5)=0.

PROOF. Assume the contrary to derive a contradiction. By Serre duality,
H(S, Qi(Kg))#0. Let D be the maximal effective divisor of S such that
HO(S, Q4(Ks—D))#0 and let  be a nonzero element of H(S, Qi(Ks—D)). By
definition, zero(w) is isolated.

(1.2.1) LeMMA. The following is exact:
0-04(—Ks+ D)79§—9>05(2Ks— D),
where f(a)=aw, g(b)=b A w.

Proor. Clearly f'is injective. Take be Ker g. Then b A w=0. Hence b=hw locally
for a germ & of a meromorphic function. Then pole(k) is contained in isolated zero(w),
whence 4 is holomorphic. Hence b is contained in Im f. q.ed.

We continue the proof of (1.2). Let H:=Coker g. Then supp(H) consists of isolat-
ed points, so that H4(S, H)=0 for any ¢>0. Therefore by taking the Euler-Poincaré
characteristics, we see by (1.1)

by=—x(S, 25)=—x(S, —Ks+D)— (S, 2Ks— D)+ x(S, H)
= —24(S, —Ks+D)+h°S, H)= —2K2+3KsD—D>*+h°(S, H) .

Therefore by —K3=b,, we have, b,+3KsD— D*+h°(S, H)=0. By (1.1.3), we have
K,D>0, —D*>0, so that b,=0, KsD=D*=h"(S, H)=0. This contradicts the
assumption b, >0. q.ed.

(1.3) THEOREM. Let S be a VI1, surface with a cycle C of rational curves, and let
E be a reduced effective divisor containing C. Then H*(S, @4(—log E))=0.

Proor. If S has another cycle or an elliptic curve, then the reduced effective
maximal divisor D of S is anticanonical [14, (2.8)+(2.12)+(6.1)+(6.11)]. Hence
h*(S, Og(—log D)) <h°(S, 21)=0. From this, the assertion of (1.3) for general E follows
immediately. So we may assume that S has a unique cycle C and no elliptic curves. We
apply an argument similar to the proof of (1.2). We assume H*(S, @4 —log E))#0 to
derive a contradiction. By Serre duality, H°(S, Q1(log E)(Ks)) #0. Let D be the max-
imal effective divisor of S such that HO(S, Q}(log E)(Ks—D))#0. Take w#0 in
HO(S, QL(log E)(Ks— D)). Then w has isolated zeroes. As in (1.2) we have an exact
sequence

S
0-O0y(— K5+ D) > Q4(log E)>QE+ Ks— D)= 052K + E—D)

where f(a)=aw, g(b)=b A w. Let F (resp. H) be Coker f (resp. Coker g). We see that
supp(H) is finite so that H4S, H)=0 for ¢>0. We consider exact sequences
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0—H°(S, — Kg+D)—HO(S, QL(log E))—» H(S, F)
(1.3.1) —HX\S, —Kg+D)—H(S, Qi(log E))—~H(S, F)
~HXS, —Kg+ D)~ HXS, Qi(log E))» H¥S, F)—0
0—HO(S, F)—H(S, 2Ks+ E—D)—H(S, H)
(1.3.2) ~HYS, F)>H\(S, 2K+ E—D)—0
—HX(S, F)~»HXS, 2Kg+ E—D)—0.

(1.3.3) LemMA. h'(S, Qi(logE))=b,—b,(E)+(C) where 6(C) equals 1 or 0
according as C*=0 or C*<0.

ProoF oF (1.3.3). By [14, (3.3)] the following is exact:
0-H(S, Q5(log E))»H(E, 0p)—~H'(S, Q§)->H'(S, Q§(log E))—0,
where E is the normalization of E. Let 6(C)=h°(S, Qi(log C)). Then (S, Qi(log E))=
8(C) where 8(C)=1 or 0 according as C?>=0 or C2<0 by [14, (3.3), (3.4)]. q.e.d.

Now we continue the proof of (1.3). We see h°(S, F)<1, h*S, —Ks+D)<1 by
(1.1) and (1.3.2). From (1.3.1)—(1.3.3) it follows that
by —b,(E)+6(C)=h*(S, —Kg+ D)+ h'(S, F)—2
=h'(S, — K5+ D)+h'(S,2Ks+E—D)+h°(S, H)—3
= — xS, —Kg+D)—x(S,2Ks+E—D)—3
>2b,+3KsD—3K,E/2—D*—E?2+DE-3,

42 b(E)+(KE +E2)/2—(Ks+E—D/2)? + 2K D — 3D?/4

by 8(C)< 1. Therefore by (1.1), 4= b,(E)+(KE + E?)/2.
Let E=C+H, H=),H; with H, irreducible. Since (Kg+C)®0s=0, is the
dualising sheaf of C, we have (Kg+ C)C =0. Therefore

by(E)+(KsE+E?)/2=b,(C)+ CH +b,(H)+(KsH+H?)/2=b,(C)+CH+ Y, H,H, .
A<v
Hence 4= b,(C). Take an unramified fivefold covering S* of S. Then S* is a VII,
surface with a cycle C* of rational curves, C* being the pull-back of C. Moreover,
H*(S*, Os(—log E*))#0 for the pull-back E* of E. Hence by the same argument as
above we have 4= b,(C*). However since b,(C*)=>5b,(C)=5, this is a contradiction.

q.ed.
(1.4) THEOREM. Let S be a V11, surface with a cycle C of rational curves, and let

E=C+ H be areduced divisor containing C. Then there is a smooth proper family n: & — A
with 7-flat divisors € and # of & such that



480 I. NAKAMURA

(1.4.1) (Lo, 6o, #0)=(S, C, H),
(142) #,=H  forany ted,
(1.4.3) w(:=my): €—A4 is a versal deformation of C.

PrROOF. Let U be a strongly pseudoconverx open neighborhood of C in S. We
prove that the canonical homomorphism

(1.44) H'(S, O4(—log H))-»H(U, @)

is surjective. By [14, (4.3)], H (U, @)= HY(C, Oy,®0)=H'(C, J.), where J.=
O5/O4(—log C). Consider exact sequences

(1.4.5) 0-04(—log E)-»Og(—log H)—»L—-0,

(1.4.6) 0->L->J.—>J/L-0,

where L:=0Og(—log H)/O¢—logE). It is clear that supp(Jo/L)=Cn H. Hence the
homomorphism H(C, L)—»H'(C, J.) is surjective. We have H%(S, @s(—log E))=0 by
(1.3), whence H'(S, O5(—log H))— H'(C, L) is surjective. Hence (1.4.4) is surjective.

This proves that the logarithmic deformation functor of (S, H) realizes any deformation
of U near C (see [9], [12]). q.e.d.

From [14, (12.3) or (12.5)] and (1.4) we infer:

(1.5) THEOREM. Let S be a V11, surface with a cycle C of rational curves. Then
there is a smooth proper family n: ¥ — A over a unit disc A with a n-flat Cartier divisor
€ such that

(1.5.1) (&0, €0)=(S, C),
(1.5.2) &, is a blown-up primary Hopf surface with a nonsingular elliptic curve €, (t #0).

Proor. If H((S, Z)=i,H,(C, Z), then the same argument as in [ 14, (12.3)] applies
because the assumption on the existence of E with EC>0 is used only for showing
H,(S, Z)=i ,H,(C, Z). So we are done in this case. If H,(S, Z)+#i,H,(C, Z), then S
is isomorphic to a half Inoue surface by [14, (9.2)], whence the assertion is true as is
well-known. See also (6.4). qg.e.d.

(1.6) CoOROLLARY. An arbitrary V11, surface with a cycle of rational curves is a
global deformation of (hence diffeomorphic to) a blown-up primary Hopf surface.

(1.7) CorOLLARY. Let S be a V11, surface with a cycle C of rational curves with
C?<0. Suppose that S is not a half Inoue surface. Then there exist complex line bundles
L;on S (1=<j=<n) such that

(1.7.1) Ej:=c,(Ly) (1=j<n)is a Z-basis of H*(S, Z),
(172) KsLj=—1, LL,=—0,,
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(1.7.3) C=—(L,41+ - +L,), Ks=L+ - +L, in H'(S, O¥) for some 1<r<n—1,
where n=>5,(S).

Proor. By (1.5), a general deformation &, of S is a blown-up primary Hopf
surface. Since S and &, are diffeomorphic, by pulling back to S the total transforms
of the j-th (—1)-curves on &,, we have a Z-basis E; (1<<n) of H*(S, Z) such that

(1.7.4) KsE;=—1, EjE,=-38,
(1.7.5) C=—(E, 1+ " "+E,), Ks=E,+---+E, in H%S, Z).

Since S is not a half Inoue surface, we have 0< —C? <n by [14, (9.3)]. Hence 0<r<n.

Therefore by choosing suitable line bundles L; (1 <j<n) with ¢,(L;)= E;, we have (1.7.2)

and (1.7.3) q.ed.

(1.8) ReEMARK. When Sis a half Inoue surface, the assertion in (1.7) is true with
(1.7.3) replaced by

(1.8.1) C=—(L,4;+ +L)+F,, Kg=L,+---+L, in H\S,O0%),

where F, is a line bundle of order two.

2. (Co)homology classes of curves.

(2.1) Let S be a VII, surface with a cycle C of rational curves. First we notice
b,>0. Indeed, if b, =0, then there are only elliptic curves but no rational curves on S
by [10, II, p. 699]. If S has an elliptic curve, then S is a parabolic Inoue surface by
[14, (7.1)]. If S has a cycle D of rational curves distinct from C, then S is a hyperbolic
Inoue surface by [14, (8.1)]. If C2=0, then S is an exceptional compactification of an
affine line bundle over an elliptic curve by [1]. If b,(C)=b,, and if C2<0, then Sis a
half Inoue surface by [14, (9.2)]. If C2< —b,, then C2= —b, and S is a half Inoue
surface by [14, (9.3)]. Under one of these additional assumptions, the structure of S is
in any case completely known. In particular, they all contain a global spherical shell

[7]. So we may exclude these cases in subsequent study. Summarizing these, we obtain
(and make) the following:

(2.2) PROPOSITION—-ASSUMPTION. Let S be a VI, surface with a cycle C of rational
curves. Assume that S is isomorphic to none of the above surfaces. Then,

(2.2.1) S has no curves of positive genus and no cycles of rational curves other than C,
(22.2) b,>—C% >0, by>b,(C),

(22.3) H(S,Z2)=H,C,Z)=Z, H'(S,C*»=H'(C,C*=C*,
where the isomorphisms are induced from the natural inclusion of C into S,

(2.2.4) any unramified finite covering n: S'—S is cyclic and n*C is a unique cycle of
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rational curves on S'.

See [14, (2.13), (9.2)] for (2.2.3) and (2.2.4).

In what follows, we assume that (2.2.1)-(2.2.4) are true. See (2.13). Let s=
b,(C), n=5b,(S), and let r and L, (1<i<n) be the same as in (1.7). We note 0<r<n
by (2.2.2).

(2.3) LeMMA. Let L be a line bundle on S. Suppose that L~a,L,+ - +a,L,
and a; + -+ - +a,>0. Then H%(S, L)=0.

PrOOF. Suppose H(S, L)#0. Then there is an effective divisor D such that
[D]=L. By (1.1) we have KgD=0. By (1.7), we get KsD=K;L=—(a,+ - +a,)<0,
which is absurd. q.e.d.

(24) LemMA. Let L;:=)Y, L, L=L,+F, Fe H'(S, C*) for a nonempty subset
I of [1, n]. Then we have:

2.4.1) If I#[1, n], then HY(S, L)=0 for any q.
2.4.2) If L®O- =0, then I=[1,r], and F=0g4,Kg— L+ C=0s.
(2.4.3) If LC;=0 for any irreducible component C; of C, then I=[1, r].

Proor. HO(S, L)=0by (2.3). If I#[1,n], then h%(S, L)=h°(S, Ks— L)=0by (2.3).
Hence by the Riemann-Roch theorem, A'(S, L)= —x(S, L)= —(—KsL+ L?)/2=0,
whence (2.4.1). Suppose LQOc= 0. Then 0=LC=L;C= —#(In[r+1, n]). Therefore

I'is a subset of [1, r]. Hence H(S, L)=0 for any ¢ by (2.2.2) and (2.4.1). By the exact
sequence

0-H(S, L—C)-»H°(S, L)-»>H°(C, Oc)
—H'(S, L-C)~»H(S, L)>H'(C, Oc)
—H*S, L—C)-»H?*S, L)~0,
we see H2(S,L—C)=H'(C,00)=C. Since Ks—L+C=L ,,—L,—F, we have
Ks—L+C=0s, I=[1,r], F=04 by (2.3). This proves (2.4.2). If LC;=0 for any
irreducible component C; of C, then L is contained in H'(C, C*). By (2.2.3), there

exists Ge H(S, C*) such that G.= L. Hence (L — G)®O0c= O, whence L—G=Ks+C,
F=G, I=[1, r] by (2.4.2). This proves (2.4.3). q.e.d.

(2.5) LeMMA. Let D be a nonsingular rational curve. Suppose D~a L+
-+-+a,L,. Then there exists a unique a; such that a;=1 or —2, a;=0 or —1 for j#i.

PrOOF. By (1.7.2) we see 0=KgD+D*+2=2-Y"_, (a}+a,). Hence a} +a;=2
for a unique i, and a?+a;=0 for j#i. q.ed.

(2.6) LEMMA. Let D be a nonsingular rational curve which is not contained in the
cycle C. Then D~ L;— L, for some i€[1,n] and Ic[1,n] with i¢l.
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Proor. Let E=C+D. Then by (1.4) there is a proper smooth family n: ¥ —4
over a unit disc 4 with 4-flat divisors € and 2 such that (¥, €, 2),=(S, C, D), 9,=D
for any ¢, and &, is a blown-up primary Hopf surface with a smooth elliptic curve %,
for t#0. Since any primary Hopf surface has at most elliptic curves which are
homologically trivial, D=9, is a proper transform of a (—1)-curve by repeated
blowing-ups. This implies that D~ L;— L, for some i and I with i¢ I. (Geometrically D

is on &, a proper transform of the i~th (— 1)-curve on which the j-th blowing-ups (je )

are repeated.) g.e.d.

(2.7) LemMA. Let D, and D, be distinct nonsingular rational curves such that
Dij~L,,— Ly, (4;¢1;, j=1,2). Then oy #a,.

Proor. If a, =a,, then D;D,=—1—#(I,n1,)<0, which is absurd. q.e.d.

(2.8) LeMMA. Let S be a (not necessarily minimal) surface with b, =1 having a
cycle C of rational curves, and let C; (1=<i=<s) be all the irreducible components of C.
Suppose that s=2 and for some 2<I<r,

(2.8.1) Ci~Li—Ljy— Ly (122l ji)ell, r], Aic[r+1,n]),

(2.8.2) Ci~ Y ayl, (+1Zi<s),

k=r+1
where we do not require C; to be in the cyclic order. Then we have a;,= + 1.

Proor. If s=1/, then (2.8.2) is vacuous and any irreducible component C’ of C
is of the form (2.8.1) so that there is nothing to prove. We assume s> /. Suppose by
(2.5) that there is an irreducible component C’ of C of the form —2L,— L, for some
i and I, hence of the type (2.8.2). Since s=3, there is an irreducible component C”
of C with C'C”"=1. Then C” is not of the form —2L;—L; because (—2L;,—
L)(—2L;—L;)=0. Hence C"~ L,— L, for some k and J with k¢ J. We have,

1=C'C"=—2L,L,— L, L,+2L.L,+L,L, .

Therefore either k#1i, kel, i¢J, InJ=F or k=i, k¢l i¢J, #(InJ)=1. In either case,
C” is of the form (2.8.2). In the first case, C'+ C"~ —2L;— L;\ (x}— L. In the second
case, C'+C"~—L,—2L;— L\ (j;— Ly, where {j}=InJ. In either case, C*:=
C'+C"~—=2L,— L, for some ae[r+1,n] and Ac[r+1, n] with a¢ A. If s=4, then
there exists an irreducible component C”” of C different from C’ and C” with C""C'? =
1. Then by the same argument as above, C" is of the form (2.8.2) and
C®:=C?P4+C"~—2L,— Ly for some be[r+1,n] and B<[r+1,n] with b¢ B. By
repeating the same argument, we eventually obtain a straight chain C¢~" of s—/ rational
curves contained in C such that C* "~ —2L,—L; for some ee[r+1,n] and
Ec[r+1,n] with e¢ E.

Since C is connected, C*~? meets one of C; (1<i</]). However C*"C;<0 by
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(2.8.1). This is a contradiction. q.e.d.

(2.9) LeMMA. Let S be a V11 surface with a cycle C of rational curves. Assume
(Ks+C)*< =2 and s:=b,(C)22. Let C; be an irreducible component of C. Then there
exist i and I such that C;~L;—L,.

ProoF. Let L=Kg+C=Ly ,. Then Lo=(Ks+ C)®O is the dualizing sheaf of
C so that L is trivial. Hence LC;=0 for any irreducible component C; of C. By (2.5),
this shows that by suitable indexing for L;,

(2.9.1) Ci~nLi—Lijy—Ly (1Si<1ji)ell, 1, dic[r+1,n]),

(2.9.2) Ci~ Y ayly, (I+1Zi<y),
k=r+1
where /<r. Since C=—~L,,, ,, We see that Zizl C; is a linear combination of L;
(r+1<j<n). Hence =0 or [=2. If /=2, then (2.9) follows from (2.8). So suppose
I=0 to derive a contradiction. If /=0, then L,C;=0 for any i by r>0, hence Ks— L, +
C~0 by (2.4.3). This implies that (Kg+ C)*= — 1, which contradicts the assumption.
q.e.d.

NoTATION. By (2.9), we write C;~L,—L, for a subset 4; of [1,n]\ {i}. Let
Ai=A;n[r+1,n], Bi=A;n[r+1,s],and ;=A4;n[s+1, n].

(2.10) LeMMA. Suppose (Ks+C)*< —2 and s:=b,(C)22. Then s=r=2. By
suitable indexing for L; (L,= L), we have

(2.10.1) C~L—L;_y—Lg—L,, (1=isr)
(2.10.2) Ci~Li—Lg—L,, (r+1=<i<ys)
(2.10.3) Inl,=g  for i#k and I,u---uvl=[s+1,n].

ProOF. We use the same notation as in the proof of (2.9). We have /=2 by the
proof of (2.9). Since C,+---+C, has no terms of L; (1<i<r), the set [1,/] is
decomposed into a disjoint union of Ry, - - -, Ry such that

(2.10.4) JRY)=R,  (1=k=N)
(2.10.5) no R, is decomposed into proper subsets with the property (2.10.4) where
J(R)={j(); ie R} and j(i) is defined in (2.9.1).

By suitable indexing for L; we may assume R, =[1,7] ("<I<r). Let L'=Lg,.
Then L'C;=0 for any i€[1, s] by (2.9.1), (2.9.2) and (2.10.4). Hence by (2.4.3), we get
R,=[1,r], r=r=122, N=1. This shows that we may assume j(i)=i—1 (1<i<r) by
suitable indexing for L;, where we may view j(1)=0=r. Hence in particular, s>r. The
assertions (2.10.1) and (2.10.2) are thus proved. (2.10.3) is clear from (1.7). qg.ed.

(2.11) LeMMA. Let the assumptions and notation be the same as in (2.10). Assume
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s>r. Then there is je[r+1, s] with B;=J.
ProoF. By (2.10), r=2. First we show the following:

(2.11.1) SUBLEMMA. There exist je[r+1,s], and i, ke[1, s] such that C;,C;=
CiC,=1, C;C,=0 (I#1,], k), and that B;n B, contains j.

PROOF OF (2.11.1).  Since s>r, there is a connected subcurve C"=C; +---+C;
of C such that j,e[r+1,s] and that C"(C;+---+C,)=2. We may assume
C;Ci..,.=1 (1£k<m-1), and C;C;, =0 (otherwise). Hence there exist i, and i, in
[1, r] such that C; C;,=C; C;,=1, C; C;=0 (otherwise). Let C;~L;—L,, (1<j<5s).
Since 4;, n[1, r]= by (2.10.2), C;,C;, =1 implies that 4; 3j;, A; nA4; =.

We now prove that there exists j, (1 Sa<m) such that both 4; _, and 4;_, contain

J»» Where jo=i; and j,.,=i,. If 4;, contains j;, then we can take a=1. If 4,3/,
then 4;, 5, by C;,C;,=1. By repeating this argument, we either obtain a (Sm—1) such
that 4; 3j, (1£k<a) and 4; , ,3j,, or we have A;3jcs, 4, ,3ji for any
k (£m—1). In the second case, since C;, C;, =1, we have either 4; 3i, or 4;,3j,,. Since
A; n[1, r1= & by (2.10.2), we have 4;, 3 j,,. Hence we may take a=m. (2.11.1) is proved
by taking i=j,_, j=j, and k=j,+,.

The following is easy to see:

(2.11.2) SuBLEMMA. (i) Ae[r+1,s] if and only if A€ A; for exactly two i
(1Ziky).

(i) A¢[r+1,s] if and only if A€ A; for a unique i (1Zi<5s).

Next we prove:

(2.11.3) SUBLEMMA. Let i, j, k be the same as in (2.11.1). Suppose B;# . Then
there exist 1y, - -, I, in B; such that

Ain Ay, ={l+1}, C,~L,—L,, —Lyg, (1=shsm),
where lm+1=ll’ A;;.:Al;,\{lh+l}a lh:’éi’ja k, and Al;.n[la r]=Q

Proor oF (2.11.3). Take /; from A;n[r+1,s]. Then [, #i, k. Indeed, if [, =i,
then B; contains j by (2.11.1), and #(B;n B;)=1 by C;,C;=1, hence C;+ C;j~ —2L,— L,
for some v and J. By deforming S, we obtain a cycle C*, one of whose irreducible
component is C;+ C;~ —2L,— L; homologically. This is absurd by (2.8). If /; =k, then
by the same argument we derive a contradiction. Hence /, #1, k, and B;31i, k.

Hence C;C;, =0, so that —L,L,,—L, Li+L,L, =0. By (2.11.2) and by
jeAnA,, we have A, $j. Hence {/,}=A4;nA, for some [ e[r+1,s], since
Ay n[1,r]=F by (2.10.2). Clearly [, #1,, i, k. We note j¢ 4, by (2.11.2). By C;C,,=0,
we have #(4;n A,,)=1. Hence A;n 4,,={l,} or {/;}, where I3 #1,, [,, i, k. Repeating this
argument, we eventually obtain /,, - - -, [,€ A;n[r+1, 5] such that (2.11.3) holds.

q.ed.
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(2.11.4) SuUBLEMMA. Suppose B;# J. Let C; be an irreducible component of C
with C;C,=1. Then A=1,_, or A€ B,,.

Proor. By the proof of (2.11.3), we have B;3i,k and /,#i, k. Thus C;C, =0,
whence A#j. Supose 4#1,_,. Then since ,e A;n A, ,, we have ,¢ A, by (2.11.2) so
that

1=C,C,=(Li— L)Ly, — Ly )=—L;Ly, +Ly,Ly, -
Thus Ae 4, ,n[r+1,51(=B,,) and A;n A4, = by 4, n[1,r]=¢. q.e.d.
(2.11.5) SUBLEMMA. Let j be the same as in (2.11.1). Then B;= .

PrOOF. We prove this by induction on §(S):=s—r=35(S)—r(S)=b,(C)+(Ks+
C)?. If s=r+1, then B,=@ by (2.10) and s¢ B,. Next we assume that s>r+1 and
that (2.11.5) is true for §(S)<s—r—1. Assume B;# ¢ to derive a contradiction. By
(2.11.3), we choose /,. Suppose C;C;, =1. By (2.11.4), we may assume A=/, or Ae B, .
IfA=1l,,thenC,,+ C;~L, —L,,—L,forsome A.If Ae B, ,thenC, +C;~L, —L;,— L,
for some A'. By deforming S suitably, we have a (not necessarily minimal) surface &,
with b,(&,)=1and acycle 4,=%;+(C— C,, — C,), ¢, being a nonsingular rational curve
for t#0, €, = C;, + C,. In this situation, C, (1<h<r) survives on &,. However if A=/,
(resp. A€ By)), then there is no irreducible component of %, homologically equivalent
to L, — L, (resp. L,—L,) for any A’. This implies that the index sets B; and [1, s]
are changed into B;\ {/;} and [1, s]\\{/;} (resp. B;\\{4}) and [1, s]\ {4}) on &,. If
A#i, k (resp. A=1i), then C;,C;=C;C,=1, C;¢;=C;C;=0(resp. C;6,=C;C,=1, C;C,=0)
on &, for [#i,k, 1,1, and the condition in (2.11.1) for &, is satisfied. The case
A=k is similar. We note 6(&¥,)=s—r—1<4(S). By the induction hypothesis on #,,
either B;\\{/,} or B;\ {4} is empty. This implies #(B;)=1, which contradicts (2.11.3).

q.e.d.

(2.12) LeMMA. Let D; be irreducible curves not contained in C.

(2.12.1)  Suppose Dj~L;—L,, (1=j<l,1=k;<m). Then ISm—1. If I=m—1, then
D;_D;=12=<j<m—1), and D;D;= —26,; (i#j+ 1) by suitable indexing, and moreover
either Dy~L,—L,, and D;~L;—L;_; 2<j<m—1) or D;~L;—L;,, (15jsm—1).
(2.12.2) Supposse Dj~L;— Ly, Q<j<L, 1=k;<m). Then ISm+1. If I=m or m+1,
then D;_,D;=1(2=<j<!), D;D;= —20;; (i#j+ 1) by suitable indexing. If I=m+1, then
2gjg!l-1) and D,~L,—L,.

Note that each of the two cases in (2.12.1) /=m—1 as well as those in (2.11.2)
/=m is reduced to the other by suitable indexing for L;.

PrOOF OF (2.12.1). If there is a pair of i and j such that k;=k;, then D;D;<0,
which is absurd. Hence k;#k; for i#j so that /[Sm. If I=m and k;#k; for i#j, then
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D+ -+ D,~0 which contradicts (2.2) by [14, (2.10)].

Assume /=m—1. Let {ky, -, k,,_,}=[1,m]\{a}. Then D, +---+D,~L,—L,
whence m#a. We have

—2=(Dy+ - +D)’=-2m—1)+2 ), DD;.
i<j
Hence ZKJ.D,.DJ:m—Z. This shows that D, + - - - + D, is connected by (2.2.1). Take
mutually distinct j, A, v, ue[1,/]. Then D,+D,+D,~L,—L;, where #I=#J<3,
InJ=¢J. Hence

DiD;+D,+D,)=(L;— L (L;—Ly)S —L;L;,— L, L;<2.

This shows that D, +---+D, is a straight chain, that is, D;_D;=1 (2<j<1),
D;D;= —2¢;; (otherwise) by suitable indexing. Then if 1<a<m—1, then we have
k,=a—1by D,_,D,=1, while k,=a+1 by D,D,,,=1. This is absurd. Consequently
a=1 or m—1. The rest is clear.

PRrOOF OF (2.12.2). By the same argument as above, k;#k; for i#j, and ISm+1.
If I=m+1 or m, then ), D;D;=1-2. It follows that D,+---+D, is a connected
straight chain of (—2)-curves, thatis, D;_,D;=1(2<j<!), D;D;= —2;; (otherwise) by
suitable indexing. One sees readily that if /=m+1, then D;~L;,—L;_; 2<j<]). If
l=m, then either D;~L;—L;_, 25j<!l) or D;~L;—L;,, 2£j</-1) and D;~

L—L,: q.ed.

(2.13) DeriNITION. A reduced connected divisor D is called a branch of the cycle
C if CD=1 and if D has no components common with C.

In the rest of this section, we consider the case where C has at least a branch, for
instance, and a nonsingular rational curve D with CD=1. If a V11, surface has a cycle
of rational curves with branches, then it satisfies the conditions (2.2.1)-(2.2.4).

(2.14) LeMMA. Let S be a VII, surface with a rational curve C with a node.

Suppose that there is a nonsingular rational curve D with CD=1. Then by indexing L;
suitably, we have

C=—(L,+---+L), D~L,—L,.
Proor. By (1.7) we may assume
C=—(L, 1+ -+L), Ks=L+---+L,, 1=r<n—1.
Assume that D~a,L,+ - +a,L, with CD=1. Then we have 1=CD=aq,,+ -+

a, By (2.5), (a,+4, "+, a,)=(1,0, -, 0) up to permutation. Since D>*< —2, there is a
nonzero a; (1<j<r). We may assume a; #0. Since L,C=0, we get r=1 by (2.4.3).
Thus D~L,—L, 2=<i<n). q.e.d.

(2.15) LeMMA. Let S be a V11, surface with a cycle C=C,+ C, of two rational
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curves. If (Ksg+C)*< —2 and if there is a nonsingular rational curve D with C;D=0,
C,D =1, then by indexing L; suitably. we have

C=—(Ls+ --+L), C,~L,—L,—L;, Cy;~L,—L—L,,

as well as either D~L,—L, and icl, or D~L,—L,—L, and ieJ, where InJ=(J,
TuJ=[3, n], n=>5,(S). :

Proor. By (2.9), we may set C;~L,—L,, C,~L,— L, for some I’ and J' such
that 1¢1’,2¢J’, Since C,C,=2,wehave2=—L,L; —L,L;.+ L, L,.HenceleJ',2¢el’
and I'nJ'=(. By setting I=1"\{2}, J=J'\ {1}, we obtain the expressions for C,
and C,.

Let L'=L;+L,. Then L'C,=L'C,=0. Hence r=2 and TuJ=[3, n] by (2.4.3). Let
D be a nonsingular rational curve with C,D=1. By (2.6), we have D~ L;— L , for some
iand A. By (2.7), i=3. By C,D=0, C,D=1, we have

(2.15.1) —LL,—L,L,+L,L,+L,L,=0,
(2.15.2) ~LL,+L,L,—L,L,+L,L,=1.

From (2.15.1)+(2.15.2) and ie Iu J, it follows that (L, + L;)L,=1+(L,;+ L;)L;=0.
Thus L,L,=L,L,=0, whence InA=Jn A= . Consequently, A is a subset of {1, 2}.
If A={1}, then

C2D=(L2“L1—LJ)(Li—L1)= -1 —LiLJ§0 s

which is absurd. Hence A={2} or {1, 2}. The rest is clear by (2.15.1) and (2.15.2).
g.ed.

(2.16) ExaMmpLes. Let S be a VII, surface with b,=2 or 3 containing a global
spherical shell. Suppose that there is a cycle C=C;+---+C, with a branch
D,.;+ - +D,, on S. Then by [4], [8], [15], [16] the dual graph of curves on S is
given in Figure 2.16 below. '

In Figure 2.16, a black vertex (resp. a white vertex) denotes a rational curve with
a node (resp. a nonsingular rational curve). An edge stands for transversal intersection
at a point, while a double edge stands for transversal intersection at two distinct points.
Each integer below a vertex denotes the self-intersection number of the corresponding
curve.

By (2.6), (2.14) and (2.15) we can express the curves C; and D; in terms of a
canonical basis L,, L, (and L,) as follows:

(2.16.1) ' C=-L,,D,~L,—L,,
(2.16.2) C=—L—L,,D,~L—Ly,Dy~L,—L,,
(2.16.3) C,~L,—L,,Cy~L,—L,—Ly,Dy~Ly—L,—L,,

(2.16.4) C1~L1_L2—L3,C2~L2—L1,D3~L3_L2.
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The cycle C consists of two rational curves C, and C, in (2.16.3) and (2.16.4),
while the cycle consists of a single rational curve with a node in (2.16.1) and (2.16.2).
We note that the two cases in (2.15) are really possible as (2.16.3) and (2.16.4) show

and that (2.16.1)—(2.16.4) exhaust all the possible dual graphs of b, (<3) curves on
special VII, surfaces.

e——oO ®e——O0—0 o O——0 O=——0—90
—1 -2 -2 -2 -2 -2 -3 -3 -3 -2 -2
FIGURE 2.16

(2.17) LeMMA. Let S be a V11, surface with a cycle C=C,y + - - - + C, of s rational
curves (s=3). Suppose that (Ks+ C)?> < —2 and that there is a nonsingular rational curve
D with C,D=1 and C;D=0 (j#h). We choose a canonical basis L; subject to
(2.10.1)«2.10.3). Let D~ L,— L, and a€l, for some o, A and Il. Then

217.1) 1£h<r,1ZI<r and Ac[l,r],
[1,r] if I=h,
2172) A=1il[h1-1] if h<I<r,
[h,AQull,I—-1] if 1=I<h;
(2.17.3) If A=[1,r], then D is a unique irreducible branch of C.

Proor. By (2.6), let D~L,—L,. Then a=s+1, and a¢A by (2.7). Thus
1=CD=—L,, y(Ly—Ls)=1+Ly .y L4 whence [r+1,n]nA=F. Therefore A is
a nonempty subset of [1,r]. There is a unique he[l,s] such that C,D=1. Then
C;D=0 for any j#h.

We now prove 1 <h<r. Suppose r+1<h=<s. Since C,D=1 and h¢ A=[1, r], we
have

1= (Lh - LB;. - LI,.)(La - LA) =—- Lzle;. + LB,.LA .

Hence ael, and B,nA=F. By (2.10.3), a¢l; (j#h). Since C;D=0 (j#h), we have
L,C;=L,C;—DC;=—L,L;,—DC;=0. On the other hand, L,C,=L,(L,—L,)=0.
Therefore A=[1, r] by (2.4.3). Let n: S’—S be an unramified double covering of S,
and let n*L;=L}+ L}, n*C;=Cj+C}, n*D=D'+D". Then L and L} (1=j<n) form
a canonical basis of H2(S’, Z). Moreover,

*C= "Lir+ 1,n]_L’[/r+1,n] > KS’=TC*KS=LE1,n]+LEl1.n] .

Hence Ky +n*C=L{; 4+ L, ;. We may assume D'C,=D"Cy=1. By the same argu-

ment as above, letting D'~ L, —L;— LY, we get Lj+ Lj=L;, ,+L{, ,;, whence (D')*=

—2r—1. This is absurd because (D')>*=D*= —r—1, and r>0. Thus 1 <h<r.
Suppose />r next. Then by C;D=0 and (2.10), we have



490 I. NAKAMURA

0=(L—Lp,— Ly )(L,—Ly)=—L,L;+LpLy=1,

which is absurd. Thus we complete the proof of (2.17.1).

Assume /=h. Then ael,. By C,D=1, we have 1=—-L, L, —L,L,+Lg L,. Hence
L,C,=0and L,(L,—Lg,—L;,)=0. Since a € I,, we see that I; (j#h) does not contain a.
Therefore for j#h,

LACj=(LA + D)Cj= La(Lj_ LB,-_LIj) =- LaLIj =0.

By (2.4.3), we have A=[1, r].

Assume next h</<r. Then from C,D=1 it follows that heA, h—1¢ A and
B,nA=¢J. (Here if h=1, then h—1¢ A means r¢ A.) By C;D=0 for h+1=<j<[-1,
we have j— 1€ A if and only if je A. This implies that A contains [4, /—1]. Similarly,
j—1€A if and only if jeA for I+1<j<r or 1<j<h—1. Hence A=[h,I—1]. If
h>l, then A=[h,rJu[l,/—1] by the same argument. This completes the proof of
(2.17.2).

Finally we prove (2.17.3). Assume that D~L,—L;; ,; and that there is another
irreducible curve D' with CD’'=1. Then by (2.17.1), we see that D'~L;— L for a
nonempty subset I' of [1, r]. Hence DD’ =L;; ,Lr= —#(I")<0, which is absurd.

g.e.d.

(2.18) CoroLLARY. Let S be a VII, surface with a cycle C of rational curves.
Then for any irreducible component C; of C (1 Li<r), there exists at most one irreducible
branch D of C with C;\D=1.

Proor. We assume (Kg+C)2< —3 and b,(C)=3. Suppose that there exist two
irreducible curves D, D’ such that DC,=D'C,=1. Then by (2.17), wesee that D~ L, — L 4,
D'~ Lg— L for some «, e[s+1,n], and A4, I'<[1,r]. By (2.17.2), AnT contains h,
whence DD'=L,L;<0, This is absurd. If (Kg+C)*= —2 or b,(C)<2, then take a
triple covering S§* of S. By the above, any irreducible component C¥ of the pull-back
C* of C has at most one irreducible branch, hence so does any irreducible component
of C. q.ed

3. Dual graphs of curves (1).

(3.1) LeEMMA. Suppose that there exist a positive integer m, an effective divisor
D and a flat line bundle F such that mKg+ D=mF. Then D, 4 is connected, and D4
contains a cycle of rational curves.

PROOF. Suppose m=1, F+# Og. Then p,(D)=(KsD+ D?)/2+1=1, whence by [14,
(2.7)], D,.q4 contains a cycle C of rational curves. Let E be a connected component of
D containing C. Consider the exact sequence
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0->H(S, F-D)->H'(S, F)-H°(D, O,(F))
—~H(S, F—D)->H(S, F)»H(D, On(F))
—H*S, F—D)-»H?*(S, F)-0.

By (2.2) and [14, (2.10)], we have H°(S,F)=0 and H(S, —F)=0. Hence
h*(S, F)=h(S, Ks— F)=h°(S, —D)=0. By the Riemann-Roch theorem, we have
H(S, F)=0. Hence h'(D, Op(F))=h*(S, F—D)=h°(S, Ks+D—F)=1. Let E' be a
connected component of D 4 with E‘'nC= . Then E’ is simply connected by (2.2).
Therefore the line bundle F is trivial on a small neighborhood of E’. Hence
HY(D', Op(F)=H'(D',0p)=0 for any divisor D’ with supp(D’)=E’. Hence
HY(D, Op(F))= H(E, Og(F)) for some EXD with E,4 connected. Now consider the
exact sequence

0—H(S, F— E)~H®(S, F)—»H°(E, O4(F))
—HY(S, F— E)>H'(S, F)»H(E, O4(F))
—>HXS, F— E)»HXS, F)-0.

Hence h°(S, —D+ E)=h°(S, Ks+ E— F)=h*(S, F— E)=h\(E, Og(F))=1. This shows
that D= — D"+ E for an effective D”. Hence E=D, D" =0 and D, is connected.

Assume next m=1 and F=0js. It follows easily from [14, (2.6)] that A*(0p)=2.
Let E be a connected component of D, E, 4 containing a cycle of rational curves. If
h'(0g)=1, then h'(Og)=1 for G:=D—E. By [14, (2.3)], G contains an elliptic curve
or a cycle of rational curves, a contradiction to (2.2). Hence h'(Og)=2. Therefore
h°(S, Ks+ E)=h*(S, —E)=1 by [14, (2.8)], whence — D + E is effective (or zero). This
shows that E=D, and D is connected.

Next we consider the case m>1. Consider an m-fold cyclic covering
X={(, x)e —Ks+F;{"=d(x)} of S where { (resp. d(x)) is the fiber coordinate of
— K+ F (resp. a defining equation for D). Take a minimal resolution Y of singularities
of X. Let Z be the minimal model of Y. Then by the same argument as in [14, (12.4)]
we can show that Y is a surface with b; =1 and Ky= — H+ G for an effective H and a
flat line bundle G on Y, and that Z is a VII, surface with K, = — H' + G’ for an effective
H'’ and a flat line bundle G’ on Z. By the above argument in the case m=1, it follows
that H’ is connected.

Let A be an exceptional curve on Y with 42= —1. If 4 is contained in H, then the
number of connected components of H is stable in blowing 4 down. If 4 is not contained
in H, then by Ky4A= —1, we have H4A =1. Hence the number of connected components
of H is stable in blowing 4 down. Since H' is connected, so is H. Hence the image D
of H is also connected. It follows from the proof of [14, (12.4)] that D,.4 contains a
cycle of rational curves. q.ed.

(3.2) LEMMA. Suppose that mKg+ D =G for an effective divisor D and a flat line
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bundle G. If an irreducible curve E intersects D,.q, then E is contained in D, 4. In particular,
if E*< —3, then E is contained in D, .

Proor. If E is not contained in D,.4 and if E intersects D,.4, then DE>0. But
—DE=mKgE >0, which is absurd. If E2< —3, then KgE> 1, whence ED <0 Hence E
is contained in D. q.e.d.

(3.3) DerINITION. A VII, surface S with b, >0 is said to be special if S has at
least b, rational curves.

By [14, (3.5)], any special VII, surface has exactly b, rational curves. Any VII,
surface with a global spherical shell is special. See [4], [8], [16] as well as (5.2).

(3.4) LEeMMA. An arbitrary special V11, surface has a cycle of rational curves.

PrROOF. By (2.2), there exist no elliptic curves and no cycles C of rational curves
with C?=0. Hence the intersection matrix (C;C ) is negative definite by [14, (2.10)],
where C; (j=1, - - -, b,) are all rational curves on S. Hence C; is a Q-basis of H*(S, Q).
Thus there exist a positive integer m, an effective divisor D and a flat line bundle
Fe H'(S, C*) (£ C*) such that mKg= — D+ F in H'(S, O¥). Hence by (3.1), D, .4 con-
tains a cycle of rational curves. q.e.d.

In the rest of §3 and §4 throughout, we always assume that S is a special V11, sur-
face satisfying (2.2.1)—(2.2.4).

(3.5) LeMMA. Let E be a connected effective divisor such that E~L,—L, for
some k=s+1and A<[1, r]. Let D be a reduced (possibly reducible) curve which contains
none of E and the irreducible components of C. If D~L;—L,—L; for j=Zs+1, then
ED=1,Jc[l,r]and AnJ=(.

Proor. Let D=D’+ D5+ -+ D,, with D} irreducible. Then we may assume
D;~L;—L,, for some i>s+ 1 with i#k. By assumption, there exists D; with ke 4;. We
may assume k=s+1 and i=s+2. Suppose ED=0. Then ED;=0. Hence
Dy:=Di~L,,,—L,.,—L;, for JycJ, and JynA# . Then by CD,=0, we have
Jin[r+1,n]= so that & +#J, c[1,r] and CD;=0. We also see that there exist no
irreducible curves D'~ L,— L, ; — L,. for i=s+ 3. Indeed, otherwise, we have J'c[1, r]
by the same argument as above, whence D'D, =L2,, —#(J'nJ,)<O0. If an irreducible
curve D, not contained in C meets Dy, then D,D,=1, CD,=0, D;~L;—L,,—L,,
for some i=s+3 and J,<[1,r], J;nJ,=. Moreover, D, is a unique irreducible
curve meeting D, because, if D’ meets D,, then D'~ L,— L, ,— L, for some p (Zs+3),
J'<[1,r] and D’'D,< —1, therefore D'=D,. Now we may assume i=s+3 and
D,~L,3—Ls,,—L,, If there exists an irreducible curve D; (#D,, C;) meeting D,,
then Dy~L;— L, 3—L,, for some;j=s+4 by (2.7), and D; is a unique irreducible curve
other than D, which intersects D,.

Repeating this argument, we obtain irreducible curves D,, - - -, D,, such that (by
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indexing suitably), Dj~Lj, 41— L;4—L;, (2<j<m) and CD;=0, where J,, is a subset
of [1, r] with J,nJ,= & (p+#¢), and there exist no irreducible curves meeting D, + - - - + D,.
In particular, C(D, + - - - + D,,) =0. Hence there exist no connected divisors containing
both C and D,. However, since D?< —3 by J, #, D, is contained in a connected
numerical antipluricanonical divisor which contains C by (3.2). This is absurd.
Consequently ED=1 and AnJ=(. q.ed.

(3.6) THEOREM. Let S be a special V11, surface with a cycle C=C,+---+C;
of rational curves. Then r=s.

PrROOF. We assume first (Kg+ C)?< —2 and s=2. By (2.10) we take a canonical
basis L; subject to (2.10.1)—(2.10.3). Assume s>r to derive a contradiction. By (2.11)
there exists an irreducible component C; (r+1=<j<s) of C such that B;=¢J and
Cij~L;—L,, with I;c[s+1,n]. Since S is special, there exists an irreducible curve
Dy~L,—L,, for any kel; by (2.7). Then

CD=(Li—L XLy~ Ly)=1—L,Ly+L; Ly,
CDy=—Ly sy m(Ly—Ly)=1+Ly sy yly, -

Suppose CD,=1. Then [r+1, n]n A4,= &, whence 4,c[1,r]. Hence C;D,=1, which
contradicts (2.17.1). Therefore, CD, =0 and #(4,n[r+1, n])=1. Hence C;D, =0 so that
Jj¢A,and #(I;nA,)=1. Let {k'} =I;nA,=[r+1,n]nA4,. Then Dy~ L,—L,.— L, where
Ay = AN\{k'} is a subset of [1, r]. By indexing suitably, we have a subset {k,, - - -, k,,}
of I; such that Dy ~L, —L,.  ,—Ly (1=ism) with CD, =0, where k,.,=k,,
A<, r].

Let D’ be an irreducible curve different from D, C; (1<i<m, 1 £j<s). Then by
CD'<1, we have either D'~L,—L,,— Ly (ke[s+1,n],k’e[r+1,n], A;<[1,r]) or
D'~ L,—L, (ke[s+1,n], A,<[1,r]), where k#k; by (2.7). In the first case, k' #k;,
because D'D,, , <0 if kK'=k;. In either case, D'D,, =0 for any i. Since D,’s do not form
a cycle of rational curves by (2.2), there exists i such that D, D, . =0 or D, D, =0.
Hence there exists i such that 4, # & and (D, )>*< —3. By (3.1) and (3.4), D,, is con-
tained in a connected divisor containing C. However as was shown above, CD, =0 and
no curves except D, meet D, which is absurd.

Hence r=s if (Kg+C)*< —2 and s22. If (Ks+C)>=—1 or s=1, then take an
unramified double covering S* of S, and the pull-back C* of C. Then
(Kgs+ C*)2=2(Ks+ C)?, b,(C*)=2b,(C), whence 2r=2s. q.e.d.

(3.7) CoroLLARY. Let S be a special V11, surface with a cycle C of rational
curves. Then

B11) (Ks+O)?=—by(C)" and by(C)—C?=by(S),

(3.72) Ci~Li—L;_y—L,;,, (1<isr)in (2.10), C;_,C;=1, C;C;=0 (i#j,j+1 mod r),
where Cy.,=C, for any k.
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ProOF. Clear from (3.6).

(3.8) THEOREM. Let S be a special V11, surface with a rational curve C with a
node. If C has an irreducible branch D,, then by suitably indexing the remaining curves
D; 3<j=n) and a canonical basis L; (1<j<n), we have

C=‘—(L2+“'+L"), DJ~LJ_L1_1 (2§j§n),

where n=b,(S). The dual graph of n curves is as in Figure 3.8, where a black vertex (resp.
a white vertex) stands for C (resp. D;).

®——0—-O0—+ + «+—O0——0
—n-=1) =2 -2 -2 -2
(n—1)
FIGURE 3.8

ProoOF OF (3.8). By (2.14), we have C= —(L,+---+L,) and D,~L,—L,. Let
D; (3<j<n) be the remaining irreducible curves on S. Let D' be one of them. Then
D'C=0 by (2.18). Therefore D'~L;—L, or L,—L,—L, for j23, k22.

(3.8.1) SuUBLEMMA. D'~ L;—L, for some j, k.

PrOOF OF (3.8.1) Otherwise, we may assume D5~ L;—L; —L,. Then there exists
no irreducible curve D"~ L;— L, — L, with D" # D,. Hence we may assume D;~ L;— L,
(4<j=n,3=k;<n). By indexing suitably, D;~L;—L;_; (4<j<n) by (2.12.2). Since
D,D,=1, the curve D3+ D,+ -+ D, is connected but (C+D,)(D;+ -+ D,)=0.
This contradicts D% = —3 by (3.2). Consequently D'~ L i— L. q.e.d.

We continue the proof of (3.8). Now assume D;~L;— L, (3<j<n,2=k;<n) by
(3.8.1). Hence again by (2.12.2), we have, by indexing suitably, D;~L;—L;_,,D;_D;=1
(3<j=n) and D;D,=0 (k#j,jt1). q.e.d.

(3.9) THEOREM. Let S be a special V11, surface with a cycle C=C,+ C, of two
rational curves. If S has an irreducible curve Dy with C,D5=1, then by indexing suitably,
we have one of the following cases:

(3.9.1) C1~L1—L2—L[3,,], CZNLZ—LI_L[I+l,l+m—2]’
Di~L,—L;_, B<jsl4+m—2,j#I+1), Dy ~L1—Ly,
(3.9.2) Ci~Li—Ly—Liy, Co~Ly—Li—Lysqi4m-21>
Di~Li—L;_, B<jsl+m—-2,j#I+1), Dy y~L—L—L,,
(3.9.3) Ci~L,—L,, Cy~L,—L—Lj,,

Dy~Ly—L,—L,, Dj~Lj“Lj—1(4§]§"),
(3.9.4) Ci~Li—L,—Lg3,, Cy~L,—Ly, D;~L;—L; , (35j=n),
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where I, m,n23 and by(S) equals |+m—2 or n, C,D,,, equals 1 (resp. 0) in (3.9.1)
(resp. (3.9.2)). The dual graph of b, curves are as in Figure 3.9.

0—" + + —0—O0=—0—0—" * *—O 0=0—0—"- - + —0—0—O0—= + - —O
-2 -2 =/ —m =2 -2 - —-m =2 -2 =3 =2 -2
[ [
(m—2) (-2 (-2 (m—3)
i) (Lmz3) (i) (Lmz3)
O=—0—O0——0—: + +—0 0=—0——0—"-+-—0
-2 —n =3 =2 -2 —-_n =2 =2 -2
(n—3) (n—2)
(iii) (n23) (iv) (n23)
FIGURE 3.9

PRrROOF OF (3.9). The proof is divided into several cases.

Case 1. First we consider the case where C has two irreducible branches. By
(2.18), we may assume that there exist two irreducible curves D and D’ with
C,D=C,D'=1 and DD'=0. We are able to apply (2.15) by (3.6). With the notation
in (2.15), we may assume

¢,~L,-L,~-L,, C,~L,~-L,—-L;, D~L,—L,, D'~Ly—L,,
IvJ=[3,n], InJ=g, 3el, keJ

by indexing suitably. So by letting C?= —/ and C%= —m, we may assume k=/+1,
I=[3,/] and J=[I+1,l4+m—2]. Let D" be an irreducible curve different from D, D’
and not contained in C. Then by (2.18) we have C,D"”"=C,D"=0,DD" 20,and D'D" =0.
Hence D"~ L;— L, for some k;. We note that k;e[3, /] (resp. [/+1, /+m—2]) if and
only if je[4, [] (resp. [/+2, [+ m—2]). Since S is special, we may suitably re-index and
assume

D'=D;~Li—L;, (4<jSI+m=2,j#l+1)

in view of (2.12.2). Let D3=D', D;,,=D. It is easy to see that D,D,,,=D;_,D;=1
4<jgl), C,D3=D;_Dj=1(I+2<j<I+m—2) and D;D;= —20;; (otherwise). This is
(3.9.1). The dual graph of n curves is as in Figure 3.9 (i).

Next we consider the case where C has a unique branch with C;D=0and C,D=1.
By (2.15), we may assume C,~L,—L,—L; and C,~L,—L;—L;. We have either
D~L,—L,or D~Li—L,—L,.

Case 2. Consider the case D~L,—L,. Let C}=—[ and C%2=—m. Then
#I)=1-2, #(J)=m—2. By (2.15), we have iel, i¢ J, [uJ=[3,n] and InJ= . So we
may assume i=3, I=[3,/] and J=[/+1,/+m—2]. Let D’ be an irreducible curve
different from D, C,, C,. Then by C;D'=0 and DD'20, we have D'~ L;~L,— L, for



496 1. NAKAMURA

some j (24), k (23) and A<={l, 2}. Notice that if A={2}, then k=3 by DD'20, a
contradiction to C,D’'=0. Therefore the following three cases are possible:

Case 2-1. There exists an irreducible curve D'~L;—L;— L, —L, for some jel.

Case 2-2. There exists an irreducible curve D'~ L;—L,— L, for some kel and
jed.

Case 2-3. Any irreducible curve D’ different D, C, and C, satisfies D'~L;—L,
for some j and k.

Case 2-1. We show that this is impossible. We may assume D'=D,~L,—Ly—
L,—L,and 4</. First we assume D"~ L;—L,— L, forjeJand kel Hence by D'D" =20
we may assume j=/+1 and k=4. Then an irreducible curve G (#£D, D', D", C,) is
homologically equivalent to L,— L, for some p, g (=4), where pe[ (resp. peJ) if and
only if gel (resp. qeJ). Since g#4 by GD”=0, we may assume D,~L,—L,,
(5=p=!,55k,<l!). This is impossible by (2.12). Thus we see that D" (#D, D', C)) is
equivalent to L,—L, (¢924), where pel (resp. peJ) if and only if gel (resp.
qgeJ). Consequently, D'D=D"D=0, whence C+ D+ D’ is contained in no connected
divisor. This contradicts (3.1), (3.2) and (D')?= —4.

Case 2-2. We may assume D'~ L, ,—L,—L,. By Case 2-1, for any irreducible
curve D" different from D, D' and C;, we have D"~ L,— L, for some p and g. Here
g#1 because if g=1/, then D"D'=—1. By C;D"=0, we have pel (resp. peJ) if and
only if geI (resp. geJ). Hence by (2.12.2), we may assume that the remaining curves
are Dj~L;—L;_, (4<j<lor[+25j</+m—2). We set D3=D and D,,,=D’, which
is (3.9.2). The dual graph of n curves is as in Figure 3.9 (ii).

Case 2-3. By CD'=0, we have D'~L;— L, with j=4, k>3. Let n=>5,(S). By
applying (2.12.2) to D;~L;—L,, (4<j<n,3=<k;<n), we may assume D;~L;—L;
(4=<j=<n). By C;D;=0, we have jeI (resp. jeJ) if and only if j—1€[ (resp. j—1€J).
Hence I=[3, n] and J= . This is (3.9.4). The dual graph of n curves is as in Figure
3.9 (iv).

Case 3. Finally we consider the case where C;~L,—L,—L;, C,~L,—L;—L;
and D~L3—L;—L, with 3eJ. It follows from C;D'=0 that D'~L;—L, for any
irreducible curve D' (#D, C;), where 4<j<n, 3<k;<n and n=>b,(S). By (2.12.2), we
may assume D;~L;—L;_, (4<j<n). Since jeJ if and only if j— 1€ J, we see that I= ¥
and J=[3, n]. This is (3.9.3). The dual graph of »n curves is as in Figure 3.9 (iii).

q.ed.

4. Dual graphs of curves (2).

(4.1) NotATION. Assume r=3. Let M;=L; (r+1=j<n) and n=>,(S). Define
L; jeZ)by L;,,,=L; (meZ,15j<r). Notice that L,M;=0, L,,, =L, L,,,#M,
from now on. We write L;=},_, L, M;=}, M;, C;~Li—L;_,—M, (1<i<r)fora
subset 7 (resp. subsets J and I;) of [1, r] (resp. [r+1, n]). For an irreducible curve D;
not contained in C, we write D;~M;— Ly, —M;, (r+1<j=<n). For a subset J of [1, r]
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and p<v<u+r, we write J=[u,v—1] if the images of J and [u,v—1] in Z/rZ
coincide. See (4.4), (4.5).

(4.2) THEOREM. Let S be a special V11, surface with a cycle C=C,+ - +C, of
r rational curves (r=3). Suppose that there is a unique irreducible curve D, | such that
D,,,C=1. Assume D,,C,=1. Then by suitable indexing, we have

C=—Myi1,m> Ks=Lyyn+Myiim,
Cy~L,—Ly—1—My,_n (=k=m),

D,y y~M, —L[v,,,“,v,,,_l]
Dy~M, —M; —Ly,, -1, (A=k=m-1)
Ci~L,—L,_,, D;~M;—M;_, (otherwise),

where vy =1<v,< - <viZl+r, ji=i—1 (1=2kSm) and i,=r+1<i,_;<---<
Iy Sjo=n.

-2 —Q -O——O0—* + - —O
s @ (-2 % —(q,=1) =2 -2
. -2 pi—3

: rql_3 r+1—v,

(@ (m=1,py=n—r+2,q,=vi+1=5r+2)

—Pr+1 —Pm —2 -2 =2 -2 =2 —Qu-y
— o 0o —OQ—=—Q—0 ¢ ¢« —O —_—Q—r s« —O 0_2’
-2 — 5] -w=) ——— ' [
4n—3 Pm—3 :
Slg—3 -2 h :
1 : —q :
-2 S B é_; . rp1—3
— Dk . .
: : P30 :
S . 4
—Pr-1 —P1 — k-1 —q

(i) (mz2,v,Sr+1,p23,4,23)

FIGURE 4.2
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A proof of (4.2) is given in (4.3)-(4.10). We notice that C;,_,C;=D;_,D;=1
(ieZ,r+1<j<n). The dual graph of n curves in (4.2) is as in Figure 4.2, where
p=—Cr=jio1—i+323 (1=k<m), g=—D}=v—v+223 (1SksSm-—1),
Gm=—D2 1+ 1=V, =V 1 +223.

(4.3) By (2.17), let D, ,~M,,,—L, for a subset A of [1,r]. By (2.17) and
D,.,C,=1,wehave A=[1, a—1] with a<r+ 1. In this paragraph we consider the case
A=[1, r]. By (2.17.3), we have D'C=0 for any irreducible curve D' (# D, , ,, C,). Hence
D'~ M;— M, — L, for some subset I of [1, r]. Suppose /# (J to derive a contradiction.
By D,,;D’'20, we have k=r+1. Hence in view of (3.5), we have D,,,D'=1 and
In[l,r]=. This is absurd. Therefore I=¢J. Let D; be the irreducible curves
(r+2<j=n). Then D;~M;— M, (r+2<j<n, r+1=k;<n). By (2.12.2), we have
D;_D;=1and D;~M;—M;_, (r+2=<j<n) by indexing suitably. Let C;~L,—L;_, —
M, (1£isr). By D,,,C,=1, we get r+1€l,. By C;D;=0 (r+2<j<n), we see that
j—1el, if and only if jel,. Hence I, =[r+1,n] and I;=J (2<i<r). This completes
the proof of (4.2) in this case. The dual graph of n curves is as in Figure 4.2 (i), where
m=1,qg,=r+2,v,=r+1.

In (4.4)—~(4.10) we consider the case A=[1,a—1],r+1€el,and 1 <a=<r. See (2.17).

(4.4) LeMMA. Let D' be a reduced (possibly reducible) curve which contains none
of D,., and the irreducible components C; of C. Suppose that D'~M;—M,—L; for
Jc1,r], and that jel,, kel, for some u<v<u+r. Then J=[p,v—1], Jn[l,a—1]=
. In particular, if p=v, then J=.

Proor. First consider the case u=v. We have
0=CvD,=(Lv_Lv—l_MIV)(Mj—Mk—'LJ)é(Lv_Lv—1)(_LJ) s
0=C}.DI=(LA_LJ.-1_MIA)(Mj_Mk_LJ)=(L}.—L}.—1)(_LJ)'

Hence A=J if and only if A—1€eJ for any A€[1, r]. This shows J=F or J=[1,r].
If J=[1,r], then D, D'=(M,,;1—Ly - 1)(M;—M,—Ly )=—M,, M,—a+l.
Hence k=r+1 and a=2. By (3.5), if k=r+1, then D,, ,D’'=1 and Jn[l,a—1]=(,
which is a contradiction. Thus we have J= .

Next we consider the case u<v<u-+r. We have
0=C,D'=1—-(L,~-L,_)L;, 0=C,D'=—1—(L,—L,_,)L,.

Hencev¢J,v—1eJ, ueJand u—1¢J. By C;D’'=0, we have LleJifand only if A—1€J
for u<i<v or v<i<pu+r. This implies that J=[u,v—1]. If k=r+1, then
Jn[l,a—1]=F by (3.5). If k#r+1, then Jn[l,a—1]=F by D,,,D'=0. q.ed.

(4.5) LeEMMA. Let D' and D" be irreducible curves different from D, , ,, C;. Suppose
that D'~M;—M;—L;, D" ~M,—M,—L; and D' # D", where p<v<pu+r, f<a<f+r,
iel, jel, kel, lely, I=[u,v—1] and J=[p,a—1]. Then InJ= .
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PROOF. Suppose InJ# S to derive a contradiction. By
0=D'D"=(M;—M)(M,—M)—#InJ),

we have (M;— M;)(M,— M,)>0. We have three possibilities:

Case 1. i=l, j=k, #InJ)=1 or 2. We have v=§, u=a (mod r), I=[u,v—1],
and J=[v, u+r—1]. Hence InJ=f and D'D" =2, which is absurd.

Case 2. i=lj#k,#(InJ)=1, D'D"=0. We may assume f=v, hence I=[pu, v—1]
and J=[v, a—1]. From #(InJ)=1 it follows that a — 1 = u+rand TuJ=[1, r]. However
(Iud)n[l,a—1]=F by applying (4.4) to D,,, and D'+D". But [l,a—1]#, a
contradiction.

Case 3. i#l j=k, #InJ)=1, D'D"=0. This case is clearly reduced to Case 2.

q.e.d.

(4.6) Let Dj~M;—Ly,—Mgy, (r+2=<j<n). Then by CD;=0, we have #(T)=1,
so we let T;={k;} for some k;>r+1. Let N={ie[r+2,n]; D?< -3}={iy, i, "~
Im—2 Iim—1}. Welet G,=D;, ~M, — M, — L, for some nonempty J, <[, r]. In view of
(4.4), we may assume J,=[py, v,—1], ik el, and j el, for some p <v, <p+r. Let
G,=D,,,, ip=r+1, p,=1, v,=a and J,=[1,a—1]. In view of (4.4) and (4.5),
Ji, -+, J, are mutually disjoint. Hence we may assume v, 41 =p,=1<V,<pn_1 <
V-1 S S <vp Sy <viSr+l

(4.7) LemMA. I,=( for A#v, (1Zk<m).

>

PrOOF. Suppose [, # J for some A#v, (1<k<m). Let Dj~M;— M, — Ly, for
jel. If k;el, for uSA<u+r, we have U;=[p, A—1] in view of (4.4). If U;# &, then
U;= [, v— 1] for some k, whence 1=v,, a contradiction. Hence U;= ¥, u=4, k;e I,
and D;~ M;— M, . However by applying (2.12) to D; for je I;, we infer a contradiction.
Hence I, =. q.ed.

(4.8) LeMMA. w=v,, and J,=[vi,, vi—11 (1 Zk<m).

PROOF. Assume v,<py,_, for some 2<b<m to derive a contradiction. Let

I=U cic0 T I=Usp e 1222 Tio D,=Y,.,D; and D,=Y, D, We note JuJ=[r+
1, n].

(4.8.1) SUBLEMMA. Assumei#r+1.Theniel(resp.jeJ)if andonly ifk;el (resp.
k;eJ).

ProOF OF (4.8.1). It suffices to prove that if iel (resp. jeJ) then k;el (resp.
k;eJ). If j#i, for any k<m—1 and if je I;, then k;e I;. Hence if j#iy, then je I (resp.
jeJ) if and only if k;e I (resp. k;€J). Suppose je I, for A<v,. Then if j=i, for some k
(1=k=m—1), we have U;=J,=[, v,—1] for jel, and k;e,, . Hence A=v,<v, and
kiel, cl If jel,# for Azv,+1, then A=Zv,_, in view of (4.7). If j=i, for some k,
then U;= [, v—1], jel,, and k;el,,. Since vy=A2v,_,;, we have g2 p,_ 1 2v,_; +1
by the assumption. Hence k;e I, = J. q.e.d.
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We continue the proof of (4.8). Notice 1, J# . By (4.8.1), for any pair of ie I and
jeJ, we have

DiDj§(Mi_Mk.-)(Mj"Mk,~)=0 s

which shows D;D,;=0. The curve D, (resp. D;) contains D,,; (resp. G,_;) and
G?_,<-3. Since D,,;C=1 and both G, (1=k<m—1) and C are contained in a
numerical antipluricanonical divisor by (3.1) and (3.2), both D, , and G,_, are in one
and the same connected divisor on S. However this contradicts D, D, =0. Consequently,

We=Vi+1 and Je=[vs 1, v — 1] (1Sk=m). q.ed.

(4.9) LemMA. By suitable indexing, we have D;_D;=1, D;~M;—M; ,—Ly,
(r+2<j=n).

Proor. We define formally D,,,:=M,,—L, and Dj:=D;+Ly,=M;—M,,
(r+2<j<n). Then D;D=D,D; for any i, j. By the same argument as in (2.12), we have
k;#k;fori#j. Then D,,,+ - - - 4+ D, +0. Because, otherwise, D, , ,, - -, D, form a cycle
of rational curves, contradicting (2.2). Hence there exists b (>r+1) such that
{ky+2, ", kay=[r+1,n]\{b} and therefore

D, 1+Dyiy+ - +Dy~My—L,,

~2=(Djy + - +D))?=—2n—r)+2 ), D\D.
i<j
Consequently, ), ;D;Dj=),  ,D;Dj=n—r—1. We also notice D, (D,s,+ "+
D)=(M,,,—L)M,—M,,,)=1. It is shown by the same argument as in (2.12) that
D,,,+ --+D, is a connected straight chain, that is, by suitable indexing, we get
D;_,D;=1 (r+2=<j<n). It follows that

J

D,yy~M,  —Ly,,,, DjNMj_Mj—l_LUj (r+2=jsn). q.e.d.

(4.10) LemMMA. In the same notation as in (4.9), we have i,<i,_ <---<i,
L, =i, -1~ 1] (1£k<m) and I, = & (otherwise), where iy=n+1, i, =r+1.

PrOOF. By the definition in (4.6) and by (2.17), i, =r+1 is contained in I, =1,.
We also see j e, (1=k<m—1). Since C;D;=0 for j#i, we have je, if and only if
j—1elI,. For 2<k<m, we define /, as follows: If i, =i, for any p (1<p<m—1), then
l.:=n+1. Otherwise, /. :=min{i,; i, <i,, 1 <p<m—1}. Then we see that I, contains
Li, &k—1] but not 4. By C, D, =0, we have v,eU, and v,—1¢U,. If /=i, then
U,=Jp=[vp41,v,—1] by (4.8), whence v,=v,,, k=p+1, =i _, and i, <i,_, <
*++ <iy. Thus I, contains [4, §_,—1] (2=<k<m—1). On the other hand, /,, contains
[i;,n] by C, D;=0 for any i;<j<n. Thus the union of I, (1<k<m) contains
Uigs bm—1— 13U [ip— 15 iy—2—1]JU - - - U[i;, n]=[r+1,n]. This shows by (2.10.3) and
(3.6) that I, =[j, i,_,—1] and I,=F for A#v,. q.e.d.



Let p,=—C2, q,=—D}? and g,,= — D} +1. Then p,, ¢, =3. By (4.6)—(4.10) we
have the expressions for curves in (4.2). The dual graph turns out to be as in Figure 4.2
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(i) (m=1) or Figure 4.2 (ii) (m=2). This completes the proof of (4.2).

(4.11) THEOREM. Let S be a special V11, surface with a cycle C of rational curves.
Suppose that there are d (Z2) irreducible curves meeting C. Then the union 2 of all the
curves on S is connected, and the complement of the cycle C in @ consists of d connected
(straight) chains of rational curves. More precisely, there exist a set of integers s(l), m(l),
il), v(k, 1), ik, 1), jk,1) 1=I=d, 1=k<m(l)) and a canonical basis L; (1<i<r), M;

(r+1Zj<n) of HX(S, Z) such that

I=s(1)<s(2Q)< - <s(d)<r+1=s(d+1),
r+1=il)<i(2)< - <i(d)<j0,d)=n<n+1=id+1),
s(k) <v(m(k), k) <vim(k)—1, k)< - - <v(l, k) <s(k+1),
iky<imky—1,k)<---<i(1,k)<j0,k) (1=k=4d),
iN=im(l), )=jO,1-1)+1,ik, )= j(k, ) +1

and such that (by suitable indexing)

@.11.1)

where

4.11.2)

4113) Let 9,=Y00) "' D; and 6,=Y;"",  C. Then we have C=%,+ - +%,,
D=C+D+ - +D,; Moreover €,_, (resp. 2)) is a connected curve containing Cy,,

Ci~Li—L;_,—M,, (Lo=L,, 1Zisr),
Dy~ M,y — Ly, (1=i=4d),
Di~M;—M; —Ly, (r+15jsn,j#il)),

Ii=[i(k, D, jk—1,0]  (i=vk1D), = (otherwise),
Jy=[s(), vim(D), ) —11,

U;=[vk+1,1),vk )—1] =ik, 1)), = (otherwise).
The intersection numbers among curves are given by,
CwDiw=1, while CD;j=0 (G )#(s(), i),
CiCiv1=1, while C.C;=0 (i#j,jt1),
DiD;yy=1(()Sj<i(l+1)~2), DD;=0 (otherwise, i#j).

(resp. Dyy)) subject to €,2,=1 and 6€,2;=96, ;—, ((i,))#(d, 1)).
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(4114) (- Cs(l+1)’ —Cs2(1+1)—1a"'a —Cs2(1)+1)
=(2"”a2’p1’25.“’pk’ 2 Dr+1> 77 ’pmaza'”,z)’
Al) (g—3) (gm—3)
4.11. 5) (- D;(l)’ _Di2(1)+1’ Tt “‘Di2(1+1)—1)
=(qm—1,2,“',2,qm—1’2,“‘sqb2,"',2,%—1,"',‘Ixaz,"‘,z),
(Pm—3) (P—3) (p1—3)

where p,:=p(k, )= —C3<k,1)=j(k— L, )—itk, )+3=23 (1 <k=ml), g;:=qk,)=— 12(k n=
vk, D—vik+1,)+223 (1SkSm)—1), gp:=qm(D), )=1-Diy=v(m(l), h—s()+223,
m:=m(l) and A():=s(1+1)—v(1,]). The integers p,, q,, m and A(I) depend on l. The
dual graph of n curves is as in Figure 4.11.

—
-~

Cavny A -3 q,,,— 3 Cqy
e A, —_—
e O—+ ¢ e —O—O—t s e —O—O— s e —O—O—. .+ « N
“zi -2 -2 -p - —2 =2 —Pk+s —I’m -2 -
D+
O—¢ o e —O—0O—¢ + + —O—0O—2 ¢+ « =O—0O—+ ¢ + —O—O—-
-2 -2 —q —qy-y —2 -2 —q ~Gqm- 1—2 —2 —(gu—1)
pl_3 pk_3 pm—3
7
FIGURE 4.11

The dual graphs thus obtained are among dual graphs of curves on surfaces with
global spherical shells. See [15, (3.2)]. In (4.12)—(4.18) below, we prove (4.11).

(4.12) For simplicity we consider the case where there are exactly two irreducible
curves D and E such that CD=CE=1. A similar argument proves (4.11) in the case
where there are three or more irreducible curves meeting C. By (2.18), we may assume
C,D=1and C,,,E=1 for 1 <u<r. Then by (2.17) we have

Ci"’Li_Li—l_MIi s D~Mr+1_L[l,a—1] > E~MR+1—L[u+1,u+b—1]
for some R (=r+1) and a, b=2, where Ly=L,.

(4.13) LeMMA. Let D’ be a reduced (possibly reducible) curve which contains none
of D, E and C; (15i<r). Suppose that D'~M;— M, —L,; for j,k=r+1 and J<[1,r]
and that jel, kel, and pu<v<u+r. Then J=[u,v—1], Jn[l,a—1]= and
Jnu+l,u+b—1]1=(.
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PrROOF. One sees J=[u, v—1] in the same manner as in (4.4). By (3.5), if k=r+1

(or resp. R+1), then Jn[l,a—1]= (resp. Jn[u+1,u+b—1]=). The other
assertions are clear. q.e.d.

(4.14) LeMMA. Let D', D" be irreducible curves different from D, E, C;. Suppose
that D'#D", D'~M;—M;—L; and D" ~M,—M,—L;. Then InJ=(.

PrROOF. The same as in (4.5). q.e.d.
For convenience, we employ the following notation:
Dj~M;— M, — Ly, if jel, 2Sv=u+1)
E;~M;—M, — Ly, if jel, u+2=v=sr+1).
Let G, (1=k=<m—1) and H, (1=<k=/-1) be all the irreducible curves on S such that
Gy=D,, H,=E;, U, #& and U; # . We note U, <[a, u]. Indeed, U, =[u,v—1],
where Gy~M; —M; —Ly,, i€l, and jel,. Since 1<v—1<u, U, is contained in
[a, u] by (4.13). Similarly U; c[u+b, r]. Hence we may assume
Uikz[“ka vk—l] D U|;‘=tﬂ;u V;(—l] >
AS -y <V 2 Sy -2 <" SR <Vp Sy <Vy Su+1,

UHbSp <V S <SPG <VRSpI<VISr+l.

Weletv, ., =p,=1,v,=a, vi,,=uj=u+1,vi=u+b,G,=D,,,=Dand H=Eg,,=
E. We note U;= for j#i, i}.

(4.15) LEMMA. vo=py—; (1SkSm), vi=pi_, (1SkSD), Up=[vsy, ve—1]
R=gk=m), Uy =iy, vi— 11 @2k D).
PrOOF. The same as in (4.8). q.e.d.

(4.16) Lemma. D, E =0.

PrOOF. We note I, =F for A#v, (1<k<m)and 1#v; (1Lk <) in view of (4.7).
LetI=U,<,cur  iand J=U,,, <, <,+, I2 First we show that pe [ (resp. peJ) if and
only if kpe_l_(resp. k,eJ). If p#iy, i}, then by C,D,=0, we see pel, if and only if
k,el,, whence pelif and only if ke I. If p=i,, then k<m, and U,=[u, v,—1], pel,,
and k,el, =1, , . Hence k,el If p=ij,€J, then one sees k,€J similarly. Now assume
that D,#D and E,#E. Since U, nU, = by (4.14), we have D E,=(M,— M, ) x
(M,— M, ), whence D,E =0. Since r+1€1l,, R+1€l,,,, kel and k e J, we have by
(4.13) DE, =M, (M,— M, )=0, D,,E=(M,,—Mkp)MR+1'=0. q.ed.

(4.17) LeMMA. By indexing suitably, we have
Di~M;—M;_, (j£i,r+15jSR), E;~M;—M;_, (j#i,, R+15j<n),
GkNMl'k—M.ik—L[Vk+1,Vk'1] (1 ékém_ l) ’ GMNMim—L[Vm+|,Vm‘1] ’
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Hy~ My —Mj — Ly, -y (12k=1=1), Hi~Mg—Ly,;,, yieqys
CiNLi_Li—l_MIi(léiés)’ Ivk=[ik’jk—l] (1£k=m),
L. =[i,ji-1] A1Sk=ZD), while I= (otherwise)
and
=i +1, ip=r+l1<i, < - <ij<jo=R,
h=ji+1, ii=R+1<ij_;<--<ii<jo=n.

PrRoOF. First we let j,:=R and j,:=n. Since D,E,=0, we can apply the same

argument as in (4.8) and (4.9) to Zpe (D, and qu ; E,. Hence we infer the above

expressions for D;, E;, G, and H,. In the same manner as in (4.10), we can show that
I, (1=k=m) (resp. I,; (1=<k=<0) contains [i, i, — 1] (resp. [i, ix—1]), whence the
union of /, and I, (1=j<m, 1 £k <) contains [iy, i,_, —1] and [i;, i; -, — 1] for any
pand g, henceit contains [r+ 1, n]. This proves I, =[i,, i, -, —1]and I,; =i, i}, —, — 1].
q.e.d.

(4.18) Compare (4.17) with (4.11) by setting
m(D)=m, m2)=Il, s()=1, sQ=u+1, s@)=r+1,
vim(l), )=a, v(im(2),2)=u+b, vk, 1)=v,, vk, 2)=v,,
ik, )=t , ik,2)=ii, jlk, )=ji, Jjk, 2)=ji.

Thus we complete the proof of the first half of (4.11). The rest is easy to check. Since
the argument in the general case is similar, we omit the details.

(4.19) ProBLEM. Is a VII, surface special if it has a cycle of rational curves?
Does the equality r=s in (3.6) hold ?
5. Surfaces with global spherical shells.

(5.1) DerNITION (cf. [7]). A nonempty subset X of a compact complex surface
S is called a global spherical shell if

(5.1.1) ZXisisomorphictoashell S,={xeC?*;1—e<| x| <1+¢}forsomee(0<e<1),
(5.1.2) the complement of X in S is connected.

(5.2) THeEOREM (Ma. Kato, see also [4], [8]). Any surface with a global spherical
shell is special. :

ProoF. We freely use the notation in [7, pp. 4749, 54, 55]. Let X be a minimal
surface with a global spherical shell. Then X is constructed as follows (cf. [7, p. 55]):
Leto : Z*— B, be a finite succession of blowing-ups, and N'=¢"~1(S,). Let{: B,—»Z*\ N
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be an embedding of B,, D, the image of B, N":=((S,), and K:={(B_,), where
B.={xeC?;||x|<l+c}, S.={xeC?;1—c<| x| <l+c}. Let g, be the mapping
go=Cc0:Z¥—Z} and let g'=g, 5. Then X is isomorphic to a quotient space E/g’ with
E:=Z}\ K. We may identify g,, E, N' and N’ with g, E,, N_, and N, in [7, p. 47].
We see b (X)=1, by,(X)=b,(X\2)=b,(Z}) (see [T, p. 47]). Let n=b,(X) (>0). By
{7, Lemma 1 (ii)], there is a unique fixed point O* of g, in Z}*. Since b,(Z*)=n, the
maximal compact analytic subset 4 of dimension one consists of » rational curves, say,
A=A+ -+ A, The curve 4 is with normal crossing. Hence there are at most two
Aj’s passing through O*, say, A; and A4,. Hence by [7, Lemma 1], there is a large
integer / such that g((Z¥)n4;= for 3<j<n. Let E=E,uE,u---UE,_,, Z=Eu,B,
(by identifying N,_, with B, as in [7, p. 48]). Then we have natural mappings f: E—X
and h=g%: Z—Z*. Since Z and Z* are strongly pseudoconvex manifolds with their
boundaries 0Z and dZ* standard spheres, the Remmert reduction Rem: Z— B (resp.
g=Rem,: Z}—-B,) is a finite succession of blowing-ups of an open ball B (resp. B,).
The open balls B and B, are naturally isomorphic near their boundaries (by the mapping
induced from 4), hence isomorphic globally. Hence # is a finite succession of blowing-ups
of Z¥. Hence we have proper transforms [4;] of 4; on Z. By the choice of /, [4 s
(3<j<n) are contained in E. Thus we have n—2 curves D;:=f([4;]) B<j<n) on X.
Hence the cardinality p,(X) of the set of rational curves on X is not less than b,(X)—2.
Consider an unramified triple covering X* of X. Then X* contains a global spherical
shell. Hence b,(X*)=1 and p(X*)=b,(X*)—2. Since p,(X*)=3p,(X) and b,(X*)=
3b,(X), we have p,(X)=b,(X).By a theorem of Kato [14, (3.5)], we have p(X)=b,(X).

q.e.d.

(5.3) Tueorem (cf. [7], [16]). Any minimal surface with a global spherical shell
is a (global) deformation of a blown-up primary Hopf surface.

ProOOF. By (5.2), the surface is special. Hence it has a cycle of rational curves.
Hence by (1.6), it is a (global) deformation of a blown-up primary Hopf surface.

q.e.d.

In view of (5.2), either the dual graph of b, rational curves on a surface with a
global spherical shell is one of (3.8), (3.9), (4.2) and (4.11), or the surface is one of the
well-understood surfaces (2.1). We now prove the converse:

(5.4) THEOREM. Let I" be one of the weighted dual graphs with n vertices in (3.8),
(3.9), (4.2) and (4.11). Then there exists a special V11, surface with b,=n, having I' as
the weighted dual graph for n rational curves on it.

We prove this in (5.7)—(5.12) below by constructing a minimal surface with a global
spherical shell which has the desired property. See Figure 5.4 (ii), (iv), (vi), (viii) and (xii).
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(5.5) DeriNiTION (cf. [15], [16]). A quadruple (X, 4,, 4,, ¥) is said to be
admissible if X is a nonsingular rational surface, 4, is a nonsingular rational curve
with 42=1, A2=—1, A;A,=0 and V¥ is an isomorphism of 4, onto A4,.

The quadruple is said to be minimal if any (— 1)-rational curve meets either 4, or 4,.

(5.6) THEOREM. Let (X, A,, A, ) be a minimal admissible quadruple. Then there
exists a proper flat family n: & —A over the disc such that

(5.6.1) %=X modulo ¥ with a double curve A= A,=y(A4,),
(5.6.2) &, (¢#0) is a VIl surface with a global spherical shell,

(5.6.3) there exists an open neighborhood % of C in & such that ¥\ % is A-isomorphic
10 (Lo o) x 4.

See [16, (4.2)] and [17] for the proof.

(5.7) In the remainder of §5, we apply (5.6) to a suitable minimal admissible
quadruple so as to construct a special VII, surface with a desired graph. Let
[Xo, Xi, X,] be the homogeneous coordinate of P? with p,=[1,0,0] and /=
{X,=0}.

There is an (n+ 1)-fold blowing-up ¢ : X— P? such that

0 '(po)=A42+E+Dy+D3+ - +D,, A,=[l],
A2=En+1’ Dk=[En—k+1] (Zékén)v E=[En:|9 F1=[ll]a
A2=1, A2=—1, D?=E*=-2, Fi=—(n-1),

where [H] stands for a proper transform of H, E, the k-th (—1)-curve (1<k=<n+1)
(that is, the (—1)-curve arising from the k-th blowing-up) and the dual graph of
these curves is as in Figure 5.4 (i), where we denote the points A, nF; and 4A,nE
by two a’s. Let y be an isomorphism of 4; onto 4, with y(4,nF;)=A,nE.

Consider a proper flat family n: ¥ —4 in (5.6) for the quadruple (X, 4,, 4,, ¥).
By a suitable choice of = (cf. [16, (4.2)]), we have =n-flat divisors 2 and & of & such
that 2,=D,+ D3+ ---+D, for any t, §,=E+F; and &, is a rational curve with a
node (¢#0). This can be checked as follows: & is a complex manifold of dimension
three and is covered with open charts ¥'* near the double curve C (cf. (5.6), [16, (4.2)]).
Let ¥ be one of ¥*and let W:=V n¥,. Then by the construction of the family &, the
normalization W of W consists of two connected components W, and W,. Then W,
is an open chart in the normailzation X of %, such that

V={(x: ¥, 2, t);xy=t} s W={(x’ ¥, 2),xy=0} s W1={(x,21)} s W2={(y, 22)}a

where the projection 7 (resp. the isomorphism ) is given by =n(x,y,z t)=t¢
(resp. Y(z,)=z,). The chart W, (resp. W,) is embedded into V by (x, y, z, )=(x, 0, z, 0)
(resp.=(0, y, z,, 0)). Moreover the curvees 4, and A4, (resp. F, and E) of X are defined
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on W, (resp. on W,) by

AnW={x=0}, FinW;={z,=0},

A;nW,={y=0}, EnW,={z,=0}.
Then the divisor & of & is locally just {xy=1,z=0} in V. One sees readily
that &, has a unique singular point (0,0,0,0) in ¥ and that &, (t#0) is smooth

in V. Since E and F; meet transversally at a point (=:gq) different from p (cf.
(5.6.3)), &, (¢#0) is a rational curve with a node gq.

(5.7.1) LeMMA. &2=(E+F,)? for t#0.

ProOoF. Let f: X%, be the normalization. Then from the exact sequence
0-04,—f,0x—0,—0, we infer

(E+F)?*=(f*€0)*=x(X, f*E0)+ 1(X, —f*E0)—2x(X, Ox)
=L, E0)+ (L0, —E0) —2x(L 0, Og) +x(4, oK O )
+x(A4, —&,® 0 ) —2x(4, 0,)

=X(yta épr)"’X(Sn _gr)"2X(yv Oy,)=(¢"’pr2) .
g.e.d.
Since b,(¥)=1 and b,(¥,)=n by [16, (3.4)], the curves D, (1Sk<n—1)
and &, are all the irreducible rational curves on &, (1#0). As was shown above,

we have D= -2 and &?= —(n—1), whence &, is minimal. Thus %, is a special

VII, surface with the dual graph of b, (=n) curves as in Figure 5.4 (ii), which
is the dual graph in Figure 3.8.

It is now clear how to get in general a graph on &, from a dual graph of
curves for a (minimal) admissible quadruple (X, 4, 4,, ¥).

In what follow, we use the following notation: If we are given a n-flat
divisor £ of & such that 8,=B,+ -+ B, for B; irreducible, while %, (t#0)

is irreducible, then we write 4,= B,#B,#" - - #B,. By a straightforward generalization of
(5.7.1), we get (By#f- - #B,)*=(B; + - - - +B)’.

(5.8) There is an (n+ 1)-fold blowing-up ¢ : X— P? such that

6 Ypo)=A+B+Cy+Ds+---+D,, A=[l], A,=E,.,,
B=[E], C,=[E-,], D;=[E_;.,](<j=)),
Dy=[Eyjim-j-2] (+1SjSl+m=2), F=[4],
B*=D?=-2(3<5j<n), Ci=-m, Fi=-(-2),

where n=[/4+m—2, [, m=3, and the dual graph of these curves is as in Figure 5.4 (iii).
We take an isomorphism ¢ of A4, onto A4, such that y(4,nF,)=A4,nB,
which is indicated by two «’s. This means that Y(x)=a, when a is viewed as
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an intersection of curves denoted by two vertices connected by the edge a.

Therefore by the rule for deducing Figure 5.4 (ii) from Figure 5.4 (i), we
obtain a dual graph of »n curves on &, (t#0) as in Figure 5.4 (iv), where
C,:=B}F,, C2=—I, C}=—m, D}=-2. The dual graph for m23 is as in
Figure 3.9 (i), while we obtain the graph in Figure 3.9 (iv) by taking m=2.

(5.9) There is an (n+ 1)-fold blowing-up ¢ : X— P? such that
0 ' (po)=A,+B,+B,+C,+Ds+D,+ - +D,,
A, =[], A;=E,.,, B,=[E], B,=[E,-.],
C,=[E-\], F=[1, Dy=[E_;+,] B,
Dy=[Ej1m-j-2] (+25jS14+m=2),
B?=-2, Bi=-3, Ci=-m, F}=—(I-2), F:=0,
D}= -2 (j#I+1,35j<I+m=2),

where n=I/+m—2, ,m=3, and the dual graph of these curves is as in Figure
5.4 (v). Hence by the rule in (5.7), we have a dual graph of n curves on &,
(t#0) as in Figure 5.4 (vi), where C,:=B#F,, D,,,:=B,#F,, Ci=—1, Ci=—-m,
D} ,=-3, D}=—2 (j#I+1). This is the graph in Figure 3.9 (ii).

(5.10) There is an (n+ 1)-fold blowing-up ¢ : X— P? such that
6 Y (po)=A+C+B+D3+ - +D,, A,=[l], A,=E,.,,
B=[E,), C,=[E,-,], Dy=[E,-«+,] BZk=n), F,=[l],
B*=C}=D}=-2(@4<k<n), D3i=-3, F’=—-(n-2),

and the dual graph of these curves is as in Figure 5.4 (vii). Therefore by the rule
in (5.7), we obtain a dual graph of n curves on &, (¢#0) as in Figure 5.4 (viii),
where C,:=B}F,, C?=—-2, C3=—n, D}= -3, D}=—2 (k+#3). This is the graph
in Figure 3.9 (iii).

(5.11) Next we construct the graph in Figure 4.2. There is a two dimensional
torus embedding Y with the following one dimensional orbits

YN(C*?=A4,+F,+C+H+D+F,,
A?=1, F?=—-1, Fi=0, H?*=-1,

and

m—1 q—3 am—4
C'=[E ]+ Z Z [Eg,+1+ 'go LER,.+i],

k=1 j=0 j
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D= i mis [Es,+]], A1=[L], F=[k], H=Ey,
k=0 j=0
The self-intersection numbers of [E;] are
[Es,-11?=—pis1 OSk=m—1), [Eg,_1’=—q(1Sksm-1),
[(Eg,-11*=—(gm—1), [E;]*=—2 (otherwise)

("CEZ):(pl’ 2, ',2,}72, * s Pmo 2,-- ’2)

(g1—3) (gm—3)
(_D-/’2)=(2’ T2, 91, 2,--,2, 92, " "5 9m-1> 2,-:5,2, q"')’
P:-3)  (p-3) (Pm—3)

where p;, ¢;23, Ro=0, Sp,=2, Rk=zl.-c=_11 (pi+g9i—4)+p,, and Sk=z:=1(Pi+‘1i“‘
4)+2. We note that N=S,,—1, S, —1=R,+¢;—3,and R,—1=S,_, + p,—3. The dual
graph of the above curves is as in Figure 5.4 (ix).

Moreover, we blow up at H successively to get the dual graph of curves
as in Figure 5.4 (x), where B?=—2, C?=-2 (15j<a—1), A3=—1. By using
an isomorphism { of A4, onto A4, such that y(4,nF,)=A4,nB, we consider a
proper flat family n:%—4 in (5.6). Let C,:=B#F,, C,,,:=[E|], C,4;y:=
[Epl]’ T Cr:=[EN—1]’ Dr+1 :=[ER".-1], T Dn:=[E2]’ CIZ: a+1+ e+ Cr and
D:=D,,+ - -+D, Then C=C;+---+C,+C'is a cycle of rational curves and D’
is the longest branch of C. Thus we obtain Figure 4.2 (ii) for a=1+r—v,;>0. The
construction of Figure 4.2 (i) is similar. We omit the details.

(5.12) Finally we construct Figure 4.11. Since no new argument is neces-
sary, we only give a sketch of the construction. We start with Y in (5.11). Continue
to blow Y up over the previous centers. Eventually we obtain (by choosing a
suitable process) a rational surface X with a graph of curves given as in Figure 5.4
(xi), where 42=1, A2=—1, B}=B%=B%*=-2.

Consider a minimal admissible quadruple (X, 4,, 4,, Y) such that y(4,nF,)=
B,nA, (resp. BnA,) and y(A nF)=A,nB; (resp. #BnA,). Then on &, (¢#0),
we have a graph as in Figure 5.4 (xii). The graph has a unique cycle with d branches.
Since (B,#F,;)>=B?—1<-3 and (B*)><—2, the surface &, (¢#0) is minimal.
By computing the self-intersection numbers of these curves, we see that Figure 5.4
(xii) is one of the graphs in Figure 4.11. We note that an arbitrary graph in Figure
4.11 is constructed in this way.

This completes the proof of (5.6).

(5.13) Here we take again the torus embedding Y in (5.11). With the nota-
tion in (5.11) we define 4,=H=FEy and consider a minimal admissible quadruple
(Y, Ay, A,, ¥) such that Y(4,nF,)=A,n[Eg, -,] and Y(4,nF)=A4,n[Ey_,].
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Then by (5.6), we have two cycles 4 and B of rational curves of &, (¢#0) such that
(—A)=(=[E\T* —[E, Q% —((En-1]# F2)?)
=(p17 29 te ',2sp2, te ',Pm’ 2, t "2)9
[SE——— N e
(9:—3) (Gn—3)
(=B)=(=[ED, ~[E), -+ —([(Er,-1J# F))?)
=(2, "',2,(]1,2, "',2,(]2, ...,qm_l’Z, ...’z’qm)'
(p1—3) (p2—3) (Pm—3)

The surface &, (t1#0) is isomorphic to a hyperbolic Inoue surface by [14,
8.1)].

Parabolic Inoue surfaces and exceptional compactifications S, ; ; appear as
&, (t#0) by taking the following Y and various ¥ (see [16, p. 349]):

Y\\(C*)2=A1+F2+C,+A2+F1’ A2=En+1’ C’=Z[Ek],
k=1

Foe=[L], A3=1, A3=-1, [E]*=-2, Fi=-n, F}=0.

(5.14) We take again the torus embedding Y in (5.11) and set 4,=H=Ej.
Then we choose a minimal admissible quadruple (Y, 4,, 4,,¥) such that
YA, nF)=A,n[Ey_,] and y(A,nF,)=A,n[Eg, _,]. Then we have a unique
cycle C on &, (t#0). The cycle C has no branches and is given as

C=(C"‘[En—1])+[EN—1]#F1 +(D’_[ER,,.—1])+[ER",—1]#F2 ,
where ([Ey_,1#F,)*=—3 (resp. —(pn+1)) for g,,>3 (resp. ¢,,=3) and ([Eg,,-,]#
F,)*= —(g,,—1). Hence (— C?) is equal to

PPN . e e 2.2 oo -,2’...2, m—l
(p1,2, 727p27 ,Pm,z, ’2’ 3> $) ) 7q1, 1qm 1 q )

(9:—3) @n=4  (p1-3) (Pm—3)
or
(p1727”.’27p2"”pm—17 2,...,2,pm+1’2’...,2,q1’...,qm_l,z’...’z).
[ —— ———— e —t [S——
(9:-3) (Gm-1—3) (r:—3) (Pn—2)

This is the self-dual cycle (see (6.3)). If C’ is irreducible and if D'=¢J, then
we have a rational curve C'#F,#F, with a node with (C'#F,#F,)>*=(C'+F, +
F,)?>= —1. The surface &, (t#0) is in any case a half Inoue surface by (6.2).

6. Inoue surfaces with positive b,.

{6.1) THEOREM. Let S be a special VIl surface with a unique cycle C of
rational curves. Assume C*<0 and that C has no branches. Then S is isomorphic
to a half Inoue surface.
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PrROOF. Let D be a divisor such that mKs+D=0 in H?*(S, Z) for some
meZ with m>0. By (3.1) and the assumption, we have D,,=C. Hence
D=Y.n,C;. Then (D—mC)C;= —m(Ks+ C)C;=0, whence D=mC because (CC) is
negative definite. Hence b,(S)= —K2= —C?. It follows from [14, (9.3)] the S is
isomorphic to a half Inoue surface. q.e.d.

(6.2) CorOLLARY (cf. [15]). Let S be a minimal surface with a global
spherical shell. If S has a unique cycle C without branches and with C*<0, then
S is isomorphic to a half Inoue surface.

(6.3) PROPOSITION. Let C=C;+---+C, be the unique cycle of rational
curves on the surface in (6.1) or (6.2). If n=1, then C?*=—1. If n=2, then there
exist integers p; (23) (15j<1+1), q; (23) (1=j=1) such that

(_Cl%)=(p1$ 2, ',2,172, L D 2, .a2ap1+1a 2,0, 2, d1, "5 9 2, a2)
(9.—3) (9:—3) (p1—3) (P1+1—3)

ProoF. Although this follows also from (6.1) or (6.2), we give a direct proof
by using (1.5), (1.7), and (1.8). If n=1, then C?= —b,(S)=—n=—1. Assume
nx2. By applying (1.8) we have a canonical basis L; (1<j<n) of H?*(S, Z) such
that

Ks=Ljy,m, C=—LymtFo~—Ly,,

where F, is a flat line bundle of order two. Assume C;~L;—Lg for some
B;c[1,n]\{/}. Then by modifying [14, (6.8)] slightly, we have a canonical basis
{N, M; (15j<n)} of H*(S* Z) for an unramified double covering S* of §
such that

1I*C1=C;+C;', C,’]~Nj—N]'—l_MI}’ C‘,i’~Mj_Mj_1_NI;’.

Since the involution 1 of S* transforms Cj into Cj for any j, we have 1*M;=N,,
*N;=M;, I)=1I} (=:1), and C;~L;—L;_;—L;, (15j<n) on S and n*L;=M;+N,.
We define 1 =v, <v, < - <v,Snby I, #,Tand I, u---ul, =[1,n]. Hence C, ~
L,—L,-1—Ly,, C;~L,—L,_, (otherwise), where I, =[p, fi+1—11 (=Z/n2)
and B, <B,< - <B,. Wedefine v, and B, (k€ Z) by v, ,,= Vi, P+ m= B\ For simplicity,
we further assume C,,C, =0 for i#j. Then by C,C;=1 (A=vt1) and C, C,=0
(A# v, i £ 1), we see [By, fy+1—11=[vj,, v, +1— 1] for some ji, (1 £k <m). Hence there
is an / (0</<m—1) such that §; =v,, for any k. If />0, then by C, C,,, =0, we have
Vi=Vy+1+, Mod n, whence m=2/+123. Letting q;:=v; 1 —V;+2, p:=Vpir141—
Vi +2 (1274 12k=1+1), we have (6.3) with /2 1. If C,,C, =1 for some i and j,
then we can prove (6.3) with some p, or g;equal to 3 similarly. If /=0, then C; ~ —2L,— L,
and we can prove (by indexing suitably)

C1~_2Ln—L[2,n—1]’ Cj~Lj_Lj—1 2=jsn),
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whence
(—C,f)=(n+2, 2’ o '92)=(p1’ 2’ T 2) (p1=n+2g4) .
(n—3) (p1—3)
qg.e.d.

(6.4) TueoreM (cf. [7], [19]). Any Inoue surface with b,>0 contains a global
spherical shell.

ProOF. Let S be a hyperbolic Inoue surface, and let 4 and B be cycles
of rational curves on S. Then Zykel(4) and Zykel(B) are given by [14, (6.8)].
For any pair of sequences

5€q =(P192’ B "z’pz’ “ s Do 2,-- ’2)

(g:—3) (g.—3)
seq*=(2, . .,2’ ‘h’ 2, B 2, q2a .. "qn—l, 2, .« .’2, q")
(r:—3) (p2—3) (Pn—3)

we have as in (5.13) a proper flat family n: ¥ —>A4 over the unit disc 4 such that
&, has two cycles 4 and B of rational curves with Zykel(A)=seq, Zykel(B)=
seq*. By [14, (8.1)], &, (t#0) is a hyperbolic Inoue surface isomorphic to
S above. By (5.6), &, contains a global spherical shell, hence so does S. The same
argument applies to a half Inoue surface (resp. a parabolic Inoue surface) by
using (6.2), (6.3) and (5.14) (resp. (5.1) and [14, (7.1)]). See also (5.13), [7] or [19]
for parabolic Inoue surfaces. q.ed.

(6.5) DerFINITION. Let § be a VII, surface with b,>0. The Dloussky
number of S is defined as

DI(S):= —), D?+2#(rational curves with nodes)
D

with D running through all irreducible curves on S (see [4, p. 43]).

(6.6) LeMMA (cf. [4], [16]). Let S be a special VI, surface with a cycle
C with branches. Then DI(S)=3b,(S)—d—Y1_, A().

Proor. Clear from (3.8), (3.9), (4.2) and (4.11). q.ed.

(6.7) THEOREM. Let S be a VI, surface with b,>0. Then DI(S)<3b,(S),
with the equality holding if and only if S is an Inoue surface with b,>0.

Proor. It suffices to prove the assertion when S has no rational curves with
nodes, by taking an unramified double covering of S if necessary. Let M be the
reduced effective maximal divisor on S. Then b,(M)<b,(S) and M is with normal
crossing. By [14, §4] we have an exact sequence
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0-04(—logM)->O3—J,—0.

We see Jyu =@ ., Op(D) with D ranging over all the irreducible components
D of M. Hence h°(M,J,)=0 and h'(M,J,)=DI(S)—b,(M). We also have
h*(S, O5(—log M))<2 by [11], and K3*(S, @5)=0 by (1.2). On the other hand,
h(S, @5)<2 by [11] and x(S, O5)= —2b, so that h'(S, @5)< 2b,+2. This shows

DI(S) < b, (M) +2b,(S) +4<3b,(S) +4 .

This inequality holds for any VII, surface. So we take an unramified fivefold
covering S* of S. Let M* be the pullback of M. Then M* is clearly the reduced
effective maximal divisor of S*. Hence

DI(S*) < b,(M*) +2b,(S*) +4 < 3b,(S*)+4

so that 5DI(S)<15b,(S)+4. Therefore DI(S)<3b,(S). If moreover DI(S)=
3b,(S), then DI(S*)=3b,(S*). Hence 15b,(S)=5b,(M)+10b,(S)+4. This implies
b,(S)=b,(M), that is, S is special. By (6.6), DI(S)<3b,(S) if S satisfies (2.2).
Consequently, S is either an Inoue surface with b,>0 or an exceptional compactifi-
cation of an affine bundle (cf. [1] and (2.1)). However in the second case, DI(S)=
2b,(S)<3b,(S). It is easy to check that any Inoue surface with b,>0 satisfies
DI(S)=3b,(S) (see [5], [6]). . q.e.d.
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