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Abstract. A simple ^-singularity is a three-dimensional normal isolated sin-
gularity with a certain condition on the mixed Hodge structure on a good resolution.
We prove here that a three-dimensional normal isolated singularity is a simple
^-singularity if and only if the exceptional divisor of a β-factorial terminal modifica-
tion is an irreducible normal Λ3-surface.

A simple ^-singularity is defined in terms of the Hodge structure as a three-
dimensional analogue of a simple elliptic singularity. It is well known that a simple
elliptic singularity is characterized by the geometric structure of the minimal resolution
(cf. [S], [II] and [Wl]). The aim of this paper is to prove that a simple ^-singularity
is also characterized by the geometric structure of a (J-factorial terminal modification
which is a three-dimensional analogue of the minimal resolution (cf. [M]). This
characterization should help investigations of a simple A3-singularity which are being
carried out from various viewpoints (cf. [T], [W2], [W3] and [Y]).

The authors would like to thank Professors M. Tomari and K-i. Watanabe for
their helpful advices during the preparation of this paper.

Let/: X-+X be a good resolution of a normal isolated singularity (X, x), where a
resolution is called a good resolution if E=f~ 1(x)τed is a divisor with normal crossings.
We decompose £into irreducible components Ei{i=\,2,..., s). If (A", x) is a Gorenstein
singularity, then we have a presentation of canonical divisors

Σ i i Σ j j
iel jeJ

where m^O for any /e/and nij>0 for anyyeJ.

DEFINITION 1 (cf. [II]). In the previous situation, the divisor Σjej
mj^j *s

called the essential divisor and denoted by E3.

PROPOSITION 2 (cf. [II]). A Gorenstein isolated singularity {X,x) is purely elliptic
if and only if the essential divisor E3 is a non-zero reduced divisor {i.e. JΦ0 and nij= 1
for every jeJ) for any good resolution f

A purely elliptic singularity is defined in terms of the plurigenera {δm} in [Wl].
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However we do not need the concept of the plurigenera in this paper. So the reader
may consider the above proposition as the definition of a Gorenstein purely elliptic
singularity.

For a Gorenstein purely elliptic singularity (X, x), we define the type of the
singularity according to the Hodge structure of Ej. Since Ej is a complete variety with
normal crossings,

where « = dim(X, x) and H%q(*) means the (/?, ̂ -component of GvJ+qH
m(*). Since

(X, x) is purely elliptic singularity, we have Hn~\Ej, ΘEj) = Hn~\E, ΘE) = C (cf. [II,
3.7]). Therefore Hn~\Ej, ΘEj) must coincide with one of H*L\(EJ).

DEFINITION 3 (cf. [II]). Foraninteger/(0<z<«—1), a purely elliptic singularity
(X, x) is of type (0, i) if Hn~ι(Ej, ΘEj) consists of the (0, z)-Hodge component.

EXAMPLE 1. A 2-dimensional Gorenstein isolated singularity (X, x) is purely
elliptic if and only if (X, x) is either a simple elliptic singularity or a cusp singularity.
They are characterized by the exceptional curves on the minimal resolutions. The
exceptional curve of a simple elliptic singularity is a non-singular elliptic curve and that
of a cusp singularity is a cycle of rational curves. A simple elliptic singularity is of type
(0, 1) and a cusp singularity is of type (0, 0).

Now, we define a three-dimensional analogue of a simple elliptic singularity.

DEFINITION 4. A normal isolated singularity (X, x) of dimension three is called a
simple ^-singularity, if (X, x) is a Gorenstein purely elliptic singularity of type (0, 2).

DEFINITION 5. A projective birational morphism g: Y^X is called a partial
resolution of the singularity on X, if g is an isomorphism on the outside of the
singular locus of X and Y is normal. A partial resolution g: Y-+X is called a
(J-factorial terminal modification, if Y has only g-factorial terminal singularities and
the canonical divisor Kγ is ^-semi-ample. Here g-semi-ample means that the natural
map g*g^Θγ(mKγ)-*Θγ(mKγ) is surjective for some m divisible by the index of Y.

REMARK. For a two-dimensional singularity, a Q-factorial terminal modification
is equivalent to the minimal resolution. By [M, 0.3.12], every three-dimensional
normal singularity admits a β-factorial terminal modification.

LEMMA 6. Let (X, x) be an n-dimensional Gorenstein purely elliptic singularity of
type (0, n—\). Then, for any good resolution f: X^>X of the singularity, the essential
divisor E3 is irreducible.

PROOF. Assume that E3 has a decomposition EJ = Eι + E2. From the Mayer-
Vietoris exact sequence
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Hn~2(E1nE2, C) -> H"-\Ej, C) -> H"-\El9 C) ® Hn~\E2, C),

we have the exact sequence

Gr°H n ~ 2 (E, n E2) -* Gr°FH
n-\Ej) -> Gr°H n ~ 1 (E 1 ) ® Gτ°FH

n-\E2)

where F is the Hodge filtration. The first term does not contribute to the

(0, n— l)-component of the middle term, since Et n 2s2 is a compact (n — 2)-dimensional

variety. Therefore, the middle term is mapped to the last one injectively. This contradicts

the fact that Hn~\Eh Θ) = 0 for i = 1, 2 (cf. [II, Corollary 3.9]).

LEMMA 7. Let (X, x) be an n-dimensional Gorenstein purely elliptic singularity of

type (0, n— 1). Then, for a Q-factorial terminal modification g: Y-+X, the exceptional

set D = g~1(x)τed is an irreducible divisor and Kγ = g*Kx — D. Furthermore, if Y is non-

singular in codimension two, then D is non-singular in codimensίon one.

PROOF. First of all, we see that D is a divisor and Kγ = g*Kx — D', where D' is an

effective divisor with the support exactly on D. This is proved by a slight modification

of [12, Lemma 2] as follows:

As is well-known, a projective birational morphism g: Y-+X is obtained by the

blowing up of some ideal sheaf on X. Therefore there are positive numbers

mi 0 = 1 , 2 , . . . , r, r + 1 , . . . , / ) such that L= —Yj

t.=zlmiEi is a relatively very ample

Cartier divisor with respect to g, where all ^ ' s (/= 1, 2, . . . , r) are the irreducible Weil

divisors contained in g~x(x) and ^ ' s ( / = r + l , . . . ,/) are the ones not contained in

g~ι(x). Since Kγ is relatively nef, Kγ + aL (a>0, aeQ) is relatively nef with respect to

g. Denote the canonical divisor Kγ by g*Kx — Σr

i = 1aiEi with ateQ. If there exists a

non-positive ah we let a be the non-negative number — m i ^ <ir<r {a^m^. Then we have:

- £ amtEt- £ βtE,,
i=r+l

where ^ = 0 for the f s such that ajnii attain the minimal value, and ^ > 0 for the other

f s. Here, there exists / (1 <i<r) for which ajmi does not attain the minimal value — a,

otherwise the singularity (X, x) would become a canonical singularity. Let Et be an

irreducible component with ^ = 0 and E^E^0 for some j with βj>0. Let C be an

irreducible curve on Ei such that CίλE}Φ0 and CφEj. Then (Kγ + aL) C < 0, which

is a contradiction. Therefore a/s are all positive. Now it remains to show that

flf~1Wred==Σi = i^ i ^ e t C be a curve in an irreducible component of g~1(x)red of

codimension greater than one. We may assume that the curve C is not contained in

Σrι = iEi a n d intersects it. Then Kγ-C = (g*Kγ-Σr

i = 1aiEi)-Cf<0, since at>0 for

/= 1, 2 , . . . , r. This is a contradiction to the fact that Kγ is relatively nef. Therefore

^~1Wred must coincide with Σ = 1 Et.
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Take a blowing-up σ: X->Y such that the composite / = g o σ: X->X becomes a
good resolution of the singularity (X, x). Then the proper transform of each component
of D is a component of the essential divisor. By Lemma 6, the number of components
of D should be less than or equal to one. If D = 0, then the singularity (X, x) is canonical,
a contradiction. Therefore D is irreducible. By Proposition 2, Kχ=f*Kx — [£>] + (the
other components), where [/)] denotes the proper transform of D on X. Then the
coefficient r of D in the equality Kγ = g*Kx — rD is one. Finally we show the last assertion.
Assume there exists a component S of the singular locus of codimension one in D,
Denote the multiplicity of D at a general point of S by m (>2). Then, in the expression
Kχ=f*Kχ — [^] +ΣI=i mfiv there exists an exceptional component Ei such that Et is
mapped onto S and raf= — (ra— 1), because, at a general point of S, S is non-singular
(ft — 2)-fold in a non-singular «-fold Y. By Lemma 6, we have mf > 0 for every /, which
leads to a contradiction m < 1.

DEFINITION 8. A normal surface S satisfying the following mutually equivalent
conditions (see [U], for example) is called a normal Λ3-surface:

(1) the minimal' resolution of S is a Λ3-surface;
(2) Ks is trivial and S is birational to a Λ3-surface;
(3) Ks is trivial, H1(S, @s) = 0 and all the singularities on S are rational double

points.

THEOREM. Let (X, x) be a three-dimensional normal isolated singularity. Then, (X, x)

is a simple K3-singularity if and only if D = g~1(X)τed is a normal K3-surface for a

Q-factorial terminal modification g : F-> X of the singularity.

PROOF. First of all, note that the singularities on Fis isolated, since 3-dimensional
terminal singularities are proved to be isolated (cf. [R]). Assume that (X, x) is a simple
^-singularity. By Lemma 7, D is irreducible and Kγ = g*Kx — D. From the exact
sequence

0 -> Θ(KY) -+Θγ^ΘD^>0,

we have exact sequences of local cohomologies

Hl(Y9 βγ) - HUD, GD) - //;+ \Y, Θ(KY))

for every point peD. Since Θγ and ΘY(KY) are both Cohen-Macaulay 0y-modules, we
get Hi

p(Θγ) = Hi

p(Θγ(Kγ)) = 0 for /=0, 1, 2. By the exact sequence, we have Hρ(ΘD) = 0
for /=0, 1 which implies depth ΘD>2. Now, a two-dimensional variety D turns out to
be a Cohen-Macaulay variety. On the other hand, D is non-singular in codimension
one by Lemma 7. By Serre's Criterion, we see that D is normal. Moreover Θ(KD)~ΘD.
In fact, the equality of Weil divisors Kγ = g*Kx — D yields the isomorphism Θ(KD)~ΘD

on the outside of the singular locus of Y by the adjunction formula. And the isomor-
phism can be extended to every point of D, since the singularities of Y are isolated.
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By [U], such a normal surface is either a normal /O-surface, an Abelian surface or
birational to a ruled surface. However D is not an Abelian surface, because HX{D, ΘD) =
R1g^&γ = 0 by the Cohen-Macaulay property of (X, x). And D is not birational to a
ruled surface, because a resolution D-+D of D must satisfy H2(D,Θΰ)~C by the
property of the essential divisor of a purely elliptic singularity (cf. [II, 3.7]). Thus, D
must be a normal Λ3-surface.

Conversely, let D be a normal Λ3-surface. Consider the exact sequence

0 -» Θ(KY) ^ Θ{KY + D) L (9D(KD).

We claim that β is surjective. Denote the cokernel of α by C. Here we have depthp C> 2
for every point p on Y, because depthpΘ{KY) = 3 and depthpΘ(KY + D)>2. Then the
inclusion Cc:Θ(KD) becomes an equality, since both sides coincide with each other on
the complement of finite points on Y. Now the claim is proved. Replacing X by a
sufficiently small Stein neighbourhood of x, we have an exact sequence:

Γ(Y, Θ(KY + D)) ̂  Γ(D, 0(KD)) -> H\Y, O(KY)) = 0 ,

where the last term is zero by the Grauert-Riemenschneider vanishing theorem. Therefore
there exists ΘeΓ(Y, Θ{KY + D)) such that φ(θ) is a nowhere-vanishing holomorphic
2-form on D. Since the singularities on Y are β-factorial, the intersection of every two
Weil divisors consists of curves, if they do intersect. Let Z be the zero divisor of θ.
Then Z n D turns out to be empty, for otherwise φ(θ) would vanish on the curves Z n Z>,
a contradiction. Therefore the 3-form θ defines an isomorphism Θγ( — D) ~ ΘY(KY), which
implies that Kx is a Cartier divisor on X. Now we are going to prove that (X, x) is a
Cohen-Macaulay singularity. By the above isomorphism we have an exact sequence

0 -> Θ(KY) -+Θγ-+ΘD->0.

Since Y has only rational singularities, H\Y, Θ(KY)) = 0 for z>0 by the Grauert-
Riemenschneider vanishing theorem. This yields isomorphisms H\Y, Θγ)caH\D, ΘD)
for />0. In our situation, both Y and D are Du Bois varieties. By [II, Proposition
1.4], the singularity (X, x) is a Du Bois singularity. The preceding isomorphism for
/= 1 implies that (X9 x) is a Cohen-Macaulay singularity. Now (X, x) is a Gorenstein
Du Bois singularity, which is proved to be either rational or purely elliptic by [II,
2.3]. The geometric genus pg(X, x) = dimH2(Y, Θγ) = dimH2(D, ΘD)= 1 means that
(X, x) is purely elliptic. Furthermore, the essential divisor of a good resolution of the
singularity has a component [Z>] with 7/2([Z>], Θ[D]) = 1, which means that (I,x) is
of type (0,2).

EXAMPLE 2. Every normal Λ3-surface presented as a quartic in P3 can be the
exceptional divisor on a β-factorial terminal modification of a simple A3 -singularity.

Let D' a P3 be a normal quartic with only rational singularities and H a general
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hypersurface of degree d which does not pass through the singular points of D'. Denote

the blowing-up of P3 at the non-singular center D' nH by σ: X^P3 and the proper

transform of D' on X by D. For d> 5, the divisor D can be contracted in X to a simple

Λ3-singularity (X, x). The singularity (X, x) is a hypersurface singularity if and only if

d= 5. In this case, the defining equation isφ — φ where φ and ^ are the defining equations

of D' and H in P 3 , respectively.

REMARK. We can also define a simple Abelian singularity as follows: a three-

dimensional normal isolated singularity (X, x) is called a simple Abelian singularity

if it is quasi-Gorenstein, purely elliptic of type (0, 2) and not a Cohen-Macaulay

singularity. In this case, the exceptional divisor D = g~1(x)red of a (7-factorial terminal

modification g: Y-+X is an Abelian surface.
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