Tôhoku Math. J. 44 (1992), 19-24

A GEOMETRIC CHARACTERIZATION OF A SIMPLE K3-SINGULARITY

SHIHOKO ISHII AND KIMIO WATANABE

(Received December 3, 1990, revised September 30, 1991)

Abstract. A simple K3-singularity is a three-dimensional normal isolated singularity with a certain condition on the mixed Hodge structure on a good resolution. We prove here that a three-dimensional normal isolated singularity is a simple K3-singularity if and only if the exceptional divisor of a **Q**-factorial terminal modification is an irreducible normal K3-surface.

A simple K3-singularity is defined in terms of the Hodge structure as a threedimensional analogue of a simple elliptic singularity. It is well known that a simple elliptic singularity is characterized by the geometric structure of the minimal resolution (cf. [S], [I1] and [W1]). The aim of this paper is to prove that a simple K3-singularity is also characterized by the geometric structure of a Q-factorial terminal modification which is a three-dimensional analogue of the minimal resolution (cf. [M]). This characterization should help investigations of a simple K3-singularity which are being carried out from various viewpoints (cf. [T], [W2], [W3] and [Y]).

The authors would like to thank Professors M. Tomari and K-i. Watanabe for their helpful advices during the preparation of this paper.

Let $f: \tilde{X} \to X$ be a good resolution of a normal isolated singularity (X, x), where a resolution is called a good resolution if $E = f^{-1}(x)_{red}$ is a divisor with normal crossings. We decompose E into irreducible components E_i (i=1, 2, ..., s). If (X, x) is a Gorenstein singularity, then we have a presentation of canonical divisors

$$K_{\tilde{X}} = f^* K_X + \sum_{i \in I} m_i E_i - \sum_{j \in J} m_j E_j ,$$

where $m_i \ge 0$ for any $i \in I$ and $m_i > 0$ for any $j \in J$.

DEFINITION 1 (cf. [I1]). In the previous situation, the divisor $\sum_{j \in J} m_j E_j$ is called the essential divisor and denoted by E_J .

PROPOSITION 2 (cf. [I1]). A Gorenstein isolated singularity (X, x) is purely elliptic if and only if the essential divisor E_J is a non-zero reduced divisor (i.e. $J \neq \emptyset$ and $m_j = 1$ for every $j \in J$) for any good resolution f.

A purely elliptic singularity is defined in terms of the plurigenera $\{\delta_m\}$ in [W1].

¹⁹⁹¹ Mathematics Subject Classification. Primary 14B05; Secondary 32S45, 32S35.

S. ISHII AND K. WATANABE

However we do not need the concept of the plurigenera in this paper. So the reader may consider the above proposition as the definition of a Gorenstein purely elliptic singularity.

For a Gorenstein purely elliptic singularity (X, x), we define the type of the singularity according to the Hodge structure of E_J . Since E_J is a complete variety with normal crossings,

$$H^{n-1}(E_J, \mathcal{O}_{E_J}) \simeq \operatorname{Gr}_F^0 H^{n-1}(E_J) = \bigoplus_{i=1}^{n-1} H^{0,i}_{n-1}(E_J),$$

where $n = \dim(X, x)$ and $H_m^{p,q}(*)$ means the (p, q)-component of $\operatorname{Gr}_{p+q}^W H^m(*)$. Since (X, x) is purely elliptic singularity, we have $H^{n-1}(E_J, \mathcal{O}_{E_J}) = H^{n-1}(E, \mathcal{O}_E) = C$ (cf. [11, 3.7]). Therefore $H^{n-1}(E_J, \mathcal{O}_{E_J})$ must coincide with one of $H_{n-1}^{0,i}(E_J)$.

DEFINITION 3 (cf. [11]). For an integer $i (0 \le i \le n-1)$, a purely elliptic singularity (X, x) is of type (0, i) if $H^{n-1}(E_J, \mathcal{O}_{E_J})$ consists of the (0, i)-Hodge component.

EXAMPLE 1. A 2-dimensional Gorenstein isolated singularity (X, x) is purely elliptic if and only if (X, x) is either a simple elliptic singularity or a cusp singularity. They are characterized by the exceptional curves on the minimal resolutions. The exceptional curve of a simple elliptic singularity is a non-singular elliptic curve and that of a cusp singularity is a cycle of rational curves. A simple elliptic singularity is of type (0, 1) and a cusp singularity is of type (0, 0).

Now, we define a three-dimensional analogue of a simple elliptic singularity.

DEFINITION 4. A normal isolated singularity (X, x) of dimension three is called a simple K3-singularity, if (X, x) is a Gorenstein purely elliptic singularity of type (0, 2).

DEFINITION 5. A projective birational morphism $g: Y \to X$ is called a partial resolution of the singularity on X, if g is an isomorphism on the outside of the singular locus of X and Y is normal. A partial resolution $g: Y \to X$ is called a Q-factorial terminal modification, if Y has only Q-factorial terminal singularities and the canonical divisor K_Y is g-semi-ample. Here g-semi-ample means that the natural map $g^*g_*\mathcal{O}_Y(mK_Y) \to \mathcal{O}_Y(mK_Y)$ is surjective for some m divisible by the index of Y.

REMARK. For a two-dimensional singularity, a Q-factorial terminal modification is equivalent to the minimal resolution. By [M, 0.3.12], every three-dimensional normal singularity admits a Q-factorial terminal modification.

LEMMA 6. Let (X, x) be an n-dimensional Gorenstein purely elliptic singularity of type (0, n-1). Then, for any good resolution $f: \tilde{X} \to X$ of the singularity, the essential divisor E_J is irreducible.

PROOF. Assume that E_J has a decomposition $E_J = E_1 + E_2$. From the Mayer-Vietoris exact sequence

20

$$H^{n-2}(E_1 \cap E_2, \mathbb{C}) \to H^{n-1}(E_J, \mathbb{C}) \to H^{n-1}(E_1, \mathbb{C}) \oplus H^{n-1}(E_2, \mathbb{C}),$$

we have the exact sequence

$$\begin{aligned} \operatorname{Gr}_F^0 H^{n-2}(E_1 \cap E_2) \to \operatorname{Gr}_F^0 H^{n-1}(E_J) \to \operatorname{Gr}_F^0 H^{n-1}(E_1) \oplus \operatorname{Gr}_F^0 H^{n-1}(E_2) \\ \| \\ H^{n-1}(E_J, \mathcal{O}) & H^{n-1}(E_1, \mathcal{O}) \oplus H^{n-1}(E_2, \mathcal{O}) , \end{aligned}$$

where F is the Hodge filtration. The first term does not contribute to the (0, n-1)-component of the middle term, since $E_1 \cap E_2$ is a compact (n-2)-dimensional variety. Therefore, the middle term is mapped to the last one injectively. This contradicts the fact that $H^{n-1}(E_i, \mathcal{O}) = 0$ for i = 1, 2 (cf. [I1, Corollary 3.9]).

LEMMA 7. Let (X, x) be an n-dimensional Gorenstein purely elliptic singularity of type (0, n-1). Then, for a **Q**-factorial terminal modification $g: Y \rightarrow X$, the exceptional set $D = g^{-1}(x)_{red}$ is an irreducible divisor and $K_Y = g^*K_X - D$. Furthermore, if Y is non-singular in codimension two, then D is non-singular in codimension one.

PROOF. First of all, we see that D is a divisor and $K_Y = g^*K_X - D'$, where D' is an effective divisor with the support exactly on D. This is proved by a slight modification of [I2, Lemma 2] as follows:

As is well-known, a projective birational morphism $g: Y \to X$ is obtained by the blowing up of some ideal sheaf on X. Therefore there are positive numbers m_i (i=1, 2, ..., r, r+1, ..., t) such that $L = -\sum_{i=1}^t m_i E_i$ is a relatively very ample Cartier divisor with respect to g, where all E_i 's (i=1, 2, ..., r) are the irreducible Weil divisors contained in $g^{-1}(x)$ and E_i 's (i=r+1, ..., t) are the ones not contained in $g^{-1}(x)$. Since K_Y is relatively nef, $K_Y + aL$ $(a \ge 0, a \in Q)$ is relatively nef with respect to g. Denote the canonical divisor K_Y by $g^*K_X - \sum_{i=1}^r a_i E_i$ with $a_i \in Q$. If there exists a non-positive a_i , we let a be the non-negative number $-\min_{1 \le i \le r} \{a_i/m_i\}$. Then we have:

$$K_{Y} + aL = g^{*}K_{X} - \sum_{i=r+1}^{t} am_{i}E_{i} - \sum_{i=1}^{r} \beta_{i}E_{i},$$

where $\beta_i = 0$ for the *i*'s such that a_i/m_i attain the minimal value, and $\beta_i > 0$ for the other *i*'s. Here, there exists $i \ (1 \le i \le r)$ for which a_i/m_i does not attain the minimal value -a, otherwise the singularity (X, x) would become a canonical singularity. Let E_i be an irreducible component with $\beta_i = 0$ and $E_i \cap E_j \ne \emptyset$ for some *j* with $\beta_j > 0$. Let *C* be an irreducible curve on E_i such that $C \cap E_j \ne \emptyset$ and $C \Leftarrow E_j$. Then $(K_Y + aL) \cdot C < 0$, which is a contradiction. Therefore a_i 's are all positive. Now it remains to show that $g^{-1}(x)_{red} = \sum_{i=1}^{r} E_i$. Let *C'* be a curve in an irreducible component of $g^{-1}(x)_{red}$ of codimension greater than one. We may assume that the curve *C'* is not contained in $\sum_{i=1}^{r} E_i$ and intersects it. Then $K_Y \cdot C' = (g^*K_Y - \sum_{i=1}^{r} a_i E_i) \cdot C' < 0$, since $a_i > 0$ for $i=1, 2, \ldots, r$. This is a contradiction to the fact that K_Y is relatively nef. Therefore $g^{-1}(x)_{red}$ must coincide with $\sum_{i=1}^{r} E_i$.

S. ISHII AND K. WATANABE

Take a blowing-up $\sigma: \tilde{X} \to Y$ such that the composite $f = g \circ \sigma: \tilde{X} \to X$ becomes a good resolution of the singularity (X, x). Then the proper transform of each component of D is a component of the essential divisor. By Lemma 6, the number of components of D should be less than or equal to one. If D = 0, then the singularity (X, x) is canonical, a contradiction. Therefore D is irreducible. By Proposition 2, $K_{\tilde{X}} = f^*K_X - [D] + (\text{the other components})$, where [D] denotes the proper transform of D on \tilde{X} . Then the coefficient r of D in the equality $K_Y = g^*K_X - rD$ is one. Finally we show the last assertion. Assume there exists a component S of the singular locus of codimension one in D. Denote the multiplicity of D at a general point of S by $m (\geq 2)$. Then, in the expression $K_{\tilde{X}} = f^*K_X - [D] + \sum_{i=1}^s m_i E_i$, there exists an exceptional component E_i such that E_i is mapped onto S and $m_i = -(m-1)$, because, at a general point of S, S is non-singular (n-2)-fold in a non-singular n-fold Y. By Lemma 6, we have $m_i \geq 0$ for every i, which leads to a contradiction $m \leq 1$.

DEFINITION 8. A normal surface S satisfying the following mutually equivalent conditions (see [U], for example) is called a normal K3-surface:

(1) the minimal resolution of S is a K3-surface;

(2) K_s is trivial and S is birational to a K3-surface;

(3) K_s is trivial, $H^1(S, \mathcal{O}_s) = 0$ and all the singularities on S are rational double points.

THEOREM. Let (X, x) be a three-dimensional normal isolated singularity. Then, (X, x) is a simple K3-singularity if and only if $D = g^{-1}(X)_{red}$ is a normal K3-surface for a **Q**-factorial terminal modification $g: Y \to X$ of the singularity.

PROOF. First of all, note that the singularities on Y is isolated, since 3-dimensional terminal singularities are proved to be isolated (cf. [R]). Assume that (X, x) is a simple K3-singularity. By Lemma 7, D is irreducible and $K_Y = g^*K_X - D$. From the exact sequence

 $0 \to \mathcal{O}(K_Y) \to \mathcal{O}_Y \to \mathcal{O}_D \to 0 ,$

we have exact sequences of local cohomologies

$$H^i_p(Y, \mathcal{O}_Y) \to H^i_p(D, \mathcal{O}_D) \to H^{i+1}_p(Y, \mathcal{O}(K_Y))$$

for every point $p \in D$. Since \mathcal{O}_Y and $\mathcal{O}_Y(K_Y)$ are both Cohen-Macaulay \mathcal{O}_Y -modules, we get $H_p^i(\mathcal{O}_Y) = H_p^i(\mathcal{O}_Y(K_Y)) = 0$ for i = 0, 1, 2. By the exact sequence, we have $H_p^i(\mathcal{O}_D) = 0$ for i = 0, 1 which implies depth $\mathcal{O}_D \ge 2$. Now, a two-dimensional variety D turns out to be a Cohen-Macaulay variety. On the other hand, D is non-singular in codimension one by Lemma 7. By Serre's Criterion, we see that D is normal. Moreover $\mathcal{O}(K_D) \simeq \mathcal{O}_D$. In fact, the equality of Weil divisors $K_Y = g^*K_X - D$ yields the isomorphism $\mathcal{O}(K_D) \simeq \mathcal{O}_D$ on the outside of the singular locus of Y by the adjunction formula. And the isomorphism can be extended to every point of D, since the singularities of Y are isolated.

22

By [U], such a normal surface is either a normal K3-surface, an Abelian surface or birational to a ruled surface. However D is not an Abelian surface, because $H^1(D, \mathcal{O}_D) = R^1 g_* \mathcal{O}_Y = 0$ by the Cohen-Macaulay property of (X, x). And D is not birational to a ruled surface, because a resolution $\tilde{D} \rightarrow D$ of D must satisfy $H^2(\tilde{D}, \mathcal{O}_D) \simeq C$ by the property of the essential divisor of a purely elliptic singularity (cf. [I1, 3.7]). Thus, D must be a normal K3-surface.

Conversely, let D be a normal K3-surface. Consider the exact sequence

$$0 \to \mathcal{O}(K_Y) \xrightarrow{\alpha} \mathcal{O}(K_Y + D) \xrightarrow{\beta} \mathcal{O}_D(K_D)$$

We claim that β is surjective. Denote the cokernel of α by C. Here we have depth_p $C \ge 2$ for every point p on Y, because depth_p $\mathcal{O}(K_Y) = 3$ and depth_p $\mathcal{O}(K_Y + D) \ge 2$. Then the inclusion $C \subset \mathcal{O}(K_D)$ becomes an equality, since both sides coincide with each other on the complement of finite points on Y. Now the claim is proved. Replacing X by a sufficiently small Stein neighbourhood of x, we have an exact sequence:

$$\Gamma(Y, \mathcal{O}(K_Y + D)) \xrightarrow{\varphi} \Gamma(D, \mathcal{O}(K_D)) \to H^1(Y, \mathcal{O}(K_Y)) = 0,$$

where the last term is zero by the Grauert-Riemenschneider vanishing theorem. Therefore there exists $\theta \in \Gamma(Y, \mathcal{O}(K_Y + D))$ such that $\varphi(\theta)$ is a nowhere-vanishing holomorphic 2-form on *D*. Since the singularities on *Y* are **Q**-factorial, the intersection of every two Weil divisors consists of curves, if they do intersect. Let *Z* be the zero divisor of θ . Then $Z \cap D$ turns out to be empty, for otherwise $\varphi(\theta)$ would vanish on the curves $Z \cap D$, a contradiction. Therefore the 3-form θ defines an isomorphism $\mathcal{O}_Y(-D) \simeq \mathcal{O}_Y(K_Y)$, which implies that K_X is a Cartier divisor on *X*. Now we are going to prove that (X, x) is a Cohen-Macaulay singularity. By the above isomorphism we have an exact sequence

$$0 \to \mathcal{O}(K_{\gamma}) \to \mathcal{O}_{\gamma} \to \mathcal{O}_{D} \to 0$$
.

Since Y has only rational singularities, $H^i(Y, \mathcal{O}(K_Y))=0$ for i>0 by the Grauert-Riemenschneider vanishing theorem. This yields isomorphisms $H^i(Y, \mathcal{O}_Y) \simeq H^i(D, \mathcal{O}_D)$ for i>0. In our situation, both Y and D are Du Bois varieties. By [11, Proposition 1.4], the singularity (X, x) is a Du Bois singularity. The preceding isomorphism for i=1 implies that (X, x) is a Cohen-Macaulay singularity. Now (X, x) is a Gorenstein Du Bois singularity, which is proved to be either rational or purely elliptic by [11, 2.3]. The geometric genus $p_g(X, x) = \dim H^2(Y, \mathcal{O}_Y) = \dim H^2(D, \mathcal{O}_D) = 1$ means that (X, x) is purely elliptic. Furthermore, the essential divisor of a good resolution of the singularity has a component [D] with $H^2([D], \mathcal{O}_{[D]}) = 1$, which means that (X, x) is of type (0, 2).

EXAMPLE 2. Every normal K3-surface presented as a quartic in P^3 can be the exceptional divisor on a Q-factorial terminal modification of a simple K3-singularity.

Let $D' \subset \mathbf{P}^3$ be a normal quartic with only rational singularities and H a general

S. ISHII AND K. WATANABE

hypersurface of degree d which does not pass through the singular points of D'. Denote the blowing-up of P^3 at the non-singular center $D' \cap H$ by $\sigma: \tilde{X} \to P^3$ and the proper transform of D' on \tilde{X} by D. For $d \ge 5$, the divisor D can be contracted in \tilde{X} to a simple K3-singularity (X, x). The singularity (X, x) is a hypersurface singularity if and only if d=5. In this case, the defining equation is $\varphi - \psi$ where φ and ψ are the defining equations of D' and H in P^3 , respectively.

REMARK. We can also define a simple Abelian singularity as follows: a threedimensional normal isolated singularity (X, x) is called a simple Abelian singularity if it is quasi-Gorenstein, purely elliptic of type (0, 2) and not a Cohen-Macaulay singularity. In this case, the exceptional divisor $D = g^{-1}(x)_{red}$ of a **Q**-factorial terminal modification $g: Y \to X$ is an Abelian surface.

REFERENCES

- [11] S. ISHII, On isolated Gorenstein singularities, Math. Ann. 270 (1985), 541-554.
- [I2] S. ISHII, Quasi-Gorenstein Fano 3-folds with isolated non-rational loci, Compositio Math. 77 (1991), 335-341.
- [M] S. MORI, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), 117-253.
- [R] M. REID, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math. 1 1983, 131–180. Kinokuniya/North-Holland.
- [S] K. SAITO, Einfach-elliptishe Singularitäten, Inv. Math. 23 (1974), 289–325.
- [T] M. TOMARI, The canonical filtration of higher dimensional purely elliptic singularity of a special type, Inv. Math. 104 (1991), 497–520.
- [U] Y. UMEZU, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math. 4 (1981), 343-354.
- [W1] K. WATANABE, On plurigenera of normal isolated singularities I, Math. Ann. 250 (1980), 65-94.
- [W2] K. WATANABE, Riemann-Roch theorem for normal isolated singularities, preprint, 1989.
- [W3] K. WATANABE, Distribution formula for terminal singularities on the minimal resolution of a quasi-homogeneous simple K3-singularity, Tôhoku Math. J. 43 (1991) 275–288.
- [Y] T. YONEMURA, Hypersurface simple K3-singularities, Tôhoku Math. J. 42 (1990), 351-380.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro 152 Tokyo Japan Institute of Mathematics University of Tsukuba Tsukuba 305 Ibaraki Japan

24