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Abstract. The homogeneous coordinate ring of a toric variety was first introduced

by Cox. In this paper, we study that of a toric variety with enough invariant effective

Cartier divisors in detail. Here a toric variety is said to have enough invariant effective

Cartier divisors if, for each nonempty affine open subset stable under the action of the

torus, there exists an effective Cartier divisor whose support equals its complement. Both

quasi-projective toric varieties and simplicial toric varieties have enough invariant

effective Cartier divisors. In terms of the homogeneous coordinate ring, we describe the

data needed to specify a morphism from a scheme to such a toric variety. As a con-

sequence, we generalize a result of Cox, one of Oda and Sankaran, and one of Guest

concerning data on morphisms.

Introduction. Let A: be a field, N a free Z-module of rank r, M the Z-module dual
to N, T: = Gm®N the algebraic torus of dimension r corresponding to N9 and Δ a
(finite) fan of NQ. Let XΔ be the toric variety associated to Δ, Dp the closure of the
Γ-orbit corresponding to a one-dimensional cone peΔ, σ(l) the set of one-dimensional
cones contained in a cone σeΔ, and Pic(zl)>0 the monoid of linear equivalence classes
of invariant effective Cartier divisors. A toric variety XΔ is said to have enough invariant
effective Cartier divisors if, for each cone σeΔ, there exists an effective Γ-invariant
Cartier divisor D with SuppD=(Jp ί έ σ ( 1 )Z)p. Both quasi-projective toric varieties and
simplicial toric varieties have enough invariant effective Cartier divisors (cf. Remark
1.6(3)).

Cox [1] introduced two homogeneous coordinate rings of a toric variety XΔ\ one
is the monoid algebra S of the monoid of effective Γ-invariant Weil divisors with
Chow-grading, while the other is the subring SΔ of S with Pic-grading (see [1, p. 19,
p. 35]). He constructed in [1] the toric variety XΔ as the quotient of an open subscheme
of Spec S, and described in [2, Theorem 1.1] the data needed to specify a map from a
scheme to an arbitrary smooth toric variety in terms of its homogeneous coordinate
ring.

The purpose of this paper is to generalize Cox's description to one for an arbitrary
toric variety with enough invariant effective Cartier divisors by studying the latter
homogeneous coordinate ring in detail (cf. Theorem 3.4 and Theorem 4.3).

The contents of this paper are as follows:
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In Section 1, we study the latter homogeneous coordinate ring SΔ in detail and
prove that a toric variety XΔ with enough invariant effective Cartier divisors is the
geometric quotient of an open subscheme of SpecS^. In Section 2, we study quasi-
coherent modules on XΔ associated to graded ^-modules in the same way as that in
EGA [9, II §2]. In Section 3, we prove a one-to-one correspondence between the set
of morphisms from a scheme to a closed subscheme of XΔ and the set of graded algebra
homomorphisms satisfying a nondegeneracy condition (Theorem 3.4). In Section 4,
applying the above correspondence to a toric variety with enough invariant effective
Cartier divisors, we generalize all known results on morphisms from a scheme to a toric
variety.

The author thanks Professor Tadao Oda for making available an unpublished
result of Oda and Sankaran, and for stimulating discussion on these subjects. He is
also very grateful to Professor Masa-Nori Ishida for the idea of describing the data on
morphisms from a scheme to a toric variety in terms of graded algebras. Finally, thanks
are due to the referee for his valuable comments.

Convention: A ring means a commutative ring with unity. A monoid means a
commutative semigroup with unity. For a ring A, we denote by Ax the multiplicative
group of units in A.

1. The homogeneous coordinate ring of a toric variety with enough invariant effective

Cartier divisors. In this section, we study the homogeneous coordinate ring SΔ of a
toric variety XΔ with enough invariant effective Cartier divisors in detail (see the
Introduction and Definition 1.5), which Cox [1, p. 35] studied only in the case of
simplicial toric varieties. We prove that such a toric variety XΔ is the geometric quotient
of an open subscheme of SpecSj (cf. [2, Theorem 2.1]).

Throughout this paper, except in Section 2, we let k be a field, TV a free Z-module
of rankr, M the Z-module dual to N, T: = Gm® N the algebraic torus of dimension r
corresponding to N, Δ a (finite) fan of NQ, Δmax the set of maximal cones in Δ9 Δ(l)
the set of one-dimensional cones in Δ, <, >: MQ xNQ^Q the duality pairing, and XΔ

the toric variety associated to A.
We first recall Γ-invariant Cartier divisors on the toric variety XΔ and the Picard

group Pic(^) (cf., e.g., [5, 3.4], [10, §2.1]). It is well-known that the following three
groups are canonically isomorphic to one another:

(a) The group TCDiv(XΔ) of Γ-invariant Cartier divisors on XΔ\
(b) The group SF(7V, Δ) of Δ-linear support functions on | A |: = (J σeΔ σ;
(c) The kernel of the homomorphism

(l.O.a) θ M / ( M n σ V Θ M/(Mn(anT)x);

([raj σez!max)h->([raτ-raσ] σ, τezJm a x),
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where σ 1 (resp. [mσ~]) denotes the set {raeM;<m, n} = 0 for all neσ} (resp. the
equivalence class oϊmσeM in Mj(M n σ1)). The above isomorphism maps a Γ-in variant
effective Cartier divisor to an /?<0-valued A -linear support function and to an element
in the intersection of the above kernel with 0 σ e J m a χ (Mnσ v )/(Mnσ 1 ) respectively.
Here σv is the cone dual to σ and we adopt an isomorphism between (b) and (c) which
maps /6SF(JV, A) to ( - / | σ ; σezlmax)e Θσ 6 d m MM/(Af nσ1).

The Picard group Pic(A^) is the quotient of T CDiv(^) modulo the subgroup of
those principal divisors which are of the form div(w): = £ p e d ( 1 ) <m, np}Dp for meM.
Here Dp (resp. np) is the Weil divisor corresponding to p e Λ(l) (resp. the unique generator
of pnN). Hence Pic(^) is isomorphic to T CΌi\(XΔ)/diw(M). Since both ΓCDiv(A^)
and Pic(Xj) are described only in terms of a fan A, we define CDiv(zl) and Pic(zl) as
follows:

DEFINITION 1.1. Let A be a fan.

(1) A Cartier divisor on A is defined to be an element in the kernel of the homo-
morphism in (l.O.a). A Cartier divisor ([raj σeAmax) on A is said to be effective if
mσeMnσv for each σeAmax. We denote by CDiv(zl) (resp. CDiv(zl)>0) the group of
Cartier divisors on A (resp. the monoid of effective Cartier divisors on A).

(2) A Cartier divisor ([mσ] σeAmax) on A is said to be principal if there exists
meM with [raσ] = [ra] in M/(Mnσ1) for each σeAmax. We denote by PDiv(zl) (resp.
div(m)) the group of principal divisors on A (resp. the principal divisor ([m] σezlmax)).

(3) The quotient CDiv(zl)/PDiv(zί) is said to be the Picard group of A, denoted
by Pic(zl). We also denote by Pic(zJ)>0 the image of the monoid CDiv(zl)>0.

REMARK 1.2. (1) The group CDiv(zl) of Cartier divisors on A is a free Z-module
of finite rank because it is a subgroup of Hom(Zzl(1), Z). Hence Pic(J) is finitely gen-
erated.

(2) The Picard group Pic(Zl) of a fan A is isomorphic to the first cohomology
group of the following cochain complex defined in a natural way:

0-+ 0 Mnσ1^ 0 M n ( σ n τ ) 1 ^ 0 Mn(σnτnv) 1 -• ,

where the first direct sum is the group of degree zero cochains. In particular, Pic(zJ) is
free if dimσ = r for each σeJ m a x . See Lemma 1.13 in general.

We introduce some useful notation as follows:

DEFINITION 1.3. Let A be a fan.

(1) For a Cartier divisor D = (\mσ~\ σezlmax), the support Supp/) of D is defined
to be the subset {peA{\)\ (jnσ, np}^0 for some σeAmax containing p} of A(l).

(2) For a cone σezl, we denote by CDiv(σ)+ the set of effective Cartier divisors
on A whose supports equal exactly σ(l) : = Zl(l)\σ(l). We also denote by CDiv(σ) the
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subgroup of Carder divisors on A whose supports are contained in σ(l): = zl(l)\σ(l).

A submonoid CDiv(Zl)σ>0 of CDiv(zl) is defined to be the submonoid {D = {[m^\ τe

Amax)eCΌiv(A);(mσ,n~)>0 for all peσ(l)}.
(3) A monoid ideal CDiv(zl)+ of CDiv(zJ)>0 is defined to be the ideal generated

REMARK 1.4. It is easy to see that given σ e A, we have CDiv(σ)+ B {0} if and only

if A is affine with \Δ \ = σ. Hence CDiv(A)+ =CDiv(J)> 0 if and only if A is affine.

The following notion on a fan is important in constructing the associated toric

variety as a geometric quotient (Theorem 1.9).

DEFINITION 1.5. Let A be a fan.

(1) A cone σ is said to be good in A if CDiv(σ)+ is not empty. We denote by

Agood the set of good cones in A.

(2) A fan A is said to be good if Agood = A.

(3) The toric variety associated to a good fan A is said to have enough invariant

effective Cartier divisors.

REMARK 1.6. (1) For a good cone σ, any face τ of σ is good because for

raeMnσv with m1nσ = τ and DeCDiv(σ) + , we have ID + div(ra)eCDiv(f)+ for /»0.

This shows that the above set Agood forms a subfan of A. This argument also shows

that A is good if CDiv(σ)+ # 0 for each maximal cone σe Amax.

(2) Although such a fan in Definition 1.5 should be said to have enough support

functions, we adopt the terminology in Definition 1.5 for simplicity.

(3) Both simplicial fans and quasi-projective fans (i.e., the associated toric varieties

are quasi-projective) are easily seen to be good. Hence both simplicial toric varieties

and quasi-projective toric varieties have enough invariant effective Cartier divisors.

(4) There exists a complete fan A with Pic(zl) = (0) (cf. [4]). For such a fan, we

havezl g o o d =:0.

Throughout this paper (except in Corollary 1.11 and Remarks 4.4 and 4.6), we

assume that the set A(l) of one-dimensional cones in a fan A spans NQ. Then we have

a fundamental exact sequence (cf., e.g., [5, 3.4]):

(1.6.b) 0 — > M - ^ C D i v ( J ) - ^ f t c ( J ) — > 0 .

The proof of the following elementary but useful lemma is left to the reader.

LEMMA 1.7. Let A be a fan.

(1) For a good cone σeA, the monoid CDiv(zl)σ>o is generated by CDiv(zJ)>ou

(-CDiv(σ)+) as a submonoid. Here -CDiv(σ)+ is the set {DeCDiv(Zl) -De

CDiv(σ) + }. Moreover, CDiv(σ) is exactly the group of invertίble elements in CDiv(J)σ>0.

(2) For every cone σeA, the image 6>/CDiv(σ) by deg in (1.6.b) is equal to Pic(zl).
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(3) For every cone σeA, we have

M n σ v ^div(M)nCDivOd)σ>0

^ t h e kernel of deg: CDiv(Zl)(T>0 -> Fic(A).

We now introduce the homogeneous coordinate ring of a toric variety defined in

[1, P. 35].

DEFINITION 1.8. Let A be a fan.

(1) The homogeneous coordinate ring of A is defined to be the monoid ring S=

SΔ:=k[ξD; Z)eCDiv(zl)>o] of CDiv(zl)>0, where ξD is a symbol, with the multiplica-

tion defined by ξ*>. ξ*>': = ξi>+D' for D, Z)'eCDiv(J)>0.

(2) The exceptional ideal B = BΔ of A (resp. Bσ of a cone σeA) is defined to be

the ideal generated by {ξD; DeCΌiw(A) + } (resp. {ξD; Z)eCDiv(σ) + }).

From now on, we regard the homogeneous coordinate ring SΔ as a Pic(zJ)>0-graded

ring with degξD:=degZ)ePic(zl)> 0. A Pic(zl)>0-graded ring is called a A-graded ring

for simplicity.

The main theorem in this section is as follows:

THEOREM 1.9. Let A be a fan with Agooάφ0.

(1) The algebraic group G0: = Hom(CΌiv(A),Gm) canonically acts on XΔ: =

SpecSA\V(BΔ). Here V(BΔ) denotes the closed subset {peSpecS^; BΔ<=φ} of Spec SΔ.

(2) There exists the universal geometric quotient (Y, π) = (YΔ, πΔ) ofXΔ with respect

to G: = Hom(Pic(zl), Gm), and Y has a canonical action of T= Go/G.

(3) The above quotient Y is canonically isomorphic to the toric variety associated

to A*ood.

PROOF. We first define a morphism π = πΔ \XΔ -> XΔWOO&. Let σ be a good cone in

A. For each D, D'eCDiv(σ)+ and m » 0 , we have mΌ-Ό'eCDiv(σ) + . This shows that

the closed subset V(Bσ) equals V(ξD) for any D e CDiv(σ)+. Hence Uσ = Spec SΔ \ V(Bσ)

is an affine scheme Spec SΔξD = Spec k[ζD\ Z>GCDiv(zl)σ>0]. See the last equation for

Lemma 1.7 (1). For σ€Zlgood, a morphism π σ is defined by the injective homomorphism

div: Mnσ v ^CDiv(zl) ( T > 0 . Using an argument similar to that in Remark 1.6 (1), we

have the following commutative diagram for each cone σ and each face τ-<σ:

πτ

Gluing π σ (σezl 8 θ θ d), we have the morphism π = πΔ:ΫΔ->XΔUOod.

To complete the proof, it suffices to show that (£ζ, π | ^ : Uσ^>Uσ) is the universal
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geometric quotient of Uσ with respect to G. Since Mnσ1 is a direct summand of
M, we take a section s: MjiMnσ^-^M. We remark that the section s maps
(Mnσv)/(Mnσ1) to Mnσv because Mnσ1 is a subgroup of the monoid Λfnσv.
By Lemma 1.7 (2) and the snake lemma, the group M^Mnσ1) is isomorphic to
CDiv(zl)/CDiv(σ) via div. Moreover, this gives an isomorphism i: (Mnσv)/(Mnσ1) -•
CDiv(J)σ>0/CDiv(σ). Hence we have a commutative diagram

CDiv(σ)Θ(CDiv(J)σ*o/CDiv(σ)) i n c l Θ ( d l V o 5°' 1},CDiv(Zl)σ^0

div0n div

(M n σ1) ® ((M n σv )/(M n σ1)) , M n σv .
incl0.s

Here both of the horizontal arrows are isomorphisms. This shows that πσ is the base
change of Spec &[CDiv(σ)]-> Spec ̂ [ M n σ 1 ] by the first projection

Uσ Ξ Spec k\_M n σ 1 ] x k Spec /c[(M n σv )/(M n σ 1)] -• Spec k[M n σ 1 ] .

Therefore we have only to show that the exact sequence

0 — > M n σ λ ^ CDiv(σ) ̂ > Pic(zl) —> 0

induces an isomorphism between Spec&CMnσ1] and the geometric quotient of
Spec&[CDiv((τ)] of with respect to G. This follows from the fact that Spec &[CDiv(σ)]
is a G-torsor over Spec&[Mnσx] with respect to the fppf topology. •

REMARK 1.10. One can easily prove that a commutative diagram of monoids

CDiv(σ)—

M n σ 1 —> M n σ v

is a push-out in the category of (commutative) monoids. This gives another proof that
a commutative diagram

Spec &[CDiv(σ)] <— Spec k[CΌiv(Δ)σ> 0 ]

I J
Spec^EMnσ1] <— Spec£[Mnσv]

is Cartesian.
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COROLLARY 1.11. Let Δ be a good fan whose set of one-dimensional cones Δ(X)

may not span NQ, and Δ(\)Q the subspace of NQ generated by Δ{\). Let us denote by

No : = NnΔ(\)Q (resp. Δo: =N0 n Δ) the sublattice of N contained in Δ(l)Q (resp. the fan

of No induced by Δ). Then, in the notation of Theorem 1.9, the associated toric variety

XΔ is isomorphic to the universal geometric quotient of X^oxk(Gm®N/N0) with respect

to Cj = Hom(Pic(zl), Gm). This isomorphism depends on the choice of a section

PROPOSITION 1.12. Let Δ be a good fan. For a homogeneous ideal I of S: = SΔ

(with respect to the Δ-grading), we denote by V+(I): = πΔ(V(I)nXΔ) the image of the

G-stable closed subset V(I)nXΔ under πΔ.

(1) (The toric Nullstellensatz.) For any homogeneous ideal la S, we have V+(I) = 0

if and only if Bn a I for some integer n.

(2) (The toric ideal-variety correspondence.) The map I\—> V+(I) induces a one-to-

one correspondence between the set of radical homogeneous ideals of S contained in B

and the set of closed subsets of X.

The proof is similar to that in [1, 2.4], and left to the reader.

Finally, we make a few remarks on the homogeneous spectrum of SΔ with respect

to the Δ -grading. If Δ is good and if Pic(Zl) is free, one can define the associated toric

variety XΔ as the homogeneous spectrum of SΔ consisting of homogeneous prime ideals

with respect to the Δ -grading as in [3] and in [9, II §2]. The freeness of Pic(zJ) implies

every G-orbit is irreducible, so each closed orbit corresponds to a homogeneous prime

ideal of SΔ. However, Pic(zJ) may not be free even if ^l(l) spans NQ and XΔ is smooth.

(The assertion otherwise in [5, 3.4] is to be corrected in the next printing.) For instance,

look at the toric variety XΔ = Spec(k[x, y, z]/(xy — z 2 ))\{(0, 0, 0)} associated to Δ —

{(0, 0), β > 0 ( l , 0), β > 0 ( l , 2)}. The following is a necessary and sufficient condition for

Pic(zl) to be free:

LEMMA 1.13. The Picard group Pic(zl) of a fan Δ is free if and only if so is N/N',

where N' denotes the subgroup of N generated by Nn\Δ |.

REMARK 1.14. The abelian group N/N' is isomorphic to the fundamental group

πγ(XΔ) of XΔ if k = C (cf. [5, p. 57]). Hence Pic(zl) is free if and only if so is

PROOF. Consider the exact sequence

ί',Z)—>0.

It is easy to see that Hom(W', Z) is equal to the group of Cartier divisors whose image

in Pic(zl) is of finite order. Hence Pic(zl) is free if and only if the homomorphism res

is surjective. •
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2. Quasi-coherent modules associated to graded modules. Let A be a good fan,

S: = SA the A -graded homogeneous coordinate ring of A, and X: = XA the associated

toric variety over k as in Section 1. In this section we introduce the quasi-coherent

0x-module associated to a Δ-graded S-module and state its properties. We omit proofs

if they are similar to those in [3], [8] and [9, II §2.5]. Let M and N be A -graded

S-modules in an obvious sense. (Although we have already used the notation M and

N for free abelian groups in Section 1, we adopt this notation only in this section

without fear of confusion.) Let S{f) (resp. M{f)) be the subring (resp. the S(/)-submodule)

of elements of degree zero in Sf: = S[\/f~\ (resp. Mf: = M ® s Sf) for each homogeneous

element feB: = BA. Let Uσ be the open affine toric subvariety of Xassociated to a cone

σeA.

PROPOSITION 2.1. For a A-graded S-module M, there exists a unique quasi-coherent

Θx-module M satisfying the following'.

(a) M\Uσ = (MiξD))~ for each D e CDiv(σ)+

(b) for a cone σ and its face τ, the canonical homomorphism MξDσ-+MξDτ with

Dσ e CDiv(σ)+ and Dτ e CDiv(τ)+ induces an isomorphism (M((*Dcr))~|[/-»(M((sr>r))~.

PROOF. See [9, II (2.5.2)]. In the notation of Theorem 1.9, we remark that

πA:XA-> Y=XA is an affine morphism (cf. the proof of Theorem 1.9). •

DEFINITION 2.2. The quasi-coherent (Px-module M in Proposition 2.1 is said to

be the quasi-coherent ^-module associated to the A -graded S-module M.

PROPOSITION 2.3. The map M\-+M gives a covariant additive exact functor from

the category of A-graded S-modules to that of quasi-coherent Θx-modules, and commutes

with direct limits and direct sums.

PROOF. The question is local on X. This immediately follows from Proposition 2.1.

D

PROPOSITION 2.4. (1) If a A-graded S-module M is of finite type, then M is a

coherent Θx-module.

(2) Let M be a A-graded S-module of finite type. Then M=0 if and only ifBmM=0

for m»0.

PROOF. (1) follows from Proposition 2.3 and a surjective homomorphism S®"-+

M for some n. We remark that S is canonically isomorphic to Θx.

(2) Note that X is Noetherian and that CDiv(σ)+ is finitely generated for each

cone σeA. One can verify (2) by an argument similar to that in [9, (2.7.3)]. •

DEFINITION 2.5. (1) For αePic(zl) and a zl-graded S-module M, we define M(oc)

to be the A -graded module with M((x)β = Ma+β for each βePic(A).

(2) ΘX{GL) denotes the quasi-coherent ^-module S(α)~ for αePic(zί).
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(3) For α e Pic(zi) and a quasi-coherent ^-module J*, the (^^-module ^®G

is denoted by

PROPOSITION 2.6. (1) For each αePic(zl), the quasi-coherent Θx-module Θx(oc) is

an invertitle sheaf.

(2) For each De CDiv(zl), the invertίble sheaf ΘX(D) is canonically isomorphic to

$ x(α), where αePic(zl) is the isomorphism class of ΘX(D).

PROOF. Let us take D = ( [ ra j σe Amax) e CDiv(zl) with degZ> = α.

(1) For each cone σezJ, one can easily show that ®χ(θί)\Uσ is a free 0^-module

of rank one with ξD-diy(m°) as a basis.

(2) Let us regard (9X{D) as a locally principal ^^-submodule of the function field

k(X) of X. By multiplication of ξD, we have a canonical isomorphism from ΘX(D) to

tfx(α). D

Let M and TV be A -graded ^-modules. Glueing canonical homomorphisms on C/σ's,

we obtain a functorial homomorphism of $x-modules

λ:M®ΘχN-+(M®sN)~ .

See [9, 11(2.5.11.2)].

PROPOSITION 2.7. The above homomorphism λ is an isomorphism.

PROOF. We have only to show that for each cone σeΔ, the restriction λσ of λ to

Uσ is an isomorphism. Set DeCΌiv(σ) +. We first remark that MξΌ®SξDNξn is

isomorphic to the quotient of the bigraded Z-module MξD®zNξD modulo the Z-

submodule generated by

{am ®n — m(g)an; homogeneous elements m e MξD, n e NξD, and a e SξD} .

Let us take a set-theoretic section s: Pic(zl)-*CDiv(σ) with 5(0) = 0. Then we have

{ξsMe(SξDy;xePic(A)} and {c^βe(S{ξD)y α, βeFic(Δ)} with ξ«*+β) = Catβξ«*)+«β\

Simple calculation shows ca+βycaLβ = caLβ + ycβr We define an 5(ξD)-module homomor-

phism ε as

where is well-defined because of the above formula. (See the beginning of this section

for the notation.) Here we denote by (M^)a (resp. (NξD)β) the S^-submodule of elements

of degree α in MξD (resp. of degree β in NξD). One can easily verify that /Uε is an

isomorphism and that ε°Λ, = id. •

COROLLARY 2.8. For every α, βePic(A) andneZ, we have the following canonical

isomorphisms:
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(2.8.H) Θx(*)®n = (

COROLLARY 2.9. For αePic(zl) and a Δ-graded S-module M, the quasi-coherent

Θx-module M(α)~ is canonically isomorphic to M{oi) = M®QxGχ(y).

Let us denote by T^(3F) the direct sum Θ α e P i c ( J ) A^> ^(α)) for a quasi-coherent
dVmodule ^- T n e module ΓJjP) has a natural structure of a zl-graded /^(fi^-module
by Corollary 2.9.

We now define two homomorphisms v = vM and μ = μ& for a zl-graded S-module
M and for a quasi-coherent (^-module ^ as follows. See [9, II §2.6].

Let Mbe a Zl-graded S-module. By a canonical homomorphism vα: Ma^Γ(X, M(α))
for each αePic(zf), we have a homomorphism v=0vα:M->Γ ! | c(M) of zl-graded
modules. See [9, (2.6.2)]. One can verify that v: S^Γ^(S) = Γ^(ΘX) is an isomorphism
as zJ-graded /^-algebras (cf., e.g., [1, Proof of 3.1]).

Let 3F be a quasi-coherent ίP^-module. Using Corollary 2.9, the homomorphism

/* L : Γ^){ξD) -> Γ(C/σ, J^) m/ίD' ^ (m \Uσ)/ξD'

is well-defined for each σeΔ. Since these homomorphisms are compatible with the
restriction homomorphisms for these sheaves, we have a homomorphism μ = μ^\

PROPOSITION 2.10. Let ^ be a quasi-coherent Θx-module. Then the homomorphism

μ: Γ^(βF}~^>!F is an isomorphism. In particular, every quasi-coherent module 3F is of

the form M for some Δ-graded S-module M.

REMARK 2.11. Cox [1, 3.2] proved Proposition 2.10 for a simplicial toric variety
X.

One can easily prove the above proposition by [8, II.5.14] and the following lemma:

LEMMA 2.12. For each cone σeΔ and each Z)eCDiv(σ) + , we have

The proof is straightforward, and left to the reader.

COROLLARY 2.13. For every coherent Θx-module 3F, there exists a finitely generated

Δ-graded S-module N with N^^.

PROOF. See [9, II (2.7.8)]. •

PROPOSITION 2.14. Let M be a Δ-graded S-module and 3F a quasi-coherent Θx-

module. Then both of the following two composites are the identity homomorphisms:
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(2.14.U) j

PROOF. The question is local on X. It is straightforward to show that the above

composites are the identity homomorphisms on Uσ for each σ e A. The detail is left to

the reader. •

COROLLARY 2.51. Let the notation be as in Proposition 2.14.

(1) vjf: M-+Γ^(M)~ is an isomorphism for each A-graded S-module M.

(2) μ<? : Γ\(βF}-^Γ^(Γl

+(«^')~) is an isomorphism for each quasi-coherent Θx-module

PROOF. This immediately follows from Propositions 2.10 and 2.14. •

COROLLARY 2.16. (1) Let Y be a closed subscheme of X with the defining ideal

ef. Then there exists a homogeneous ideal I of S contained in B with 1=/. Moreover,

in the notation of Theorem 1.9, Y is the geometric quotient of the closed subscheme

XΔ n Spec S/I with respect to G.

(2) Two homogeneous ideals I and J of S contained in B define the same closed

subscheme of X if and only if (I : Bm) = (J: Bm) for m » 0.

PROOF. (1) Clearly I\ = Γ^(f) is a homogeneous ideal of Γ^(ΘX) = S. By

Propositions 2.3 and 2.4, and Corollary 2.15 (2), we have (In By = / = / . The last

assertion is verified in the same way as in Theorem 1.9.

(2) We have only to show the assertion when / is contained in /, say, J=Γ4ι(I).

It follows from Propositions 2.3 and 2.4, and Corollary 2.15 (2) that / i s equal to

(/: Bm)~ for each ra>0, and that (/: Bm) contains /for some integer m>0. By the same

argument, (/: Bm+m) contains (/: Bm) for some ra'>0. Since S is Noetherian, we have

(/: Bm) = (J: Bm) for m»0. D

3. Main Result. Throughout this section, let A be a good fan, S the

homogeneous coordinate ring of Δ, B the ideal generated by CDiv(zJ) + , /a homogeneous

ideal of S contained in B, X: = XΔ the associated toric variety, and Z the closed subscheme

denned by / (see Corollary 2.16). In this section, we first define on a fc-scheme Y &

zl-graded $y-algebra with invertible components, which is a generalization of the tensor

algebra associated to an invertible sheaf on X. We next prove a one-to-one cor-

respondence between the set of morphisms of Y to Z and the set of equivalence classes

of those A -graded 0y-algebra homomorphisms which satisfy a nondegeneracy condition

from Θγ®kS11 to a zl-graded algebra with invertible components (Theorem 3.4).

DEFINITION 3.1. Let A be a good fan, and F a A>scheme. A zl-graded $y-algebra

if = 0 α e P i c ( z l ) > o ^ α is said to be a Δ-graded Θγ-algebra with invertible components if it

satisfies the following conditions:

(1) each homogeneous component JS?α (αePic(zl)>0) is a locally free $y-module



150 T. KAJIWARA

of rank one;

(2) the 0y-module ^®oY &+ is isomorphic to &a+β via the product of i f for each

pair of α and β in Pic(J)> 0.

We denote by B(A) (resp. &<?) the image of CDiv(zl)+ by deg (resp. the homogeneous

ideal Θ α e ^ j ) ^ 0 1 ^ ) - N o t e t n a t B(A) is a monoid ideal of Pic(zl)>o since CDiv(zl)>0->

Pic(J)>o is surjective by definition.

EXAMPLE 3.2. We illustrate Definition 3.1 by looking at the r-dimensional pro-

jective space Pr. Let A be the fan defining the projective space Pr (cf., e.g., [5, p. 22]).

By Definition 3.1, every A -graded algebra i f with invertible components is canoni-

cally isomorphic to Θ π e Z > 0 ( J ^ Ί ) ( 8 ) " Hence giving a J-graded <V-algebra with inverti-

ble components is equivalent to giving an invertible sheaf 5£γ on Pr.

EXAMPLE 3.3. For the associated toric variety XΔ, we have a canonical zl-graded

Θx-algebr& @αePic(/d)>0$A:(α) with invertible components, and a canonical zl-graded

algebra homomorphism $ χ ® f c S ^ Θ α e P i c ( ^ ) > 0 $*(<*) using Corollary 2.8 and a homo-

morphism v in Section 2. Here a Δ -graded algebra homomorphism is an algebra ho-

momorphism preserving the Δ -grading. In the case of Example 3.2, this A -graded

0Pr-algebra is nothing but ®n>o®Pr(n). For a closed subscheme Z of X, we define a

canonical zJ-graded #z-algebra ® α e P i c ( z J ) $z( α ) (resp. a canonical J-graded algebra

homomorphism @z®kS/I-*®<XePic(A)>0®z({X))to be the restriction to Z, where I^B is

a homogeneous ideal of S defining Z.

THEOREM 3.4. Let A be α good fan, Y a k-scheme, and Z a closed subscheme of

X— XΔ defined by a homogeneous ideal la B ofS. Then there exists a canonical one-to-one

correspondence between the following two sets:

(a) the set of k-morphisms from Y to Z;

(b) the set of equivalence classes of pairs (if, φ) of a A-graded Θγ-algebra $£ with

invertible components, and a A-graded Θγ-algebra homomorphism φ: ΘY®kS/I-+£?

satisfying the following nondegeneracy condition:

(nondegeneracy): For every point yeY, there exists a homogeneous ele-

ment f EB/I with φy{\®f)φ my^y.

Here, (JSf, φ) and (if', φ') are said to be equivalent if there exists an isomorphism

i: if-> Ĵ fr of A-graded ΘY-algebras with φ' = ioφ.

PROOF. We first define a correspondence between (a) and (b).

(a)-»(b): Let r: F->Z be a &-morphism. By the pull-back of the canonical zl-graded

0z-algebra homomorphism $z®fc£/^~*ΘαepiC(j)>0$z(α) in Example 3.3, we have a

^-graded #y-algebra homomorphism φr: ΘY®kS/I=r*Θz®kS/I^>g?

r: = (& r*Θz(<x).

This homomorphism satisfies the nondegeneracy condition because Y= \J σr~1(UσnZ).

(b)-»(a): We may assume that for any yeY, there exists a cone σyeΔ such that

φy(ξD)φmy^y for each DeCDiv^)+. Since Pic(zl)>0 is finitely generated, we can take
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an open affine neighborhood Vy of y such that all of the invertible sheaves ifα on Vy

are trivial with {φ(ξD) DfeCDiv(σy)
 + } as a basis. By restricting φ to Vy9 we have

a fc-algebra homomorphism (S/I){ξD)-+(Jέ?\v)0 = ΘVy. Hence we have a morphism

ry\ Vy-+UσnZ. Using φ and the nondegeneracy condition, we glue these morphisms ry

to get a &-morphism r#ψ: Γ->Z.

Finally, we show the bijectivity of this correspondence modulo the above equiva-

lence relation. Given (if, φ), we first prove that (ifr̂ , φ9 φr^, φ) is equivalent to (if, φ).

Locally on Y, we have a unique isomorphism i which makes commutative the following

diagram:

<9γ®kS/I

canonical / \ φrSί, φ

Θ r%Jtΰ£ι) — if.

One can easily glue these isomorphisms, and hence the above two pairs are equivalent.

On the other hand, it is straightforward to show that each morphism r: Y->Z is exactly

the morphism defined above by (J£?r, φr). •

EXAMPLE 3.5. We illustrate that Theorem 3.4 is a generalization of the classical

result [9, (4.2.3)] for projective spaces. Let A be the fan defining the r-dimensional

projective space Pr. As in Example 3.2, every A -graded algebra on Y with invertible

components is of the form ®n>0^®n for an invertible sheaf if. In this case, the set

in Theorem 3.4 (b) is exactly the set of equivalence classes of surjective homomorphisms

4. Applications. In this section, we restrict ourselves to the case Z = XΔ in

Theorem 3.4, study the nondegeneracy condition in Theorem 3.4 in more detail, and

generalize all known results on morphisms from a scheme to a toric variety.

The following proposition gives useful conditions equivalent to the nondegeneracy

condition in Theorem 3.4 in the case Z=XΔ.

PROPOSITION 4.1. Let Y be a k-scheme, A a good fan, XΔ the associated toric

variety, <£ a A-graded Θγ-algebra with invertible components, and φ a A-graded Θγ-algebra

homomorphism Θγ®kSΔ^>y. Let V#{s) denote the closed subset {ye Y; syexny££y} of

Y for a global section seΓ(Y, J£). Then the following are equivalent:

(1) for each yeY, there exist a cone σeA and a divisor DeCDiv(σ)+ with

φ(ξD)φmyJ?y,

(Γ) for every yeY, there exists a cone σeA such that φ(ξD)φmy^y for each

DeCDiw(σ) + ;

rLejflDeCDivtf)* VA<P(ξD)) = 0',

Γ\σ<=Δ V&(φ(ζDσ)) = 0> where Dσ denotes any element in CDiv(σ) + ;

OσeΔ Vj?((P(ζDσ))==0> where Dσ denotes any element in CDiv(σ) + ;
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(3) (when A is simplicial) V^(φ(ξmDpή) n n V&(φ(ξmDpι)) = 0 for each one-

dimensional cones p l 5 . . . , pι which are not contained in any cone of A, and for each ra >0

with mDp.eCΌiv(A).

PROOF. Clearly (1) and (2) are equivalent. It is easy to see that for D, D'ε

CDiv(zl)>o, we have V^(φ(ξD))c V<?(φ(ξD')) if Supp£cSupp/) ' . This shows that (1)

and (Γ) (resp. (2), (2') and (2")) are equivalent. The statement (2) implies (3) because

fΊ<χezimax

 vAφ(ζDσ))^Γ\ vAφ(ξDβί)) if no maximal cone contains all pί9..., pt. We

assume (3). Then for yeY, the set {peA(l); ye V&(φ(ξDp))} needs to be contained in

some cone σ e A. Hence y φ V^(φ(ζDσ)) for D e CDiv(σ)+. Π

DEFINITION 4.2. Let Y be a ^-scheme, A a good fan, XΔ the associated toric

variety, if a A -graded $y-algebra with invertible components. A A -graded homo-

morphism φ: Θγ®kSΔ-*££ is said to be base-point-free if φ satisfies one of the equiv-

alent conditions (l)-(3) in Proposition 4.1.

We state again Theorem 3.4 in the case Z=XΔ for reference.

THEOREM 4.3. Let Y be a k-scheme, A a good fan, and XΔ the associated toric

variety over k. Then there exists a one-to-one correspondence between the following two

sets:

(a) the set of k-morphίsms from Y to XΔ\

(b) the set of equivalence classes of pairs (<έ\ φ) of a A-graded Θγ-algebra with

invertible components and a base-point-free A-graded Θγ-algebra homomorphism φ from

Θγ®kSΔto&.

Here, (£έ\ φ) and (5£\ φ') are said to be equivalent if there exists an isomorphism

i: <=£?-• J*f' of A-graded Θγ-algebras with φ' = ioφ.

REMARK 4.4. When A(l) may not span NQ, there exists a (non-canonical) one-

to-one correspondence between the following two sets:

(a) the set of &-morphisms from Y to XΔ\

(b) the set of equivalence classes of pairs (if, φ) of a A -graded $y-algebra with

invertible components and a base-point-free A -graded $y-algebra homomorphism φ

from Θγ®k(SΔ®k\_M0~\) to if.

Here Mo denotes the kernel of div: M->CDiv(zl). We remark that SΔ is canonically

isomorphic to the homogeneous coordinate ring of the associated toric variety XΔo in

the notation of Corollary 1.11.

COROLLARY 4.5 (Cox [2]). Let the notation be as in Theorem 4.3. Assume that A

is smooth, i.e., XΔ is smooth over k. Then there exists a one-to-one correspondence between

the following two sets:

(a) the set of k-morphisms from Y to XΔ;

(b) the set of equivalence classes of A-collections on Y (see [2, Definition 1.1]).
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REMARK 4.6. (1) If Zl(l) may not span NQ, we choose an isomorphism XΔ->

XΔo xk(Gm®N/N0) to get a A -collection with cm corresponding to Y-+Gm®N/N0 for

meNβ in [2, Theorem 1.1]. Here the notation is the same as that in Corollary 1.11. It

is straightforward to show that the set of equivalence classes of A -collections bijectively

corresponds to the set of equivalence classes (J£f, φ) as in Remark 4.4.

(2) In the proof of [2, Theorem 1.1], Cox used the freeness of Pic(zl). As we

mentioned at the end of Section 1, Pic(Zl) may not be free even if XΔ is smooth. Although

his proof is thus incomplete, the result is nevertheless true.

PROOF. Let Dp be the divisor on XΔ corresponding to p e A{\) and s a set-theoretic

section Pic(zl)>0->CDiv(zl)>0 with degos = id. For a zl-collection {(ifp, up, cm)}, we use

the compatibility condition in [2, Definition 1.1] to get a zJ-graded 0y-algebra

S£: = 0α6Pic(J)>o^fs(α) with invertible components. Hence J£fs(a) is the invertible sheaf

(x)pif® f l p if s{v) = YjpapDp. By the global sections up and the nondegeneracy condition,

we have a base-point-free zl-graded #y-algebra homomorphism φ: Θγ®kSΔ^S^ with

φ{\®ξDp) = up.

On the other hand, for a given (j£f, φ) in Theorem 4.3 (b), it can be verified that

= ~Z 0 ~ ^Y V i

forms a A -collection. It is easy to show that this correspondence preserves their equiva-

lence relations. Π

COROLLARY 4.7. Let the notation be as in Theorem 4.3 and T the algebraic torus

as in Section 1. Assume that Y is an integral scheme. Then there exists a one-to-one

correspondence between the following two sets:

(a) the set of k-morphisms f: Y-*XΔ with f \T) φ 0;

(b) the set of pairs (φ, φ) of a monoid homomorphism φ from CDiv(Λ)>0 to the

monoid CDiv( Y) > 0 of effective Car tier divisors and a group homomorphism φ: M->k(Y)x

which induce a commutative diagram

M -*L k(Y)x

div div

CDiv(Zl)—>CDiv(y),

and satisfies one of the equivalent conditions (2)-(3) in Proposition 4.1.

In particular, if A is smooth, we can replace (b) by the following (bf):

(b') the set of pairs of a homomorphism φ: M-+k(Y)x and a collection (Dp)peΔ(^ί)

of effective Car tier divisors Dp on Y satisfying both the condition (3) in Proposition 4.1

and the equation
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divψ(m)= X (m,np)Dp
peΔ(l)

for each m e M.

Here k(Y) (resp. np9 resp. <, » is the rational function field of Y (resp. the unique

generator of the monoid pnN, resp. the duality pairing M x N->Z).

REMARK 4.8. Oda and Sankaran (unpublished) proved Corollary 4.7 in the case

where Y (resp. XΔ) is normal (resp. smooth).

PROOF. It is obvious that a morphism / : Y-+XΔ with f~ι(T)Φ0 gives data in (b).

On the other hand, let φ (resp. φ) be as in (b). Let us identify invertible sheaves

with locally principal coherent subsheaves of k(X) (cf., e.g., [8, II §6]). Then the invertible

sheaf Θγ(φ(D)) for each effective divisor D has the global section uD: = 1 ek(Y)x with

φ(D) = the zero locus (uD)0 of uD, which induces an #y-algebra homomorphism

with Ψι(ζD) = uD. Let us take a set-theoretic section s: Pic(zl)>0->CDiv(zl)>0 with

(deg)°s = id. If two divisors D and D' are linearly equivalent, then the invertible sheaf

Θγ(φ(D')) coincides with Θγ(φ(D))ψ(D-Df). Multiplying Θγ(φ(D)) by ψ(D-s(degD)),

we have an ̂ y-algebra homomorphism

Ψi' θ Qγ(φ(D))^ θ ®γ{φ°s(0L)).
DeCDiv(d)>o αePic(J)>0

Hence a pair of the zl-graded ^y-algebra ®a&χ(φ°s(oc)) and the composite of φί with

φ2 defines the morphism from Yto XΔ in (a). Note that up to equivalence, the yt-morphism

does not depend on the choice of a section s. The latter assertion follows from the

former and the fact that CDiv(z!)>0 is isomorphic to 0 peΛ{1)Z>o ' Dp'ιϊ Δ is smooth.

D

COROLLARY 4.9. Let A (resp. Δ') be a good fan (resp. a complete fan), and XΔ

(resp. XΔ) the associated torίc variety. Then there exists a one-to-one correspondence

between the following two sets:

(a) the set Homfc (XΔ>, XΔ) of not necessarily equivalent k-morphisms from XΔ. to XΔ;

(b) the set of equivalence classes of (not necessarily Δ-grade preserving) k-algebra

homomorphίsms φ: SΔ^>SΔ> mapping each homogeneous component into a homogeneous

component and satisfying the equivalent conditions in Proposition 4.1.

Here φ and φf are said to be equivalent if there exists a homomorphism g:

Pk(Δ)-+Gm(k) such that φ'(ξD) = g(degD)φ(ξD) for each Z>eCDiv(Zθ>0. Furthermore,

if Δ' is good, we can replace (b) by the following:

(b') the set of equivalence classes of k-algebra homomorphisms φ: SΔ^>SΔ> mapping

each homogeneous component into a homogeneous component such that BΔ. is contained
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in the radical of an ideal generated by {φ(ξDσ)\ σeAmax\ for any Dσ e CDiv(σ)+.

PROOF. We first remark that SΔ is canonically isomorphic to the A -graded k-

algebra

θ Γ(XΔ9ΘXΔ(OL))
αePic(J)

for any fan A (cf., e.g., [1, p. 30]). Therefore, giving a pair (if, φ) on XΔ. in Theorem

4.3 (b) is equivalent to giving a Λ>algebra homomorphism SΔ-^>SΔ. preserving ho-

mogeneous components and satisfying the conditions in Proposition 4.1. Moreover,

giving an equivalence of two homomorphisms of zl-graded 0^,-algebras with invertible

components is equivalent to giving a homomorphism Pic(A)->Gm(k) = kx as above. The

last assertion is straightforward to prove by Proposition 1.12. Π

REMARK 4.10. A homomorphism φ in Corollary 4.9 (b) may not map the ideal

BΔ into BΔ>. For instance, look at the first projection XΔ> = Pί xP1-+XΔ = P1.

COROLLARY 4.11. Let A and XΔ be as in Corollary 4.9. Then there exists a one-

to-one correspondence between the following two sets:

(a) Homk(Pm, XΔ);

(b) the set of equivalence classes of k-algebra homomorphisms SΔ-+k[T0,..., Γm]

mapping each homogeneous component into a homogeneous component such that

( Γ o , . . . , Tm) is contained in the radical ideal generated by {φ(ξDσ) σezlm a x} of any

DσeCΌiv(σ) + .

The equivalence relation is the same as that in Corollary 4.9.

EXAMPLE 4.12. We calculate morphisms from the projective line Pι to the weight-

ed projective plane P(l, 1, 2), using Corollary 4.11. Let S:=k[NΛ{1)']=k[v1, v2, u3] be

Cox's homogeneous coordinate ring of P(l, 1,2). Here the degree of vx (resp. v2,

resp. v3) is equal to 1 (resp. 1, resp. 2). It is easy to see that SΔ equals the subring

k\y\, v1v2, v2, t>3] =/:[*, y, z, w]/(xy — w2) of S, where all of the variables x, y, z, w are

of degree one. By Corollary 4.11, the set Hom(P 1 ,P( l , 1,2)) is equal to the set of

quadruples (fX9fy9fz,fw) of homogeneous polynomials of the same degree with fxfy=f£

and with sm, tme(fx,fy,fz) for some meZ>0. For instance, the algebra homomorphism

SΔ^>k[s, t] (x, y, wi—>s, zh-> t) corresponds to the morphism

(α: jS)^(/7: / 7 : β).

Here the action of kx on ^ 3 \ { 0 } is defined by g -(α, jS, y) = (#α, gβ, g2γ) (gekx,

(<x, β,y)eA3\{0}). This morphism g cannot be obtained by the morphism

Λ 2 \{0}->Λ 3 \{0} corresponding to any algebra homomorphism S-»λ;[s, ί] because

the latter cannot induce any isomorphism between their Picard groups (cf. [2, Remark

3.4]).
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COROLLARY 4.13. Let k be an algebraically closed field. Fix the point 00 =

(0: 1) e ? 1 and a point p in the open dense torus orbit Tin XΔ. Then there exists a canonical

one-to-one correspondence among the following three sets:

(a) the set Hom^P 1 , XΔ) ofmorphisms f:P1-+XΔ with f(oo)=p;

(b) the set of monoid homomorphisms φ from CDiv(zl)>0 to the monoid of monk

polynomials in the polynomial ring eλ;[Γ| in one variable t which preserve their degrees

and such that the ideal generated by {φ(Dσ) Dσ e CDiv(σ)+, σeZlmax} is exactly k[f\\

(c) the set of homomorphisms in the kernel of the homomorphism

zeAι(k) z

such that the ideal generated by {Y[zeAi{k)(t — z)lz{Dσ); DσεCDiv(σ), σeAmax} is exactly

kit].
Here (CDiv(Zl)>o)v denotes the cone dual to CDiv(zJ)>0.

REMARK 4.14. Guest [7] proved Corollary 4.13 for a projective toric variety.

PROOF. Since k is algebraically closed, we can easily show the one-to-one cor-

respondence between (b) and (c), using the roots of monic polynomials. We prove the

one-to-one correspondence between (a) and (b). Using the hαmomorphism M^>kx cor-

responding to pe TdXΔ, every homomorphism φ: SΔ-^k[T0, T{\ as in Corollary 4.11

is uniquely equivalent to one with φ(ξD)(0, TJ^Tf***^ for each Z>eCDiv(zO>0.

Therefore fD(t): = φ(ξD)(\, t)ek[t~] is monic and uniquely determined by the zeros of

/D. Thus the homomorphism φ in Corollary 4.11 (b) gives the monoid homomorphism

in the corollary (b). The converse is verified by the above argument. •
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