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Abstract. A homogeneous space of a reductive group is called weakly spherical if
the action of some proper parabolic subgroup is prehomogeneous. We associate Dirichlet
series with weakly spherical homogeneous spaces defined over the rational number field
and prove their functional equations in the case where the space under consideration is
a homogeneous space of the general linear group.

Introduction.

0.1. Let G be a connected reductive algebraic group and P a proper parabolic
subgroup. A homogeneous space X=G/H of G is said to be P-spherical if there exists
a Zariski-open P-orbit in X. In this case we also say that (G, H, P) is a spherical triple.
We call X spherical (resp. weakly spherical) if X is B-spherical (resp. P-spherical) for a
Borel subgroup B (resp. for some proper parabolic subgroup P). It is well-known that
symmetric spaces are spherical (cf. [V]).

In [S3], [S5], [S6] and [HS], we introduced generalized Eisenstein series attached
to (not necessarily Riemannian) symmetric spaces with Q-structure and proved that, in
anumber of cases, the generalized Eisenstein series have nice analytic properties (analytic
continuation, functional equations) similar to the properties of the Selberg-Langlands
Eisenstein series. However, in the definition of the generalized Eisenstein series given
in [HS], the assumption that a homogeneous space in question is a symmetric space is
irrelevant and what is essential is that it is (weakly) spherical. Therefore one can naturally
ask to what extent the results in the papers cited above can be generalized to general
weakly spherical homogeneous spaces.

In [S7], we have shown that the theory of zeta functions in one variable associated
with prehomogeneous vector spaces developed in [SS] gives an affirmative answer to
the question above in the case where G = GL(n) and P is its maximal parabolic subgroup.

In the present paper, we consider the case where G is a product of several general
linear groups and P is its (not necessarily maximal) parabolic subgroup.

0.2. Set G=GL(m,)x --- xGL(m)) and I'=SL(m, Z)x - - - x SL(m,, Z). Let P
be a standard parabolic subgroup and H a reductive Q-subgroup of G such that X=G/H
is P-spherical. Let Q be the open P-orbit in X. We put af¢=Homgy(P, G,) ® C. Then
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an element A€ aj . defines a quasi-character p+— p* of the identity component P* of
P(R). We denote by dp the half sum of negative roots, which we regard as an element
in af .

Let Q,, ..., Q, be the connected components of Q(R). Put ',=I'nP*. Under a
certain assumption (Assumption (1.2)) on the isotropy subgroup P,={peP|p-x=x},
we can define the density u(x) for each I'p-orbit I'p * x (x € (Q)). Then, for x € X(Q) and
A€ a} ¢, the Eisenstein series are defined to be the infinite series

Ei(P; x, A)= > pO)f(Pyy)|~4FoR o (i=1,...,),
yelp\ (' xnY;)
where | f(P; y)|* is the function on Q(R) satisfying | f(P; p+y)|*=p*| f(P; y)|* (for the
reason why we call the Dirichlet series Eisenstein series, see [S7, §2.1, Remark (1)]).
We assume the convergence of these series, (a sufficient condition for convergence
is given in Theorem 3.1). Then we can obtain the following theorem (Theorem 3.2) on
analytic continuation of the Eisenstein series:

THEOREM A. Suppose that

P, (xe Q) are reductive and H is a reductive subgroup of SL(m,) X - -- x SL(m;) .

Then the Eisenstein series E(P; x, A) have analytic continuations to meromorphic functions
on af .

To formulate the functional equations, we need the notion of *‘X-associatedness”
of parabolic subgroups (for the definition, see §3.2). Let 2 be an X-associated class of
parabolic subgroups. For P, P'e 2, we define a certain subset Wy(a¥, a¥) of the Weyl
group of G (§3.2). Then we have the following (Theorem 3.5):

THEOREM B. Under the same assumptions as in Theorem A, the following functional
equation holds for xe X(Q), P, P'€ ? and we Wy(a}, a}):

E (P'; x,wA) E\(P;x,A)
< > = Csph(w’ A‘)( ) CEis(W’ )') ’
E(P’; x, wA) E(P;x, )
where C,

pn(W> 4) is @ v by v matrix whose entries have an elementary expression in terms
of the gamma function and the exponential function, and Cg,(w, A) has an expression
as a product of the Riemann zeta function and the gamma function.

Let K be a maximal compact subgroup of G(R). It will turn out that C,.,(w, 4) has
its origin in the functional equation satisfied by the K-invariant spherical functions on
X(R), hence it depends only on P and the real structure of the homogeneous space X
(Theorem 3.7). On the other hand, Cg;(w, 4) comes from the functional equation satisfied
by the Selberg Eisenstein series of I' and is independent of H.

0.3. There exists an intimate relation between prehomogeneous vector spaces and
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weakly spherical homogeneous spaces of GL(n) and the proof of the theorems above
is based on the theory of prehomogeneous vector spaces ([S1], [S2]). As is discussed
in [S7], in some sense, the theory of zeta functions associated with prehomogeneous
vector spaces is nothing but the theory of Eisenstein series on weakly spherical
homogeneous spaces of A,-type in disguise. To extend the theorems to other G than
GL(n), we can no longer appeal to the theory of prehomogeneous vector spaces. The
functional equations in Theorem B suggest another possible way of proving the theorems,
namely, the use of the Rankin-Selberg method applied to functions of non-rapid decay.
It is quite probable that our generalized Eisenstein series can be obtained by regularizing
the so-called Eisenstein periods. We shall discuss this topic in [S9].

0.4. The organization of the present paper is as follows. In §1, following [S7],
we give a definition of the Eisenstein series on weakly spherical homogeneous spaces.
In §2, we associate to a spherical triple (G, H, P) with G=GL(m,)x - -- x GL(m,) a
prehomogeneous vector space, which plays a crucial role in the later part of the present
paper. In §3, we present a precise formulation of our main results (Theorem 3.1, Theorem
3.2, Theorem 3.5, Theorem 3.6, Theorem 3.7) and discuss the following examples:

1. (G, H, P)=(GL(n), O(n), P), P=a parabolic subgroup,

2. (G, H, P)=(GL(2)*, SL(2), P), P=the Borel subgroup,

3. (G, H, P)=(GL(n), N, P), P=the Borel subgroup and N =its unipotent radical.
The first example is a generalization of the result in [S3] to the case of not necessarily
minimal parabolic subgroups. Another example will be given in [S8], where we make
a detailed investigation of the Eisenstein series on a weakly spherical homogeneous
space related to the half-spin representation of Spin,,. In §4, we prove a convergence
criterion of the Eisenstein series and the theorem on analytic continuation. The proof
of the functional equations satisfied by our Eisenstein series is given in §5. In Appendix
we show how to calculate the explicit formulas for the functional equations in the
case of (GL(n), O(n), P).

NoTATION. As usual, Z, O, R, and C stand for the ring of rational integers, the
field of rational numbers, the field of real numbers, and the field of complex numbers,
respectively. For a linear algebraic group G defined over the rational number field Q,
we denote by G° the identity component of G and by X(G) the group of rational
characters of G defined over Q. The unipotent radical of G is denoted by R,(G). For a
real vector space V, &(V) stands for the space of rapidly decreasing functions on V.
The symmetric group in » letters is denoted by €,. We denote by 1,, the identity matrix
of size m and by 0,,, the m xn zero matrix. For a matrix 4, we denote by ‘A4 the
transposed matrix.

1. Eisenstein series on weakly spherical homogeneous spaces. Following §1 of
[S7], we recall the definition of Eisenstein series on weakly spherical homogeneous
spaces.
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Let G be a connected reductive algebraic group defined over Q and H a Q-subgroup
of G. Put X=G/H. Let P be a proper @-parabolic subgroup of G and assume that

(1.1) (G, H, P) is a spherical triple, namely, there exists a Zariski-open P-orbit Q in X.
For an xe Q, we put
P.={peP|p-x=x}.
We also assume that

(1.2) for any xeQ(Q), P, is unimodular and the identity component of P, has no non-
trivial Q-rational characters.

We denote by X(P) the group of rational characters of P defined over Q. Put
Xx(P)={xeX(P)|p.=1(xeQ)} .
Then, for any y € Xx(P), there exists a non-zero rational function fe Q(X)* satisfying

fp-x)=xp)f(x) (peP,xeX),

which is unique up to a constant factor. The group X,(P) is a free abelian group
of finite rank. Let / be the rank of Xy(P). Choose a system of generators {)y, ..., %}
of X4(P). For each i=1,...,1, fix a relative invariant f;e Q(X)* satisfying f{p-x)=
xi(p)fi(x).

For K=0, R or C, we put af x=Xy(P)®,K. By Assumption (1.2), Xx(P) is of
finite index in X(P); hence we may identify a} x with X(P)® K.

For A=Y|_, Ax:€ ak ¢, we define a function | f(P; x)|* on Q(R) and | x(p)|* on P(R)
by

(1.3) Lf(P; %)= l_[If(X)l’l‘ Ap)I'= l_[IX. pI*.

Then we have

L (P p-x)I* =PI f(P; ) |
Let P* be an open subgroup of the real Lie group P(R) and
QR)=Q,u---uQ,
the P*-orbit decomposition of Q(R).

We fix a right invariant Q-rational gauge form w, on P and let dwp(p) the right
invariant measure on P* induced by wp. Let 4, be the module of P, namely, the
character of P given by wp(gp)=4p(9)wp(p) (p, g € P). By Assumption (1.2), there exists
a relatively P-invariant Q-rational gauge form w, on Q such that

wo(p - x)=4pplogx)  (peP,xeQ).

We denote by dwg(x) the relatively P*-invariant measure on Q(R) induced by w,. For
an x € (Q), we define an invariant Q-rational gauge form w, on P, by w,=wp/w,. Let
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1p: P,— P,., be the isomorphism defined by 1,(g)= pgp~ . Then we have
(1.4) 1Xw,.)=0,.

This identity characterizes the invariant gauge forms w, (x € 2) uniquely up to a constant
factor independent of x. We denote by du, the Haar measure on P} =P n P, induced
by w,. Thus we can specify the normalization of the Haar measure on P for all x € Q(Q)
uniquely (up to a constant factor depending only on the normalization of wp and wy,).

We consider 4, as an element of af g and put

1
5 P= — E— A P-

Take an arithmetic subgroup I" of G(Q) and put I',=I'nP™*. For an x € X(Q), we

define the Eisenstein series E;(P; x, A) (1<i<v) by

(1.5) E(P;x, })= Y HOIfP;y)Atee,

yelp\ 2inT+x

where

M) =J du, .
PP,y nlp

Assumption (1.2) implies the finiteness of the volume u(y).

ReMARKS. (1) In [HS, §3], on the basis of a measure theoretic interpretation of
u(x), we gave an apparently different definition of Fisenstein series. The relation of these
two definitions is given in [HS, Proposition 3.2]. Note that, in the argument in [HS,
§3], the assumption that X is a symmetric space is not necessary.

(2) We have defined the Eisenstein series only for rational points x. We can not
expect the convergence of the infinite series (1.5) for irrational points unless the group
G (R)={geG(R)|g-x=x} is compact. To see this, let us consider the case where
G=GL(n), H=0(n) and X is the space of nondegenerate symmetric matrices of size n.
Then, if x € X(R) is indefinite and is not a multiple of a rational symmetric matrix, the
generalized Raghunathan conjucture proved by Ratner implies the divergence of the
Eisenstein series (see [R, §5], and [Mar, §5.2, Remark]).

We also define local zeta functions by
(1.6) Yi(P; ¢, ) =j | (P ) """ p(x)dwg(x) (e CT(X(RY))).
Q2;

Let X4(P)* be the subset of X(P) of characters corresponding to relative P-
invariants that are regular everywhere on X. Let a}} be the interior of the cone in
a} g generated by X4x(P)*. We put

*x+ __ okt * *
afc=apr++/ —lag gcafc.
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The local zeta functions ¥(P; ¢, 1) (1 <i<v) converge absolutely for A€ —dp+a}e.
The following is the conjecture posed in [S7].

ConNJECTURE 1.1. Under certain mild assumptions (including Assumption (1.2)),
the Eisenstein series E;(P; x, 4) (1 <i<v) have the following properties:

(1) Ei(P; x, 2) are absolutely convergent on dp+af¢.

(2) E;(P; x, A) have analytic continuations to meromorphic functions on aj .

(3) Under the action of (some subquotient of) the Weyl group of G, the Eisenstein
series E;(P; x, A) satisfy functional equations of the form of the tensor product of the
functional equations of the Langlands Eisenstein series and those of the local zeta
functions ¥;(P; ¢, 4) for functions ¢ that are invariant under the action of a maximal
compact subgroup of G(R).

At present we do not have any precise formulation of the conditions for general
(G, H, P) that guarantee the validity of the conjecture. Therefore it might be better to
understand the conjecture as a problem of finding a good condition under which the
three properties above hold. In the rest of this paper we give an affirmative answer to
this problem in the case where G=GL(m,)x - -- x GL(m;) and I'=SL(m,, Z)x - - - X
SL(m,, Z).

2. Weakly spherical homogeneous spaces of GL(m) and prehomogeneous vector
spaces.

2.1. Since our whole argument is based on the relation between weakly spherical
homogeneous spaces of GL(m) and prehomogeneous vector spaces, we begin by recalling
some basic definitions in the theory of prehomogeneous vector spaces.

Let & be a field of characteristic 0. Let G be a connected linear algebraic group
defined over k and p: G — GL(V) a rational representation of G on a finite dimensional
vector space. Assume that ¥ has a k-structure for which p is defined over k. Denote
by k the algebraic closure of k. The triple (G, p, V) is called a prehomogeneous vector
space if there exists a proper algebraic subset S such that the complement V(k)—S(k)
is a single G(k)-orbit.

A rational function f on Vis called a relative (G-)invariant if there exists a rational
character y of G such that f(p(g)v)=x(g9)f(v) (g€ G, ve V). In this case we say that f
(resp. x) corresponds to y (resp. f). If y is defined over k, then one can choose the
corresponding relative invariant f from k(V).

Let Sy, ..., S, be the k-irreducible hypersurfaces contained in S. For i=1,...,r,
let f; be a k-irreducible polynomial on ¥ defining S;. The polynomial f; is unique up
to a non-zero constant factor in k. Then f, ..., f, are relative invariants and any relative
invariant f in k(V) is of the form f=cf- - fir (cek,ije Z). We call f}, ..., f, the
fundamental relative invariants over k.

A prehomogeneous vector space (G, p, V) is called regular if there exists a
relative invariant polynomial f(v) such that the Hessian det(9%//dv;d0v;) does not
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vanish identically.

For further details, we refer to [SK] and [S1].

2.2. For an ordered partition e;+ --- +e,=n of n, let P, . be the standard
parabolic subgroup of GL(n) consisting of matrices in block form g=(g;;), < j<, where
gijisan e; by e;matrix and g;;=0 for i <j. For a standard parabolic subgroup P=P,,
we denote by L, the standard Levi subgroup of P consisting of matrices of diagonal
form. In the following, parabolic subgroups are always standard in this sense.

Let G=GL(m,;)x --- xGL(m;) and P=P; x --- x P, its standard parabolic sub-
group. Let e+ ... +el¥=m, be the ordered partition of m, corresponding to the
standard parabolic subgroup P, of GL(m,). Put n®=e+ ... +e® (1<i<r). We
also put n®, , =n®=m,. Let

re—1

Gp=Gp, x -~ xGp, for Gp = H GL(n{®),

~ -~ &
G~P=GP1 x - xGp, for Gp = l—l GL(n{®)
i=1

and

rnc—1

VP= VP[ @ te @ VP] fOI’ VPk @ M(n(k) n(k) )

VPZ I’7'1"1 @ e @ VP, for I7Pk @ M(n'(k)’ n'U-:—) )

Then we have Gp=G,x G and Vp=V,® (M(m,)® - - - @® M(m,)). For a

I
9=@"%=1... € l—[ GL(n®)= G xG
i=1. e+l k=1 i=1
and a
L K,k 7
U=(U,‘(k))k=1 ..... 1 € n M(n ;H’ n,(+’ )=Vp,
i=1,.r k=1i=1
set

pelgv=(g; Py (k) (k)i )k 1

Then jp define a rational representation of G, x G on V. The subspace V} is an invariant
subspace and Wp=M(m,)@® - - ® M(m,) is the complementary subspace. We denote
the subrepresentations of ¥, and W, by pp and pp, respectively.

Let H be a closed subgroup of G and consider the triples (Gp x H, pp, Vp) and
(Gpx H, pp, Vp), where we regard Gpx H and G, x H as subgroups of Gpx G and Gp,
respectively.
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PROPOSITION 2.1.  The following three assertions are equivalent:
(1) (G, H, P) is a spherical triple.

(2) (Gpx H, pp, Vp) is a prehomogeneous vector space.

(3) (Gpx H, pp, Vp) is a prehomogeneous vector space.

Proor. Both of the following two conditions are equivalent to the third assertion:

2.1) (i) (Gp, pp, Vp)is a prehomogeneous vector space, and
(ii) for a point v in the open orbit of (Gp, pp, V), denote by Gy, the isotropy
subgroup at v. Then (Gp,,, x H, pp, Wp) is also a prehomogeneous vector space.

(2.2) (i) (GpxH, pp, W) is a prehomogeneous vector space, and
(ii) for a point w in the open orbit of (G, x H, pp, W), denote by (Gp x H),,
the isotropy subgroup at w. Then ((Gpx H),, pp, Vp) is also a prehomo-
geneous vector space.

We prove that (2.1) (resp. (2.2)) is equivalent the first (resp. second) assertion. First
consider (2.1). It is obvious that (Gp, pp, V) is a prehomogeneous vector space and

(23) vz(lnﬁk),nﬁ)l)k=l ..... 1 s Im,n=(1m9 Om.n—m)
i=1,..., re—1
belongs to the open orbit. Then we have an isomorphism of P onto GP,,, given by
(2.4 P 3P=(P(l), . ,Pm) — ([p(k)]i)k= 1,..1 € GP,» >
i=1,.., ri

where [ p7]; is the upper left 1 by n® block of p®. Hence G, , x H acts on W} through
the left action of P and the right action of H. This implies that (2.1) is equivalent to
the first assertion. Now we consider (2.2). In this case it is again obvious that (Gp x H, pp,
Wp) is a prehomogeneous vector space and the isotropy subgroup (G, x H),, at a point
w in the open orbit is isomorphic to Gpx wHw ™. Moreover (Gpx H),, pp, V) is a
prehomogeneous vector space if and only if (G, X H, pp, V) is a prehomogeneous vector
space. This shows that (2.2) is equivalent to the second assertion. |

DEerFINITION 2.2. (i) The prehomogeneous vector space (Gp X H, pp, V) is called
the prehomogeneous vector space of flag type attached to the spherical triple (G, H, P).

(ii) A spherical triple (G, H, P)is called regular if the prehomogeneous vector space
(Gpx H, pp, V) is regular.

A prehomogeneous vector spaces of flag type was introduced in [S3] for G=GL(n)
and H=0O(r) in order to understand descending chains of quadratic forms of Selberg
[Se] from the viewpoint of the theory of prehomogeneous vector spaces. The relation
between Eisenstein series on G/H and the zeta functions associated to the pre-
homogeneous vector space of flag type is the key of our whole argument.

From the proof of Proposition 2.1, it follows that generic isotropy subgroups of
(Gpx H, pp, Vp) and (Gp x H, jp, Vp) and P, (x€ Q) are all isomorphic. Hence, by [SK,
§4, Remark 26], we have the following lemma.
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LEMMA 2.3.  Assume that H is reductive. Then, a spherical triple (G, H, P) is regular
if and only if P, is reductive for an x e Q.

3. Statement of the main results. In this section, we describe our main results
(§3.1, Theorems 3.1, 3.2, §3.2, Theorems 3.5, 3.6), whose proofs will be given in §4 and
§5. In §3.3, we present several examples. We keep the notation in §2.2.

3.1. Let (G, H, P) be a spherical triple satisfying Assumption (1.2).

For p=(p",...,p")eP=P, x - - - x P,, we write

PY=(pY), pPeMe®, ), pP=0 for i<j.

We put
AP(p)=detp{- - -detpPeX(P), i=1,...,r,.

.....

l
= 0 200 g g
A= Zki , AMeap ¢
i=

20§ 2040 5 200 det p® .
i i=1

i=1

We write simply z* instead of z{(4), if there is no fear of confusion.
Using the symbols above, we have

1 1 ri
3.1 Op= kzl Op, > 5Pk=7 Y (eP+e®pa®,
= i=1

where we understand that e, | = —m,. Put
(3.2) af et ={A|Re(A¥)>0, k=1,...,Li=1,...,rn—1}.
As is easily seen, we have

afecape”.

Let P* be the identity component of the real Lie group P(R) and put I'=
SL(m,, Z)x - -+ x SL(m,, Z). Put

PO={p=(pW,...,p"eP|detpP=1,1<k<l 1<i<r}.

Then we have the following sufficient condition for the convergence and the existence
of the analytic continuations of the Eisenstein series attached to (G, H, P, I).

THEOREM 3.1. If the identity component H° of H has no non-trivial rational
characters and PV=PVn P, is connected semisimple or trivial for some x€Q, then
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E;(P; x, A) are absolutely convergent on dp+a}¢.

Let {(s) be the Riemann zeta function and put

e —1 (k) 4 (k)
I ]
2

1 1<i<j<sre K=

:~

(3.3) (pl)=

k

For our later purpose, we also put

| et o1 0
(3.4) Ip(A)= ]—[ I1 H r (-(k)_z(k)_‘_&_ﬂ)

k= <i<j<r, K= 2
and
(3.5) ColA) =T oA pl2)
where T'g(z)=n"**I'(z/2).
THEOREM 3.2. If H is a reductive subgroup of SL(m,)x - - - x SL(m,), (G, H, P) is
regular, and E,(P; x, A) are absolutely convergent in 6+ a}¢ for some S€a}f g, then
E.(P; x, A) have analytic continuations to meromorphic functions of A on a} ¢. Moreover,

there exist a finite number of linear forms L,, ..., L, on af ¢ with Z-values on X(P) and
rational numbers a,, ..., a, such that the functions

d
Ul (KLj 4> +a;) * Ll AE(P; x, 4)

are entire functions on af ¢.

REMARK. There exists a relation between l_[j= {(KL;, 4 +a;) and b-functions of
relative invariants (see the proof of Theorem 3.2 in §4, and Proposition 5.13).

Combining two theorems above, we obtain the following:

CoROLLARY 3.3. If H is semisimple and PV is connected semisimple or trivial for
some x€Q, then E,P;x, 1) are absolutely convergent on 8p+a}¢ and have analytic
continuations to meromorphic functions of A on af ¢.

3.2. To formulate the functional equation, we need some preliminaries. In the
following (except in Example 3 in §3.3), we always assume that H is reductive and
(G, H, P) is regular. Then, by Lemma 2.3, P, (xe Q) is also reductive.

Take a parabolic subgroup Q containing P and let L, be the standard Levi subgroup
of Q. Put Py=PnL,. The group P, is a standard parabolic subgroup of L.

Let w=wq be the permutation matrix that represents the longest element of the
Weyl group of L,. We define a parabolic subgroup P associated to P by

"P=wPow ™'+ R(0Q).

Since the inner automorphism defined by w maps the standard Levi subgroup of P onto
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that of P, w also defines a canonical linear isomorphism af ¢ — a¥p ¢, which we denote
by the same symbol w.

Fix an xeQ and put Q,={heQ|hx=x}. Since P, is reductive, the canonical
surjection Q — Ly = Q/R,(Q) maps Q, isomorphically into L,. Let H, be the image of
0, in L,.

ProposITION 3.4. (i) (Lo, Hy, Py) is a spherical triple.

(ii) Suppose that (Ly, Hy, Py) is a regular spherical triple. Then (G, H, *P) is also a
regular spherical triple and P, (x € Q) is isomorphic to (*P),. (x'€"Q), where ¥Q is the
open * P-orbit in X.

We postpone the proof of the proposition above until §5.1.

ReMARK. Let P and P’ be parabolic subgroups of G associated to each other,
namely, the partition corresponding to P is a permutation of the partition corresponding
to P’. In general it may happen that (G, H, P) is a spherical triple and (G, H, P’) is not.
For example, let G = GL(m) (m=n(2n+ 1)) and H the image of the second skew symmetric
tensor representation of SL(2n+1). Then (G, H, P,,_, ;) is a spherical triple, however
(G,H, Py ,—,.) is not (cf. [KKO, Proposition 2.3]).

We say that two parabolic subgroups P and P’ of G are (X, Q)-associated if Q is
a parabolic subgroup containing P, (Ly, Hy, Py) is regular and P'="P (w=w,). Note
that this condition does not depend on the choice of the point xe Q2. We say that P
and P’ are X-associated if there exists a sequence Q,, ..., Q, of parabolic subgroups
satisfying

(i) Q,>P:=P,

(ii) foranyi=1,...,5—1, Qi1 DPiy :=""P; (w;=wp)and P'=P;,,:=""P

(iii) for any i=1,...,s, P;and P;,, are (X, Q;)-associated.
We denote by Wx(a}, af) the set of the mappings w=wgow,_jo---ow;: afc—af ¢
obtained from sequences Q,, ..., O, satisfying the conditions above. The set W,(a}, a}.)
is empty, if P and P’ are not X-associated.

Let 2 be an X-associated class of standard parabolic subgroups of G.

We formulate our main results under the same assumption as in Theorem 3.2.
Namely, we assume that

(3.6) H is a reductive subgroup of SL(m,)x --- x SL(m,). Moreover, for any Pe 2,
(G, H, P) is a regular spherical triple and the Eisenstein series EP;x, 1) are
absolutely convergent in d+a} ¢ for some d € a} g.

The assumption implies the meromorphic continuation of the Eisenstein series.

It follows from Proposition 3.4 that, if (G, H, P) is regular for some Pe 2, then
(G, H, P') is regular for any P’ €2 and if (G, H, P) satisfies the assumption in Theorem
3.1 for some Pe 2, then so does (G, H, P’) for any P'e 2.

Let G* be the identity component of G(R) and fix a G*-orbit X® in X(R). Let
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Q,, ..., Q, be the connected components of X' nQ, which are P*-orbits. The number
v of the connected components depends only on the X-associated class £ (cf. Lemma
5.4). We may restrict our attention to the Eisenstein series defined for these P*-orbits,
which we denote by E (P; x, 1), ..., E(P; x, 1), since the functional equations are re-
lations between the Eisenstein series corresponding to the open P*-orbits in a fixed
G -orbit (for various Pe 2).

For P, P'e ? and we Wy(a}, a}), we define Cg;(w, A) as follows. First assume that
P and P’ are (X, Q)-associated. Then, for w=w,e Wi(a¥, a}), we put

Lr®)
Crol—2)

(for the definition of {p o S€€ (3.5)). Here we can define ¢ o(4) for Aeaf ¢, since af, ¢
can naturally be identified with a} ¢. For general P, P'e 2 and we Wx(a}, af), we define
Cgi(W, 1) by the identity

CEis(w,w9 j')= CEis(w,’ Wj')CEis(wa j') (WE WX(aIx:’ a;'), w'e WX(aﬁ’s a?"))'

(3.7 CEis(WQs A)=

THEOREM 3.5. For P, P' € P and we Wy(a%, a}), the following functional equation

holds:
E,(P’; x, wh) E((P;x, 4)
< >= Csph(w9 '1)< > CEis(W’ )‘) ’
E(P’; x, wl) E(P;x,A)

where C,(w, A) is a v by v matrix whose entries have an elementary expression in terms
of the gamma function and the exponential function.

Put K=80(m,) x - - - x SO(m;). The matrix C,,,(w, 1) appearing in the functional
equation above has its origin in the functional equation satisfied by the K-invariant
spherical functions on X'” and depends only on the real structure of X=G/H. Namely
we have the following theorem.

THEOREM 3.6. For any K-invariant function ¢ € CP(X), the local zeta functions
Y.(P; ¢, A) have analytic continuations to meromorphic functions of A in af ¢ and the
following functional equation holds for any P, P'€ 2 and we Wy(a§¥, a}):

¥(P; ¢, 4) Y(P'; ¢, wi)
=tCsph(W’ }') .
Y (P; ¢, 4) Y, (P'; ¢, wi)
For i=1, ..., v, we define the function | f(P; x)|} by

|f(P-x)|a={'f(P;X>l‘ for xe;,
o otherwise .

Put
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w;(P; x, /1)=J | f(Ps k- x) |}~ %"dk .
K

The integrals w;(P; x, 4) (i, ..., v) are absolutely convergent for A€dp+a}¢. Since the
integrals are analogous to the Harish Chandra integral representation of the zonal
spherical function of a semisimple Lie group, we call them the K-invariant spherical
functions on XO~G*/H".

Now Theorem 3.6 has the following reformulation:

THEOREM 3.7. The spherical functions w;(P; x, A) have analytic continuations to
meromorphic functions of A in af ¢ and the following functional equation holds for any
P,P'e? and we Wy(a}, a}):

w,(P; x, A) w4(P’; x, wl)
< >=tcsph(w’ }“)< > .
,(P; x, 4) @,(P"; x, wA)

If the G*-orbit X is a Riemannian symmetric space, then v=1 and associated
parabolic subgroups are X-associated. In this case, the integral w,(P; x, 4) gives the
zonal spherical function of G* and the Eisenstein series E,(P;x; 1) is the series
investigated in [L], [M], [T]. Since the zonal spherical function is invariant under the
action of the Weyl group, we have C,,(w, 4)=1 and the functional equation in Theorem
3.5 coincides with the one given in [M] and [T]. This shows that the origin of Cg;(w, 4)
is the functional equation of the Selberg-Langlands Eisenstein series.

Thus we see that the functional equations of E;(P; x, A) are of the form of the
tensor products of the functional equations of the K-invariant spherical functions
and those of the Langlands Eisenstein series as alluded to in the third part of Conjecture
1.1.

We expect that there exists a generalization of the notion of regular spherical triple
to weakly spherical homogeneous spaces of other reductive groups than GL(m) and the
two theorems above remain valid. In the case of reductive symmetric spaces, the regularity
seems closely related to the notion of “o-split” parabolic subgroups in the sense of
[He] (“o-anisotropic” in [V], “c6-stable” in [Ba]). In this case Theorem 3.7 has been
already known and is contained in the functional equations satisfied by the Eisenstein
integrals given in [Ba, Proposition 16.4], while Theorem 3.5 has been proved only in
some special cases other than the case of G=GL(n) (cf. [S5], [S6]).

3.3. In this subsection we keep the notation in the preceding subsections except
that we omit the superscript ¥ when /=1 and G=GL(m).

ExampLE 1. (G, H, P)=(GL(m), O(m), P,, . .) (e, + - +e,=m).

.....

We identify the homogeneous space X=GL(m)/O(m) with the set of symmetric
matrices of size m with non-zero determinant. The action of G on X is then given by
x—g+x=gx'g. For any 1<i<r, let f;(P; x) be the determinant of the upper left »n; by
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n; block of x. Then we have
SfiP;p-x)=A(p)*fi(P;x)  (peP,xeX).
*x+ +

The semigroup X,(P)* is generated by A3, ..., A2 |, A2, A, *and wehave af ¢ =a}¢c ™.
It is easy to check that the open P-orblt Q is given by

Q={xeX|fi(P;x)#0 (I1<i<r—1)}.

The point x,=1,, the identity matrix, is in € and P, = O(e,) x x O(e,). Hence, by
Lemma 2.3, the spherical triple (G, H, P) is regular for any e, ..., e,.

Since P{!)>SO0(e,) x - - - x SO(e,), the triple (G, H, P) satisfies the assumptions in
Theorem 3.2 if ¢;#2 for any i=1, ..., r. In this case, the convergence of the Fisenstein
series is an immediate consequence of Theorem 3.1 in the case m > 3. In the case m=2,
the convergence of the Eisenstein series is well-known, since the series coincide with
the zeta functions of binary quadratic forms up to the Riemann zeta function factor. If
e;=2 for some i, then Assumption (1.2) is not necessarily satisfied for indefinite x € Q(Q)
and the situation becomes rather complicated (cf. [S4] and [S6]). In the following we
assume that e; #2 for any i.

Let X™™~" be the set of real nondegenerate symmetric matrices with exactly »
'positive and m —n negative eigenvalues. Then

X(R)= CJO xrom =

gives the G*-orbit decomposition of X(R).
The P*-orbit decomposition of Q(R) is given by

orR= U @,

E=(E1seees Er)
O<gi<e;

where x = (x;;); <;. j<, € Q(R) (x;;€ M(e;, e;; R))is in Q, if and only if x;; € X~ (1 <i<r).
We write sgn(e)=(n, m—n) if ©, is contained in X™™~™, equivalently, & + - - -
+¢&,=n.
For x € X(Q)n X™™~" and ¢ with sgn(e) = (n, m—n), the Eisenstein series is defined by

E(P; x, })= Y Ho) <l= Z zidetpi,->,

r | -
yelp\TI"xn 2, l—[ If; P y (221—221+1+8|+e|+1)/4 i=1

where z,, , =0 and e, ; = —m. The coefficients u(y) are quantities just like the measure
of representation in the theory of quadratic forms. In fact, if r=2 and e; =1, e,=m—1,
then {p(4)E,(P; x, 1) coincides with the Epstein or Siegel zeta function of x according
as x is definite or indefinite (cf. [Si], [SS]).

In another special case where r=m, e, =--- =e,=1, the Eisenstein series were
investigated in [S3] (and in [S5, §6]).



EISENSTEIN SERIES 37

Theorems 3.1 and 3.2 imply that E,(P; x, A) are absolutely convergent for
Re(z;)—Re(z; 1) >(e;+€;41)/2 (I<i<r-1)

and have meromorphic continuations in af (= C".

Put
J p—1 i—p—1
bi’j(s)=“|=|1 <S+ 2 )<S+ 2 ) .

Note that the function b; ;(s) is the b-function of the prehomogeneous vector space
(SO(i) x GL(j), M(i, j)) (see [Ki]). Then we can obtain the following result:

THEOREM 3.8. The functions {(A)E,(P; x, A) multiplied by

2z,—2z;,—e;—e;
l_[ be.-+ej,e,- (*—;——i>

1<i<j<r

are entire functions of A in af ¢.

For any parabolic subgroup Q containing P, the triple (Ly, H,, P,) is a product
of spherical triples of the same type as (G, H, P), hence regular. Therefore the X-associated
class # containing P=P,  , is given by

.....

9:{"P=P%m ,,,,, €o(r) Geer}'

Note that7 lf Q=Qi=Pel,.U,ei_1,e.-+e,-+1,ei+1 ..... er and W=WQ,»: then "P=°P Wlth o=
(i, i+1). From Theorem 3.5 it follows that there exists a functional equation that
connects E,(P; x, 4) to E,(°P; x, o4) for any o € ,. The functional equation is of the form

En(aP; Xy O'}.) = CEis(O-, A) Z Csph(aa )')n.aEE(P; X, l) >

sgn(e) =(n,m—n)

where o € S, is identified with g€ Wy(af, a¥p) given by
oi= ), Zow det pi; (p'=(pi;)€°P, pij€ M(esu €a)) -
i=1

The calculation of C,(o, 4),. and Cg;(o, 4) can be reduced to the case where o is
the transposition (i, i+1) (i=1,...,r—1). In this case, by (3.5) and (3.7), Cgo, 4) is

given by
e~ 1 5<Z; Ziv1t ei+2e,+1 >
CEis((i’ l+ 1), '1) =
=0 2 e;+eyy
C(ZH-I z;+ ) )

To give an explicit formula for C,,(a, 4), . for 6 =(i, i+ 1), we prepare the following
notation.
Forani=1,...,r—1, we put
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eP=(er, . s &imp, G — L&+ 1,842, ...,8),
8(_’)=(81,...,8i_1,8i+1+1,8i—1,8i+2,...,8,).

We also put

u,(s)= n cosn<s+ ;)

u=1

« 8,~*+8,~* + +8l +
(= [ cosn<s+—11——i> ]_[ cosn<s++ﬂ>

p=1 2 p=eit+1
if e,,=¢,,; (mod2),

ugi(s)= < &+¢& 41+ +&% .+
(—l)"“:ncosn(s+—iu> l—[ cosn<s+——'zﬂ>

u=1 2 p= e+1

if e41#&+; (mod2),

- * 1 -1 e e
sinn(%) I1 cosn<s+8—'tﬁ;i> I1 cosn<s+f+£fl+‘u,>
" _ u=1 u=£‘:+1
ug.;(s) 9 if =0 (mod2),
. 0 if =1 (mod2),
r . 1\ &=t * * €i ite&+1+
Sinn<81+l+ ) H COSTC<S+‘§—+M‘) I_[ Cosn(s_}.i_f_lll_i)
U =4 2 Jast 2 S ;
&i if 8:"50 (mod 2) s
. 0 if g¥=1 (mod2),

where ¢*=¢;,—¢;.
Now we can give an explicit formula for C,,,((i, i+ 1), 4).

THEOREM 3.9. For o=(i,i+1) (1<i<r—1), we have
upi(2z;— 2Zz+1 €i—€i1+1)/4)

lf n=ge,
u(2z;—2z; 4 1 —e;—e;1)/4)
+ — . — o — .

U ((22;—22; 1 —e;—e;11)/4) if n_8(+z) ,

Copnl0, A)ye=1 ul2z;—2z;4,—e€,—e;11)/4)

p

e N UL R

ul(2z;—2z;4 1 —e;—€;41)/4)
0 otherwise .

We give a proof of Theorems 3.8 and 3.9 in Appendix.
The space X=GL(m)/O(m) we have just investigated is a typical example of
symmetric spaces. Now let us consider a non-symmetric spherical homogeneous space.

EXAMPLE 2. (G, H, P)=(GL(2) x GL(2) x GL(2), SL(2), B(2) x B(2) x B(2).
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Here B(2)= P, ;, the group of 2 x 2 nondegenerate lower triangular matrices and
we identify SL(2) with the subgroup H=/{(h, h, h)e G|he SL(2)} of G.
For any g=<a Z)eGL(2), we put g:( a -b>. For x=(xy, x,, x3)He X=G/H,
c —Cc a
we define

S1(P; x)=(x2X3)12, fo(Ps X)=(x3%1)12, f3(P; X)=(x;X))1,,
fa(P;x)=detx,,  fs(P;x)=detx,, fo(P;x)=detx;,
where A, denotes the (1,2)-entry of a matrix 4. Then these f;(P;x) (1<i<6) are
relative P-invariants and the corresponding characters are given by

x1(P1:P2s P3)=A(12)A(13) » X2(P1> Pas P3)=A(13)A(11) s X3(P1s Pas Ps):A(ll)Agz) s

Xa(P1> P2s P3)=A(21) > xs(P1s P2 P3)=/1(2) s xs(P1> P2, P3)=A(23) .
The semigroup X,(P)* is generated by x1, X2, X3 X4» X4 > Xs» X5 ' Xe» X6 - and we have

3 2
apct = { A= Y Y APAP|Re(P)>0 (k=1,2, 3)} ,

Re(AY)+Re(A?)>Re(AD),
3 2
apt=x A= Y Y APAP | Re(A?)+Re(A)>Re(A"),

k=1i=1

Re(A?) + Re(A) > Re(AP)
The open P-orbit Q is given by
Q={xeX|fi(P;x)#0 (i=1,2,3)}.

For an xeQ, we have P,={(1,, 1,,1,), (—1,, —1,, —1,)} and PP={(1,,1,, 1,)}.
Hence, by Lemma 2.3, the spherical triple (G, H, P)is regular and satisfies the assumptions
in Theorems 3.1 and 3.2.

The set of real points X(R) is a single G(R)-orbit and decomposes into eight G *-orbits
as follows:

— () (8) — f;'+3(P;x) —p. P }
X(R) U X®, X {xeX(R)‘iifiH(P;x)'—e, (i=1,2,3),.

e=(e1,€2,63)e{£1}3
Since the structure of these eight G *-orbits are quite the same, we consider only X:1-1)
and denote it by X9, The P*-orbit decomposition of X® is given by

SilPix)
| /i(P; x)]

Let (z),=,.,.3 be the coordinate system on af ¢ introduced in §3.1. Then, for
i=1,2

X = U X, x©= {xe x©

n=(mun2.n3)e{+1)3

n (i=1,2, 3)} .

xe X0 X(Q) and ne {£1}3, the Eisenstein series is defined by



40 F. SATO

3 3 ) )
E(P‘ x l)= H Idetxk]—z(zk)+l/2 Z n lf'(P' y)I—(1+2§=1(—1)6fj(z§”—z<2”))/2
)1 b 9 13 b b
k=1

yel'p\F'an(nO’ i=1
where J;; is the Kronecker delta. The series does not depend on the signature #; hence
we simply write E(P; x, ). By Theorems 3.1 and 3.2, we have the following result:

THEOREM 3.10. The series E(P; x, A) is absolutely convergent for
3
Y (= 1’(Re(z{)—Re(z)>1  (i=1,2,3)
j=1
and the function {p(2)* E(P; x, 2), (p(A)=T]._, (@9 — 2+ 1) multiplied by
3 3 3
{ ) (zﬁf’—z;ﬂ)—l} I1 { 2 (—1)"”’(23"’—2‘2"’)—1}
j=1 i=1 (j=1
is an entire function in af ¢.

For any parabolic subgroup Q containing P, the triple (Lo, Hy, Py) is regular and
"P coincides with P. Hence we have 2 ={P}. Moreover Wy(a}, af) can be identified
with the Weyl group of G and is isomorphic to S, x S, x S,. In the case Q=G, the
prehomogeneous vector space of flag type attached to (G, H, P) is given by

t -1
(SL(z) X GL(I)S, P> M(2a 3)) ) p(h, tla tZa t3)U=hU( t2 > .
I3

This is the space studied in [S1, §7.1]. The results obtained there contain essentially a
proof of Theorem 3.10 and an explicit formula for C,,,(w; 4). The functional equation
satisfied by E(P; x, A) can be formulated as follows:

THEOREM 3.11. The function ¢ p(A)E(P; x, 1) multiplied by

r( ?=1(z§f’—zgf’)+1>ﬁ p( 22041 Z?=1(—1)"‘f(z§f’—zaf’)+1)}
4 i=1 2 4

is invariant under the action of S,x S,xS,. Here the action of o=(0y,0,, 03)€
S, xS, xS, on af ¢ is given by

o: (Z}i))i= 1,2,3 =(Z¢(ri,-)(j))i= 1,2,3 -
j=1,2 j=1,2
We now discuss an example of spherical homogeneous space with non-reductive H.
ExaMmpLE 3. (G, H, P)=(GL(m), N(m), B(m)).
Here B(m)=P, __,, the group of m by m nondegenerate lower triangular matrices,
and N(m)= R, (B(m)), the group of m by m lower triangular unipotent matrices.

We put
(L
w= eGL(m) .
1 O)
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Then x,=w- H is in the open P-orbit and P, ,={1}. Hence Theorem 3.1 holds for
(G, H, P) and the Eisenstein series converges absolutely in 6+ a} ¢. However (G, H, P)
is not regular. Even (Ly, Hy, P,) is not regular for any parabolic subgroup Q containing
P properly. Moreover H is not reductive. Therefore our results on analytic continuation
and functional equations do not apply to the Eisenstein series attached to (G, H, P, I').

Let us examine the situation more closely.

For i=1,2,...,m, denote by f;(P; x) (x=gH e X =G/H) the determinant of the
upper right i by i block of g. Then f;(P; x) is the relative invariant corresponding to
the character A;. The semigroup Xy(P)* is generated by A,,..., 4,. Hence af¢=
ajet.

The open P-orbit Q is given by

Q={xeX|fi(P;x)#0(i=1,...,m—1)}.
The G*-orbit decomposition of X(R) is given by

XR)= U X9, X“)={xeX(R)‘

e=*1

JulP; X) =8}
| fulP; X) |
and the P*-decomposition of Q(R) is given by

QR)= U Q,, Q,,={er(R)

n=MM1,....nm)e{£ 1}™

filP;x) .
m—ni(ISISm)}.

For xe€ X(Q) and ne{+1}™, the Eisenstein series is defined by

m—1
E(P; x, )=| f(P; x)| 2 tm=bi2 % [T 1fi(p; y)|~Eemzeent D

yelp\TI'*xnf, i=1

It is easy to see that E,(P; x, ))=0 unless #,,= f,(P; x)/| f.(P; x)|, and non-vanishing
Eisenstein series do not depend on #. Hence it is better to consider the series

m—1
E(P; X, A)=| fu(P; x)| T5m* 02y [T 1 fip; )|~ ermzient ),

yel'pP\TI*xnR i=1

Since any I'-orbit in X(Q) contains a unique element of the form

31
xX= ‘H, tl,...,tmEQx,
tm

E(P;x, A= [ |t;|75 =2+ D2 E(P; 1, 4).
i=1

we have

The series E(P; 1, A) coincides with the series D(1,,; 4) studied in [S5, §3] and, by [SS5,
Proposition 3.3], we have
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AP, =2 [ —GTE)

1<i<js<m C(Zi_zj"' 1)

Thus we obtain the following explicit formula for the Eisenstein series:

BP;x, =2n [ | mommzieoe [ _HEGTE)
i=1 1<i<jem {(z;—2z;+1)
This proves the first and the second parts of Conjecture 1.1.

As for functional equation, it is obvious from the explicit formula that there exist
no functional equations that are valid for all xe X(Q). This reflects the fact that there
exist no parabolic subgroups Q other than P for which (Ly, Hy, Py) is regular. Since
the little Weyl group of the horospherical homogeneous space GL(m)/N(m) is considered
to be trivial (cf. [Kn, Satz 9.1]), we may say that even the third part of Conjecture 1.1
is true for the present example.

4. Proof of Theorems 3.1 and 3.2. In this section, to avoid the complicated
notation, we give a proof of Theorems 3.1, 3.2, 3.5 and 3.6 under the assumption that
[=1, hence G=GL(m). Therefore we omit the superscript ¥ used in §2, and §3. For
example, we write ¢; for e and n; for n®. The proof of the theorems for general !/ is
quite the same.

For the proof of Theorems 3.1 and 3.2, we need precise information on the structure
of the prehomogeneous vector space of flag type (Gp x H, pp, V) attached to (G, H, P).
For the moment, we assume that

(4.1) H is a reductive subgroup of SL(m),

as well as (1.1) and (1.2).
For a ge G=GL(n), we put

(4.2) ug)=((14,,0), (1, 0), ..., (1,,_,, 0)9) € V.

ForapeP, ., (1<i<r), we denote by [p]; (1<j<i) the upper left n; by n; block of
p. We define an embedding of P,, ., into Gp by

.....

(4'3) Pel,...,e.-ap |—’.5=([P]1, sy [p]i, ln,-+19 sy ln,_l)EGP .

Fix a rational point xe X(0Q) and put H,={ge G|g - x=x}. Then H, is conjugate
to H in G and we can consider the prehomogeneous vector space (Gp x Hy, pp, Vp). Let
@, be the open Gp x H-orbit in Vp. Note that Q,, is Gp x H,-stable.

Take a g, € Gy such that PgyH, is open in G and put P, =PngoH.g, ! which is
the isotropy subgroup of P at g, - xe X. We also put P, =PngoHgg, '. Then v(g,) is
in Qy and the isotropy subgroup (Gp x HY),,,, is isomorphic to P, . The isomorphism
is given by
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P, 3p —— (P, 96 'Pg0) €(Gp X H)yiy) -

Let «; be the smallest positive integer such that the character detgf is trivial on
(Gp x H})yyo)- Since P, is isomorphic to (Gp X HY),,), Assumption (1.2) implies the
existence of such an «;. Then, by [SK, §4, Proposition 19], the character x;(g, h)=det g}
corresponds to a relative invariant F;(v)e (Vp)™. The relative invariant F; is unique
up to a rational constant factor.

For 2=Y_, A, A;ea} ¢, we define a function |x|* on Gx(R)x H(R) and | F|* on
Q,(R) by setting

r—1 r—1
| (g, h)I*= Ul | x:(g, b |%/% = Hl |detg; [*,

r—1
|Ro) =TT IF@) .

Note that F; differs only by a factor equal to + 1 under the action of H,(R), hence we have
| Flpp(g, ho) =1 x(g, W)I*| Fw)I* (9, h e Gp(R) x H(R) , veQy(R)).
For ge G, we have
F(u(pgh))'=A,(p)*’Fi(v(9))'  (peP,heH,),
where d=[H,: H;]. Hence we can choose the relative invariants F,, ..., F,_, so that
4.4) |detg " |Fug) =] f(P;g-x)I*  (9eGL(m; R), g-xeQ(R)),

where the right hand side of the identity is the function on Q(R) defined by (1.3).
Let G be the identity component of Gp(R) and H; = H (R)nGL(m; R)".

LeMMA 4.1. Let x be a rational point of X and X® the GL(m; R)* -orbit containing
x. Let

QRNXO=P*g,-xu---uP*g, -x

be the P*-orbit decomposition. Then the py(G§ x H)-orbit decomposition of Qy(R) is
given by

Qy(R)=pp(Gp x H)o(g,) U - - U pp(Gp x H)u(g,).
Proor. Put
p={y,...,v,_1)€ Vp(R)|rankv,=n; (i=1,...,r—1)},
Gy =GL(ny; R x --- xGL(n,_,; R)* x GL(n,; R)* .

Then, any ve Vj can be written as v=pp(§)v, (§€ G5 ). Hence, under the action of G5,
any ve Vp is moved to a point of the form v(g) (g€ G*). Two points v(g), v(g’) (9,9’ € G*)
belong to the same pp(Gp x H.)-orbit if and only if P*gH! =P*g'H; . Moreover the
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pp(Gy x H})-orbits in Qy(R) correspond to the open double cosets P*gH;} . It is easy
to see that the open double cosets P*gH; correspond to the P*-orbits in Q(R)n X©,
[ ]

By Assumption (4.1), |det g | is identically equal to 1 on H(R). Hence we can define
the function |det x| on X© by

|detx|=|detg| for x=gH (g€ G(R)=GL(m; R)) .

Put I';,=SL(n;; Z)x --- xSL(n,_; Z)and I',=H; nr.

Using this notation, we have the following proposition giving a relation between
the Eisenstein series E;(P; x, A) attached to (G, H, P, I') and the zeta functions associated
with (Gp x H3, pp, Vp).

PrOPOSITION 4.2. Let x be a point in X(Q) and X'© as in Lemma 4.1. For ¢ e
SL(Vp(R)), put

Zp(x, ¢, A)=|det x| ‘“"""j lx(g, WIPT%" % lpplg, hyv)dgdh,

GA/Tgp*Hy[Tx veLn Qv (R)

¥pd¢; 4) =f | F(v)|* =" (v)dv ,
Qv

where L= @ :11 M(n;, n,, 1; Z) and dv is the standard Euclidean measure on Vp(R). Then,

under a suitable normalization of the Haar measure dgdh on Gp x H, we have

Zulx, . D =0old) Y. EiPix ¥ )

(for the definition of {p(A), see (3.3)). The absolute convergence of one side of the identity
implies the absolute convergence of the other side.

Once Proposition 4.2 is established, then Theorems 3.1 and 3.2 are immediate
consequences of the general theory of zeta functions associated with prehomogeneous
vector spaces.

PrOOF OF THEOREMS 3.1 AND 3.2. By Proposition 4.2, {»(4)E;(P; x, 4) can be con-
sidered as the zeta functions associated to the prehomogeneous vector space (Gp x
H3, pp, V) (cf. [S1, §4]). Since P{') is isomorphic to (Gpx H,),q,n(SL(ny)x - - -
x SL(n,_,)x H,), the assumption of Theorem 3.1 implies that (Gp x Hg, pp, Vp) is Q-
split and (Gp x H),,) N (SL(ny) x - - - x SL(n,_ ) x HY) is connected semisimple. Hence
[S2, Theorem 1] can be applied to (G, x H;, pp, V). It is easy to see that

detpP(gl’ s Gr-1s gr)=l:_[1 detgiei-'—ei+l (g=(g17 R gr)EG~P) s

where e, ,; = —m. From this identity and (3.1) it follows that the domain of absolute
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convergence given in [S2, Theorem 1] coincides with dp+a}¢. The assumption of
Theorem 3.2 implies that Gp x Hy, is reductive and (Gp x Hy, pp, Vp) is regular. Hence
Theorem 3.2 follows immediately from [S1, §6, Corollary 1 to Theorem 2]. The product
]_[:.’= LKL, 4 +a;) of linear forms describing the singularities of the Eisenstein series is
given by the b-function of the prehomogeneous vector space (Gp x HS, pp, Vp). The
rationality of L; and a; is due to Sabbah [Sab] and Gyoja [G]. | |

ReEMARK. In general, the b-function of the prehomogeneous vector space
(Gpx H3, pp, Vp) does not give the best possible result on the singularities of the
Eisenstein series. A much better result will often be obtained by looking at the functional
equations for various Q (cf. §5.5, Proposition 5.13).

Put I'p,=I'nP"* asin §1. For the proof of the proposition, we need the following
lemma (cf. [M, §17, pp. 280-282]).

Lemma 4.3.  Put
L'={(vy,...,0,-1)€VHZ)|rankv,=n, (k=1,...,r—1)}
o 0 >0(i=1 —1
A"‘E{( >EM(nk;Z) a,>0(11 ,...,rl ) N (-
a; a a;=0,1,...,a;—1(>))

Fix a complete set of representatives of I'p\I'. Then the set

D,ed®(k=1, ...,r—l)}

{((Dl’o)s'--a(Dr~2’ O)a (Dr—laO)U) Uerl \F
P

gives a complete set of representatives of T g -equivalence classes in L'.

ProOF OF ProPOSITION 4.2. Let Q,,..., Q, be the P*-orbits in QR)nX® and
Qy 1, ..., 2y, be the corresponding pp(Gp x H; )-orbits in Q,(R) (cf. Lemma 4.1). Since

((Dl’ 0)9 sy (Dr—29 O)a (Dr— 1> O)U)ZPP(D~1) ' .pP(D~r— I)U(U)
(for the definitions of D; and v(U), see (4.3) and (4.2), respectively), the point
((Dh 0)’ ] (Dr—za 0)’ (Dr— 1 O)U)
belongs to Qy,; if and only if U+ xeQ,. We further note that LnQ,, ;=L'nQy ;and I';,

acts on L’ freely. Therefore, by Lemma 4.3, we have

2 1Dy D,y 1)|"“'j"’>

Lreees r-

Zp(x, ¢, A)=|det x|~ A+ o) (

8 _Zl Lx(g: WI*" Y dlpslg, W(U))dgdh .

Uelp\TI'
G xHF Ty U xe®;
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Since xj(ﬁi, 1)=d, (D;) or 1 according as j<i or j>i, we have

r—1 i

Yo xDy D, 7A=Y T[] d,(D;)| @+ rmziteiteis0/2)
Di,....Dp—y i=1 Died® j=1
r—1 0 i
= z ai'i_lagi_z"'a,,._l I_[(al...anl)‘(zjwl—zj+(ej+ej+l)/2)
i=1 ay,..., a"i=1 1 j=1 j
r—1 i eji—1

©
— H l_[ a_(zj_zi+1+(ej+ei+l)/2_k)

Hence

ZP(x7 ¢7 )') = I dEt X i G +&P)'{P(A)

A

DYDY | 2(9, W) 1**°*dlpplg, Wy(U))dgdh
i=1 Uelp\UI/Tx
U- xe; G x(H /U~ 1Tp,u-xU)

=|detx|~G+9Pr(2)

x i > J | x(g, h) 1**+2*p(pplg, Wp(U))dgdh
I'p\I/Ix

i=1Ue . .
U xe®; Gp XH /(I'cp*Tx)u(v)

=| detxl_(“"")'cp(i) Zv: < Z M) tpP,i((p; A).

i=1 \UeI'p\I/Tx ’F(U(U))ll*—ap
U-xef;

Here u(v(U)) is the density defined to be the volume of the fundamental domain of
(G¥ x H[),w, withrespect to (I'g,, X I',),w, (cf. [S1, §4], or [S7, §17). Since the normaliza-
tion of the Haar measures on (Gp x H}),q, satisfies the invariance similar to (1.4) and
(Gp x H} )y, is isomorphic to Py.,, the density u((U)) differs from u(U-x), the
coefficients of the Eisenstein series, only by a constant factor independent of U. We
may normalize dgdh so that u(v(U))=w(U - x). Moreover, by (4.4), we have

|detox| =Pk |Fu(U)) |~ G499 | £(P; U - x)| 4 +0).
Hence we have
wu(U))

|l+ép

Idetxl_(l‘f‘ap)r R
vers\airs | F(U(U))
U-xef;

=E(P;x, 4).

5. Proof of Theorems 3.5 and 3.6. In this subsection, we always assume (3.6)
and the notation is the same as in §3.

5.1. First we prove Proposition 3.4. For this purpose we need the following two
lemmas.
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LEmMMA 5.1. Let the notation be as in Proposition 2.1. Let V§ be the vector space
dual to Vp and p¥ the representation of Gp x H on V§ contragredient to pp. Let w be the
permutation matrix that represents the longest element of the Weyl group of G. Then the
following three conditions are equivalent:

(1) (G, H,"P) is a spherical triple.

(2) (G, H,'P) is a spherical triple.

(3) (Gpx H, pf, VE) is a prehomogeneous vector space.

Proor. Since *P=w'Pw~ 1!, the first assertion is equivalent to the second. Let us
prove that the second assertion is equivalent to the third. We identify the vector space
Vp with its dual vector space V3 via the symmetric bilinear form (v, v*)=3", tr'o®p}®.
Let 1: Gpx H— Gp x'H be the isomorphism defined by 1((g*), B)=((9® "), h~1). Then
the contragredient representation pg is given by p#(g, h)=pp(i(g, h)). Therefore
(Gpx H, p¥, V¥) is a prehomogeneous vector space if and only if (Gp X ‘H, pp, Vp) is a
prehomogeneous vector space. By Proposition 2.1, this is equivalent to that (G, ‘H, P)
is a spherical triple. It is obvious that the latter condition is equivalent to the second
assertion in the lemma. |

LEmMMA 5.2. Let P and Q be parabolic subgroups. Assume that Q contains P and
(G, H, Q) is a spherical triple. We further assume that R(Q)n Q,={1} for a point x in
the open Q-orbit in X=G/H. Let H, be the image of Q, under the canonical surjection
Q— Ly. Then (G, H, P) is a spherical triple if and only if (Ly, Hy, Py) is a spherical triple.

ProoOF. We may assume that H is the isotropy subgroup at x. Then QH is
Zariski-open in G and Q, = Qn H. Since R,(Q)n Q,={1}, Q, is isomorphic to H,. Hence
dim G=dim Q +dim H—dim Hj,. From this identity, we see that P-x is open in X if
and only if dim Ly =dim Hy+dim P,—dim P n H. Denote by Hp the isomorphic image
of PnH in H,. Then it is easy to see that Hp=Hyn Py Hence P x is open in X if
and only if (Ly, Hy, Py) is a spherical triple and the base point of Ly/H, is in the open
Pg-orbit. This proves the lemma. |

PRrROOF OF PrOPOSITION 3.4. (i) Since P, is assumed to be reductive, R, (Q)n Q,
is trivial. Hence Proposition 3.4 (i) follows immediately from the “only if”” part of the
lemma above.

(i) Since “P is contained in Q, (G, H,"P) is a spherical triple if and only if
(Lg, Hy, w'Pow™1) is a spherical triple. The latter condition is equivalent to that
(Lg, Hy, 'Py) is a spherical triple. By Lemma 5.1, this is again equivalent to the condition
that the triple (Gp, x Hy, p§,, V§,) dual to the prehomogeneous vector space of flag
type attached to (Ly, Hy, Py) is a prehomogeneous vector space. Since the regularity
of (Ly, Hy, Pp) implies the last condition (cf. [SK, §4, Remark 117), we see that (G, H, ¥P)
is a spherical triple. It is easy to see that P, (resp. (*P),.) is isomorphic to the generic
isotropy subgroup of (Gp, X Hg, ppy, Vp,) (tesp. (Gp, x Hy, pg,, VE,)). Hence, by [S1,
Lemma 2.4 (ii)], we see that P, is isomorphic to (*P),.. The regularity of (G, H, *P) is
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now an immediate consequence of Lemma 2.3. [ |

5.2. Tt is sufficient to prove Theorems 3.5 and 3.6 in the case where P and P’ are
(X, Q)-associated. In the following, we always assume that w=wgye Wy(ap, a}) and
P’'="P. For the proof of the theorems, we need a new integral representation of the
Eisenstein series, which is a generalization of the integral representation used in [S5].

Since L, is a product of general linear groups and P, is its standard parabolic
subgroup, we can define Gp, and Vjp, as in §2.2. Put

GQ|P=QXGPQ and XQ|P=X>< VPQ'
Let my: Q—Ly=0Q/R,(Q) be the canonical surjection and define a homomorphism
n: Gop=Qx Gp,— Gp,=Gp, X Ly by n(q, 9)=(9, 7o(q))- Then Gy, p acts on Xy p by
(@, 9)* (x,v)=(q " x, ppy(n(q, 9))V) .

It is easy to see that there exists an open Gy p-orbit Q4 p in Xy p.
Let Q*, L; and Gg)p be the identity components of Q(R), Ly(R) and Gy p(R),
respectively. Since Q contains P, there exists an open Q-orbit Q, in X. Let

QQ(R)nX(O)=Q+91xo U uQ%g.x,

be the Q*-orbit decomposition. Each open Q*-orbit is decomposed into a union of
P*-orbits. Let

Pthygixou- U P+hiv.»9ixo

be the open P*-orbits in Q*g;x,. Then we have v, + - - - +v,=v, the number of open
P*-orbits in X©, and the P*-orbit decomposition of Q(R)n X'? is given by

QRN XV = . U< Qy, Q=P hygix,.
1 js_:.-

IA A

We can take h;; from L.
Let v be the point of Vp, given by (2.3). Considering Ly as a subgroup of
GPQ=GPQ x Ly, we put

v(h)=ppth™ "o for hel,.
Then the proof of the following lemma is similar to that of Lemma 4.1.

LEMMA 5.3. The G§,p-orbit decomposition of Qg pn(X® x Vp (R)) is given by

'QQIPn(X(O) X VPQ(R))= U QQ[P,ij s QQ|P,ij=G5|P *(9iXos U(hij))'

1<i<a
1<j<v;

We put X§ =X x VE,. Let us define the dual action * of Gy p on X§,p by

(g, 9)x(x, v)=(q * X, pE,(n(g, 9)v) .
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Lemma 5.4.  Assume that (L, Hy, Py) is a regular spherical triple.

(1)  The dual action * of Gg|p on Xy |p has an open orbit.

(2) Let w=wq be the permutation matrix that represents the longest element of
the Weyl group of L. Then there exists a natural one to one correspondence between the
open ¥P* -orbits and the open P*-orbits in a Q™ -orbit Q™ g;x,.

Proor. By Lemma 5.3, the open P*-orbits in Q% g;x, correspond bijectively to
the Gy p-orbits in Q4 pNn(QFg;x, x Vpo(R)). Note that (g;xo,v) and (g;xo, V')
(v, v"€ Vp(R)) belong to the same G p-orbit if and only if » and v’ belong to the same
pPQ(G,TanO(Q+ng{‘Hgi))-orbit. Hence there exists a one to one correspondence
between the open P*-orbits in Q" g;x, and the open pp (Gp, X To(Q* ng; ' Hg;))-orbits
in Vp(R). Using the realization of pg, given in the proof of Lemma 5.1, we can see
that there exists a one to one correspondence between the open *P*-orbits in Q" g;x,
and the open ,();,"Q(G;r o X no(Q*1 ng; ' Hg;))-orbits in VEL(R). Since (Lg, Hy, Py) is assum-
ed to be regular, the prehomogeneous vector space (Gpean(Qngi_ngi), Pros Vpo)
is regular. Hence, by [S1, Lemma 5.1], the open pp (Gp, X o(Q* ng; ' Hg;))-orbits
in Vp,(R) correspond bijectively to the open pp,(Gp,x mo(Q " ng;” ' Hg;))-orbits in
VE,(R). |

By the lemma above, there exist 4} (1<i<a, 1<j<v;) in Lj with which the

¥P*-orbit decomposition of *Q(R)n X, is given by

"QRINXo= U "Q;, “Q;=P*hlgx,.
1<i
1<j

IA

<a
<vi

IA

Let Q3 p be the open Gy p-orbit in X, p. Identifying V§, with Vp, as in the proof
of Lemma 5.1, we put
v* = pPQ(w)v >

where W is the permutation matrix that represents the longest element of the Weyl group
of GPQ. We also put

v¥h)=pF (k" w*  for hel,.
LEMMA 5.5. The Ggp-orbit decomposition of Q¥ pn(X® x V¥ (R)) is given by

93|P0(X(0)X Vﬁg(R)): U< 95|P,ija Qékw.ij:Gap*(gixo,U*(h;kj))-
jgf’li

IA A

{
Lete: Py — Gp,, be the injective homomorphism defined to be the composition of the
mapping given by (2.4) and the projection of G, o onto Gp,. Denote by ny: Q— L, the
canonical surjection as before. We define an embedding of P into G,p by
Pap+——p=(p, &(no(p)€Ggp -
We also define an embedding of “P into G,,p by
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"P3p ——p*=(p, ts(wtno(p)_lw_l)—l)eGQw .

By pulling back characters of Gy p to P and “P, we obtain isomorphisms between
X(Ggp) and X(P) and between X(Gy p) and X(*P). Then it is easy to see that the linear
isomorphism

apc— x(GQIP)C:) C—alpc

given by the identification of X(P), X(*P) and X(G,,p) coincides with the isomor-
phism w: af ¢ — a¥; ¢ introduced in §3.2.

By abuse of notation, we denote by detpp, the character of P given by
P3pi—detpp(e(no( p)), mo( p)). Then the following lemma can easily be proved by direct
computation.

LEMMA 5.6. We have
w((sp—"detppg)zéwp .

By the same discussion as the one leading to the construction of | F(v)|* in §4, we
can define functions | Fy p(x, v)|* (A€ af c) on 2y, p(R) and | F§ p(x, v*) |** (A* € a¥p ) on
Q5 p(R) satisfying

| Foi#((a, 9) (x, ) "= %0 £(q 9) I*| Fop(x, V) |*,
| F312((a, 9)*(x, v*N1*" =1 20, 5@, 9) 1| F§ 1 p(x, v*) |
and
| Fo pllx, ) *=1f(P; )", | Fgp((x, v¥) I*=] F(*P; x) |7
Let d.q be the right invariant measure on Q" and dg the Haar measure on G, o Put
Fgp=I¢xTg, Q" xGp,=Ggp-

Let Zo(Xg p) (resp. Fo(X 5 p)) be the space of C*-functions @(x, v) (resp. ¢ *(x, v*)) on
X©x Vp (R) (resp. X'¥ x Vi (R)) satisfying that

(i) as a function of x, the support of ¢(x, v) (resp. ¢ *(x, v¥)) is contained in a
compact subset of X© independent of v (resp. v*), and

(ii) as a function of v (resp. v¥*), ¢(x, v) (resp. ¢ *(x, v¥)) is rapidly decreasing.

For ¢p € Zo(Xyp), xe X(Q)nX'? and Aeaf ¢, we put

Zy,p(®; x, /1)=J [x01p(a@ 9) 127 Y. #((g,9)* (v, v))d,qdg ,

N (y,v)
G plTo P

where the summation with respect to (y, v) is taken over (I' * x x Vp(Z))n Qy,p, and

V(0| P; ¢, 1)= | Fop(y, 0)I*~°7(y, v)dwx(y)dv,

Q9ip,ij
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where dwy is the G *-invariant measure on X© and dv is the standard Euclidean measure
on Vp (R). For ¢* e Fo(X§ ), xe X(Q)n X'@ and 1*eak, ¢, we put

Zgp(0%; x, l*)=j | %017(@ 9 1F %> Y $*(a, 9)* (v, v¥))d,qdg ,

. (y,v%)
Goip/Toip

where the summation with respect to (y, v*) is taken over (I' * x X VE,(Z))n Q5 p, and

PHQ|P; ¢*, A%)= j | F31p(p, 0¥) 1770 *(p, v¥)deoy(y)dv*

*

Q0ip,ij
where dv* is the standard Euclidean measure on Vg (R). The integrals ¥(Q|P; ¢, A
(resp. YX(Q| P; ¢*, 4*)) are absolutely convergent in dp+a} ¢ (resp. dwp+ a¥z.).
Now we have the following new integral representations of the Eisenstein series.
The proof is similar to that of Proposition 4.2 and is omitted.

PROPOSITION 5.7. The integral Zy p(¢; x, A) (resp. Z§ p(¢p*; x, A¥)) is absolutely
convergent in d+a}¢ (resp. 0*+a¥p ) for some deaf (resp. * €a¥p ). Moreover,
under a suitable normalization of the measures d,q, dg, dwy, we have

ZQ|P(¢§ X, /1)=CPQ(}-) . Z Eij(P; X, )')qlij(le; ¢, 4)

<i<a
1<j<v;

and
Zp(d*; x, A¥)=Lp(—w™'A¥) E;j("P; x, AP E(Q| P; ¢*, 4%).

1<i<a
1<j<v;

IAA
INIA

5.3. In this and the next subsections, we introduce two prehomogeneous vector
spaces which play an important role in the proof of the functional equations of the
Eisenstein series. The first one is the prehomogeneous vector space of flag type
corresponding to the Eisenstein series of the Riemannian symmetric space of Ly(R).

Since L, is a direct product of general linear groups, we can write Ly=
GL(my) x - - - x GL(m;). Put Ky=80(my)x --- xSO(m;) and let (Gp,x Ky, pp,, Vp,)
be the prehomogeneous vector space of flag type attached to the spherical triple
(Lg, Ky, Pg). We consider the standard real structure of this prehomogeneous vector
space, for which K(R) is compact. Then there exists a unique real open G5, x Kq(R)-orbit
Vpo in Vpy(R), which is characterized by the same rank condition as in the definition
of Vp in the proof of Lemma 4.1. We denote by |dp(v) |* (A€ a}, c=af ) the function
on Vp, satisfying

|dpo(Ppo(g KIV) I = 206k, 9) 1! dp (0) |* .
For ¢ e #(Vp(R)), we put

Yo(p, H= f | dpo(v) |* 27 Pp(v)dv .

V’pQ
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The integral is the local zeta function attached to (Gp, x Ky, pp,, Vp,) defined in
Proposition 4.2.

We define the local zeta function also for (Gp, x Ky, pf,, VF,), the prehomo-
geneous vector space contragredient to (Gp, X Ky, pp,, Vp,). Let VE, be the unique
real open Gp,x Ky(R)-orbit in V3 (R). We denote by |d} ()| (A*eakp, c=a¥p ()
the function on V§ satisfying

|3, (pE,(9, Ko*) ¥ =] 1 plk, 9) |11 dF (0¥ *".
For ¢*e S (VE(R)), we put

(o, 1*)=J |dE,0*) ¥ 72 rdp*(v*)dv* .
Vo
If we identify V¥, with ¥}, as in the proof of Lemma 5.1, then V¥, =V}, and
(5.1 |dEo(0) | =|dp ()" .

ProPOSITION 5.8. The integral ¥ (¢, 2) (resp. YE(@*, A¥)) is absolutely convergent
Jor A€dp,+ap] c(resp. A*€dup,+a¥p,'c) and has an analytic continuation to a mero-
morphic function of A (resp. A¥) in af ¢ (resp. a¥p ¢). Moreover they satisfy the functional
equation
. Ipy(4)

W0(¢ ’ '1)= FPQ(—}.) WO(d’ s Wl) )
where

¢3*(v)=f ¢ *w*)expniv, v*))dv* .
Veo(R)
ReMARK. Note that, if we identify af, ¢ with af ¢, then we have dp, +af ¢ >dp+
ap ¢ and dup,+akp, cD0wp+akp e
PrOOF OF ProposITION 5.8. The proof can be easily reduced to the case where
Q=G and P,=P=P, . In this case, we have

Ve={(vy, ..., 0,—1)| Vie M(n;, n;, ; R), rank v;=n; (1<i<r—1)} .

Fori=1,2,...,r, we put

P O
Ai(p)=det(p,)- - -det(p;)  for SR
* Pr

and write
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Then we have

V(. 3)= f T et 6y 1) - 1+ 0, DI 4 o

It is clear that the integral is absolutely convergent for Re(4;)>(e;+e;4,)/2 (i=1, ...,
r—1), namely, for Aedp+afc®. We identify V3 with Vp, via the inner product
(o, 0*y=3""] ! trv;'v¥*. Since wdp= — dwp, the identity (5.1) implies that
P, A¥)=Po(d, —w™'2*) (A*eakp().

It is easy to check that a%j ¢ = —wa}¢*. Hence P§(¢*, 1*) is absolutely convergent
for A*edwp+aki . From the general theory of prehomogeneous vector spaces ([Sl,
Theorem 1]), there exists a meromorphic function p(A) such that the functional
equation

Po(*, H=yA)PH*, wi)

holds for any ¢*e #(VF,(R)). To obtain the explicit formula for y(4), it is enough to
calculate the integrals in the both sides of the functional equation for the function
¢ *(v)=exp(—n{v, v)). This can be done by using the well known formulas

P*(v)=¢*()

and

| det v |* exp(—7 tr v'v)dv —=

In—[ Tg(s+1)
jM(n R) .

I'g(i)

| L

1

11

In fact we can obtain the identities

I'y(4) rl(=4)
by wAi
Tpop) (T wh= Tpop)

Hence we have y(A)=I"p(A)/T p(— A). |

o A)=

The following proposition is the key to the proof of Theorem 3.6.

PROPOSITION 5.9. Let ¢,€CF(X'?), dp,eF (Ve (R) and ¢p3e S (VE,(R)). Let
K=S50,(R), the maximal compact subgroup of G*. If ¢, is K-invariant, then we have

(5.2) 'Pij(Q|P; 1@y, 4= 'Pij(P§ ¢1, H¥o(¢2, 4)
and
(5.3) PEHQ|P; 1 ® @3, AN)=Y,,("P; ¢, AP, 4¥),

where W (P, ¢y, A) (resp. ¥.;("P; ¢y, A¥)) are the integrals defined for the P*-orbits Q;;
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(resp. the ¥P*-orbits *Q,;) by (1.6).

PrOOF. We prove only (5.2), since the proof of (5.3) is quite the same. For any
ve Vp,, there exists (g, k) € Gp, x Ky(R) such that p, o(9; k)v=v. Then we have

| Fop(y, 0)|* %P =| Fgpl(k, g) - (k™ y, )|
=|FQIP(k_1 B2 v)|l_éPiXQ|P(1,g)|l_6P
=|f(P; k" 'y)ll“”’ldpg(v)lﬂ“"’ .

Hence

q’ij(le; ¢, )= | f(P; k™) |l_6p|dPQ(U) |1_5P¢1(J’)¢2(U)WQ|P( Y, 0)

Q0ip,ij

=j' Idpg(v)ll""’%(v)dvj | £(P; y)I* 7%y (y)dary(y) .
Ve, i

Since dwg(y)=|f(P; y)|~ 2*"dwy(y), this implies the required identity

lI’ij(Q|P§ ¢, )= 'Pij(P; é1, W¥o(P2, 4) .
[ |

5.4. For the proof of Theorem 3.6, we need another prehomogeneous vector space.
We consider the prehomogeneous vector space (Gg|p x H, pg|p, M(m)@® Vp,) de-
fined by

Poip(@: g B)x, v)=(qxh ™", pp (n(q, 9))v) (9€Q,geGp,, heH,xe M(m),veVp,).

Then the py|p(Ggp x H*)-open orbits contained in G* x Vp o(R) correspond bijectively
to the G§ p-orbits in Qg p N (X? x ¥, (R)). In fact, with the same notation as in Lemma
5.3, we see that

Go1pi=PoioGo1p X H Mg vihyy)  (1<i<a, 1<j<v)

are the py p(Gg|p x H™)-open orbits contained in G* x Vp(R).

We note that the direct summand ¥, is a regular subspace (in the sense of [S1,
§2]) of (Ggpx H, pgp, M(m)@® V). Hence, by [SI, Lemma 2.4], the partial dual
(Ggpx H, p§p, M(m) @ V§,) with respect to Vp,, is also a prehomogeneous vector space.
With the notation as in Lemma 5.5, the pJ, (G p x H')-open orbits contained in
G* x V¥ (R) are given by

QélP,ij=p5|P(G5|P x H*)(g;, v*(h})) (I<i<a, 1<j<vy)
and correspond bijectively to the G p-orbits in QF »n(X® x V¥ (R)).
It is easy to see that generic isotropy subgroups of these prehomogeneous vector

spaces are isomorphic to P, (x € ), which is reductive by Assumption (3.6) and Lemma
2.3. Hence the singular set of (Ggp x H, pg(p, M(m)@® Vp,) is a hypersurface and we
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may apply the theory of functional equations of local zeta functions in [S1, §5].
In the present case, the local zeta functions are defined as follows:

P,(Q| P; &, /1)=J | Foyp(x, 0) |* 7P @(x, v)d*xdv,,

Q9ip,ij

x
QIP,ij

PHQ|P: o*, ,1*)=j | Fg p(x, 0¥) |72 @ *(x, v¥)d “xdv*

where ¢ € S(M(m; R)® Vpy(R)), ¢* € S (M(m; R)® V7 (R)),
| Fg)plx, v)|*=| Fop(xH, v)|* (Aeajc),
| E plx, v¥) ¥ = | F3 p(xH, v*) " (A*ea¥p ),

d*x=|detx |_"‘I_I:"'j= ,dx;; and the other notation is the same as in §5.2.

For ¢* e #(M(m; R) @ V§,(R)), we define its partial Fourier transform with respect
to Vp, by setting

({;*(x, D):J P *(x, v*¥)exp(2nilv, v*))dv* .
Vo ®

Then Theorem 1 of [S1] gives the following functional equation.

PROPOSITION 5.10. The integrals ¥, (Q|P; ¢, A) (resp. PX(Q|P; ¢p*, A*)) have
analytic continuations to meromorphic functions of A (resp. A¥) in a¥ ¢ (resp. a¥p ) and
satisfy the functional equation

PiQIPig* = X yHOPHQ|P;d* wh),
1<j*<v;
where y$\(%) are meromorphic functions independent of ¢p* with elementary expression in
terms of the gamma function and exponential functions.

ReMARK. The calculation of the gamma matrix (y${A(4)) is reduced to the calculation
of the gamma matrix of the local functional equation for the prehomogeneous vector
space (Gp, % Hy, pp,, Vp,) (see [S1, §5.2]).

We rewrite the functional equation in Proposition 5.10 into the functional equation
satisfied by ¥;; and V3.
Let dh be the Haar measure on H* normalized by

J f(x)d"x=j dwx(xH)J fxh)dh .
G+ X(©) H+

For ¢peFy(Xop) (resp. ¢* e Fo(XG p), take a (i;eV(M(m; R)® Vp(R)) (resp. p*e
& (M(m; R)® VE(R)) such that
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j (i;(xh, v)dh=¢(xH, v) (resp. J d; *(xh, v¥)dh=¢*(xH, v *)) .
H+* H+*

Theh we have
FAQ|P; 6 =P (Q|P; ¢;2), THQ|P; % i*)=PX(Q|P; p*; 1¥).

Therefore, if we put for ¢* e (X3, p)
d;*(xH, v)=f O *(xH, v*)expni{v, v*))dv*
Veo(R)

then Proposition 5.10 gives the following functional equation satisfied by ¥;; and ¥3*.

PROPOSITION 5.11.  For ¢peFo(Xgp) (resp. ¢p*eFo(X§p)), the integrals ¥.;(Q|
P; ¢, 2) (resp. V¥ (Q'P ¢ *, A¥)) have analytic continuations to meromorphic functions of
A (resp. A*) in af ¢ (resp. a¥p ¢) and satisfy the functional equation

PiQ|P; % D= Y yRUNTEQ|P; d* wh) (p*eFo(Xo ),

1<j*<v;

where y\0(2) are meromorphic functions independent of ¢p* with elementary expression in

terms of the gamma function and exponential functions.
5.5. Now we are in a position to prove Theorems 3.5 and 3.6.

PROOF oF THEOREM 3.6. Let ¢, € CP(X?), ¢, €S (Vp,(R)) and ¢p3 e F(VF (R)). If
¢, is K-invariant, then it follows from Propositions 5.8, 5.9 and 5.11 that the mtegrals
¥.i(P; ¢y, 4) (resp. ¥;;(*P; ¢, A*)) have analytic continuations to meromorphic functions
of A (resp. A*) in a} ¢ (resp. a%p ¢) and satisfy the functional equation

F A
‘Pij(P; b, A= I}:Q( )»)) }Z* J(;l 1)Wijt(wP; by, wh).
PQ

Therefore, putting

Copn(W, 4) FII:Q((—;) yMA) if =i,
5.4 sph\Ws Alix, )., ) = Po
-4 ’ o 0 it i,

we obtain Theorem 3.6. [ |

REMARK. Analytic continuations of the integrals ¥,;(P; ¢,, 4) and ¥;(*P; ¢,, A*)
can be proved for any ¢, € CP(X'?) without the assumption that ¢, is K-invariant.

The proof of Theorem 3.5 is based on the following lemma.

LEMMA 5.12.  Assume that ¢p* € Fo(X 5 p) satisfies the condition that
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@* vanishes outside Q5 p and ¢* vanishes outside Qg p .

Then the integral Z,, P(q; * x, A) (resp. Z5p(¢*; x, A*)) has an analytic continuation to a
meromorphic function of A (resp. A*) in af ¢ (resp. a¥%p ¢) and is holomorphic in the convex
hull of (0 + a} ¢)u(8* +akp ¢), where 8 and 6* are the same as in Proposition 5.7. Moreover
they satisfy the functional equation

Zo 1o d*; X, A)=ZF p(p*; x, wA) .

By using Lemma 5.6, we can prove the lemma in the same manner as in the proof
of [S1, Lemma 6.17]; hence we omit the proof.

PROOF OF THEOREM 3.5. Take a ¢§eCy(R25 5+ and a yeakenX(P). Let
¢*e C3(24,p,:») be the function satisfying

G*(x, v)=| F,p(x, v) P &(x, v) .

Then the function ¢* satisfies the assumption in Lemma 5.12 (cf. [S1, Lemma 6.2]).
Hence, by Proposition 5.7 and Lemma 5.12, we have

Lpo(— DEip("P; x, WP E(Q| P; ¢*, wi)
=Z}% D% x, wh)
=Zg (0% x, 2)

={po(A) ; E/(P; x, )¥,,(Q| P; %, 3) .
jssvai

IAIA

1
1
Since the support of ¢* is assumed to be contained in Q% p s, Proposition 5.11 and
(5.4) yield the identity

I'py(4)

—— = CopnlW, D, .. )V HQ| P @*, wh)  if k=i,
FPQ(_'D ph @@, %), ) © ij |

?.(Q| P; 6%, )= 0 -

Note that we can choose ¢§ and x so that ¥ }(Q| P; wi) does not vanish identically.
Therefore, combining these two identities, we obtain

oA
Eij‘(wp; X, WA) =Ti)* Z Csph(wa l)(i,j*).(i,j)Eij(P; x, ).

PQ _A) 1 SjSVi
By (3.7), this proves Theorem 3.5. |

For yea%g cn X(*P), let F3{p(x, v*) be the relative invariant on X, » corresponding
to x. Then F§fp is regular on X3, and hence a polynomial function of v*.
Let F3{p(x, 0/0v) be the linear partial differential operator in C[X][d/0v] satisfying
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0
F’Qkf(P <x7 E) exP(<U, v*>)=F5rP(-x7 U*) .
Then there exists a polynomial function b,(4) on a3 ¢ such that the identity
0 _ op w1
F&‘f‘p<x, 73?)‘ Fo p(x, 0)[*7%" = +b,(A)| Fg plx, v) |* 7077

holds on Q,p;;, where the sign in the right hand side of the identity depends on
i, j. The polynomial b,(4) is the b-function of the prehomogeneous vector space
(GPQ X HQ’ pPQa VPQ)‘

Let by(4) be the greatest common divisor of b,(4) for all yea%s cn X("P).

PROPOSITION 5.13.  The functions by(A)p (A)E;;j(P; x, ) are holomorphic in the
convex hull of (6+a}¢)U(6* +a%g o).

The proof is quite the same as in the case of zeta functions associated with
prehomogeneous vector spaces (see the proof of Theorem 2 in [S1, §6]) and is omitted.
Applying the proposition to various Q, we often get fairly satisfactory information on
the location of poles of the Eisenstein series (cf. Appendix, Proof of Theorem 3.8).

Appendix: The proof of the analytic continuation and the functional equations of
the Eisenstein series on GL(n)/O(n). In this appendix we give proofs of Theorems
3.8 and 3.9 in §3.4.

First, assuming the functional equations for ¢;,=(i,i+1)e S, (i=1,...,r—1), we
prove Theorem 3.8.

PrOOF OF THEOREM 3.8. For Pe2, we put Cp=0,+a}¢. For ae S, let /(o) be
the length of o with respect to the generator system {o,, ..., 6,_,}. We denote by 29
the convex hull of the union of 67'C,, for all 6€&, with /(6)</. Here we consider
o as an element in Wy(a}, a%p). It is easy to see that 29 coincides with a} ¢ for sufficiently
large . Therefore it is enough to prove the following:

The functions {p(A)E,(P; x, ) multiplied by

BYD= T1 burers <2_:21ﬁ>

1<i<j<r 4
j—i<l

Jj
j—i<
are holomorphic in 2.

We prove this assertion by induction on I We put P;=°P. The case /=1 is
an easy consequence of Proposition 5.13 and the fact that the product Hff:ol lzi—z;+
(e;+¢€;)/2—p) (i<j) is holomorphic in 6, 'Cp, unless (i, j)=(k, k+1).

Now consider the case />2. Note that 2Y is the convex hull of

r—1
-1 -1 -1
[ )U(Ua,- 2’3 ’).
i=1
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Hence it is sufficient to prove that BY'(5(4)E(P; x, 4) is holomorphic in 2§~ Yue; 2§~
for any i. Since B§ ™ divides BY, it is obvious that BY¢xA)E,(P; x, A) is holomorphic
in 2§71, To prove the holomorphy in ¢; '2{ "), one can use the functional equation
for o;:

. _ He'_IC( Zip+eit+ei)2—pw
ADELE % A= ne'” IC(21+1 —zit(e;+eir1)2—v)

X CEis(O' ;0 }‘)Z ph(o' aij')s.nCPi(ai;L)Eq(Pi; X, 0;4).

By the induction hypothesis, the function
Bgi_ 1)(0'i)~)CP.«(O'i)-)Ey,(Pi; X, 0;4)

viewed as a function of 4 is holomorphic in ¢; '2§$ V. Since Bf "Y(g;4) is a divisor of
BY)(A), the explicit form of the functional equation given in Theorem 3.9 implies that
B p(A)ELP; x, 4) is holomorphic in o7 12§~ 1) except at possible poles z;—z;,,=c
(c=some constant). Any hyperplane of this form intersects with 2%, in which
BW(A)p(A)E,(P; x, A) is holomorphic. Hence BY(A){pA)E,(P; x, ) is holomorphic in
671D, B

ProOF OF THEOREM 3.9. By (5.4) and the remark to Proposition 5.10, the cal-
culation of C,,(a;, 4) can be reduced to the calculation of the gamma matrix of the
local functional equation for the prehomogeneous vector space (SO(e; +e; . 1) x GL(e;),
Mie;+e; 1, €;)). Namely, Theorem 3.9 follows from the functional equation (A.1) below
together with Theorem A.1.

To simplify the notation, we write m and n for e;+e¢;,; and e;, respectively. We
also put

e[z] =exp(2niz),

1
Ip.q:( ? -1 >’ prq=m,

Vi ={xeM(m, n; R)|sgn(l, [x])=(, )}, i+j=n,
sz.;l))+ = {xe (((p;g)l Sgn( pq[xl])—' +}
Vet ={xeV{y|sgnl, [x')=(—1, ) or (i, j—1) according as + or —},

where, for xe M(m, n; R), I, [x]="xI, ;x, x, is the first row vector of x and x’ is the m
by n—1 matrix obtained from x by removing x,. The set V'{¥*? is not empty if and only
if max{0, n—q} <i<min{p, n}. If m, n, p, q are fixed and there exists no fear of con-
fusion, we write V; V=, V¥* for VD, VIPR*, ViPD**,

For fe % (M(m, n; R)), we put
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P(f;9=| ldetl, [x]Ff(x)dx,
7 (fss)=| |detl, [xX]]f(x)dx,
Jys
QFE(fr )= |det, [x]f(x)dx .

Then we have

O(f;85)=0; (f; 9+ P, (f;)=PF (f;5)+PF (f59).
We define the Fourier transform of fe%(M(m, n; R)) by setting

fx)= J(p)e[tr(xy)ldy .

M(m,n; R)

Then, by the general theory of prehomogeneous vector spaces ([SS]), we have the
following functional equation:

7 %k m
(Al) Q'(f’ s): Z VM,n(S)C((;,}iI )( D.q° S)¢i*(f; _V———s> s
max{0,n — q} < i*<min{p,n} 2
where
Vmnl$)= ] TrQ2s+p+ 1) g2s+m—u+1), Tgz)=n"*I(z/2).
n=1

Our problem is to calculate C{'/™(I, ,; s) explicitly.

THEOREM A.l. The coefficients C{ii™I, 4 8) (i+j=i*+j*=n) vanishes unless
li—i*|< 1. In the case |i—i*|<1, we have the following explicit formulas:

1)¥ l_[ cosn<s+ q2,u> [T cosn<s+p;'u>

u=1 p=i+1

if g=j (mod2),

—l)"ﬂcosn<s+p2‘u> IT cosn<s+ q—;u)

u=j+1

if q#j (mod2),

. 1 1 ji—1 n
smn(q—J—-—'_—) 11 cosn(s p+u> I cosn<s+ q+,u>
C(l+1_} 1)( i )_ 2 n=1 2 p=j+1 2

@ if i=0 (mod?2),
0 if i=1 (mod2),

Cl ) pg 5)=

P‘l’

+
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—i+1 i—1 n
sinn<u) 1_[ cosn<s+ q+/t> n cosn<s+ﬂ>
2 p=1 2 =i+l 2

if j=0 (mod?2),
0 if j=1 (mod2).
The theorem was obtained by T. Suzuki in his master thesis except the case where

max{p, ¢} >n>min{p, q}. His calculation is based on the method of the microlocal
calculus. Here we give an elementary proof.

C((ii,;)1 T 1)(117.11; 5)=

Proor. To determine C{j/(I,; s), let us calculate the integral @,(f,s) under
the assumption that the support of f is contained in {xe M(m, n; R)|det1, [s]+#0}
and Re(s)>0.

Our calculation is done by induction on m. For simplicity we put

“((ii.‘})j*)(lp‘q; 5)="Vm.n(5) (::r’j{t)(lp,q; 5).
1 n—1

We introduce a parametrization of V. For xe V¥, we write x=(x,, x’ ). Put W=
{veR™|<v, x,):="vl, x,=0}.Since I, [x,]#0, we have R" = Rx, @ W. We can choose

a basis wy, ..., w,_, such that
<Ip.q[x1] 0 ) if + ,

0 I,_
Ip,q[xls W]= i
<1p'q[x1] 0 ) .
if —,
0 ) S
where w=(wy, ..., w,_;)e M(m,n—1; R). It is obvious that det(x;, w)*=|1, [x,]].
Writing
1! 1 0\/1
x=(x1,w)< a):(xl,w)< )( a4 ) aeR"', AeMm—1,n—1;R) ,
0 A4 0 A4/\0 1,_,

we take x,, a, A as a coordinate system on V;*. Then
x eV, AeVP P if +
1€V (10) G-1.) 1 )
(p,g) -1 :
x, €eVEY, Aevpi) if —.
For simplicity we put
I 1,1, if +,
I if —.

pa—1

nea=("g DIG NG o)
A 3 AP AR A &

Since

we have
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dx=|1I, [x,]|"" V?dx,dadA
detl, [x]=1,,[x;]-detl'[A].
We change the variable y on M(m, n; R) into

b, b
B=<b1 B2>=(X1a w)~ 1y, b,eR, b,eR" !, b3€R""1 . BieM(m—1,n—1;R).
3 4

Then we have
dy=|1I, [x,]1"*dB.
We also have
tr('xl, y)=by I, [x,1+tr(AI'B,)+1, [x,] - 'bra .
Put
Flxy; B)=f((x,, w)B) .

Then, using the parameter introduced above, we have

o/ (f;9)= [£pq[x1] |s+"_1/2dxlj -1 | 9Et o1 4[4] |‘dAf da
i-1,5) Rn-1

I, 4[x1]1>0 Vi

x j F(xy; Belby * I, [x,]+tr(AI'B) +1, [x,]* 'b,aldB
M(m,n;R)

= J | Iy [x, 11 V2 f oouoldetl, oy JLATpdA
Ip qlx1]1>0

G(i-1,))

X JF(;Q; (1;1 ; >>e[bl -1, [x,]+tr(A4l,_, ,B,)]db,db,dB,
3

4

=Zu((;i:_1fj,)j*)(1p_ 1. s)f |1, ,[x:] [+ 1124,
" Ip,qlx1]1>0

XJ“’“ ) ldetll"l'q[B‘t]|—(m_1)/2_sdB4
14 »q

(i* =1, j%)

by 0
X jF(xl; (bl B >>e[b1 1, [x,]1db,db; .
3 Ds

Let D be the subset of R™ x M(m, n; R) of elements (x,, y)=(x;, (}T ,-5)—’ ) satisfying
{ I, [x1>0,

n—1

YI,.x=0 in R"',
sgn(l, [y D =(*—1, j*).
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The last integral above can be viewed as an integral on D with respect to the measure
w=dxdb,db;dB,. In fact, since b, * I, [x,1="x,1,,y, and I,_, [B,]=1,,[y'], the
integral is rewritten as follows:

(A2) J | I gl 112 det I, )Ly 11~ ™" D275 f (Ve 1, gy 1 Jod(xy, ) -
D

We introduce another coordinate system on D. For (x,, y)=(x;, (y1, ") €D, fix
y'€ M(m, n—1; R) and choose ze M(m, m—n+ 1; R) such that

Iy i g—jr 0
Ip'q[(Z,y,)]=< P O‘ I [y,]>-

The row vectors of z forms a basis of the orthogonal complement of the space spaned
by the row vectors of y’ with respect to the inner product (v, v*)="vl, v*. Hence we
can write

x,=zu  for some wueR™ "*!

and
, 0 B m
y=(z’y)<ﬁl >s ﬁ=( 1>GR .
ﬂZ ln—l ﬂz
Since
Ip,q[xl]=Ip_,-t+1,qﬁj¢[u]>0,
we see that

I, . _a[u]>0,
N
Ip.q[y ] € V(i*— 1,j%) -
LemMma A.2. We have
o(xy, y)=|Ip—i*+1.q—j*[u]|"/2_1dudyldﬂ .

PrOOF. Consider the mapping R™ x M(m, n; R) > R"~ ! defined by (x,, (y;, y)+>
'y'l, .x;. The image 'y'I, ;x, can be written as

t

I, [x,]- b for the parameter system x,, B,
yllp X1 {

u ”n — ’
I,y for the parameter system ( ) >=(z, V) x, B,y .

Hence we have
dx,dy

m= 11p,q0%1] | "2 *Ydx \db,db;dB, = dudy'dp .
p.a™1
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Using the parameter u, 8, y’, we can rewrite the integral (A.2) as follows:

Integral (A.2) = IIp—i*+ l'q_jm[u] |S+(7l— l)/zdu
Ip_.-*+1,q_j"[u]>0
XJ( |det 2, Ly ]|~/ dy’
VD

XI f(y)e[tulp—i*+1,q—j‘ﬂl]dﬁldﬁ2
Rm

n—1
=Zu71(i(-)))<1p i*+1,q9— J*’S+ >
1 2

X

J |Ip—i*+l,q—j*[ﬁl]|_M/2_sdﬁldﬂ2
sgn(Ip-i*+1,4-;*[B1) =%

XJ ) |det 7, [y 117>~ f(y)Idet 1, [y]|"2dy’,
VD

where a(+)=(1, 0) and a(—)=(0, 1). The domain of integration can be identified with

V& or V&9 ., according as + or —. Thus we obtain

4 ey n—1 m
¢i+(f;s)=2u((il—lfj)])( lqss)u(10)(1 —i 1,94 St > >¢it+<f§ —7—S>

+Z uli=L 5,y g U <Ip_i*,,,_j.+1;s+ n;l) ,-’l“(f; —%—s).
Similarly we obtain
o7 (f;5)= Zu{:*] TR0 SR )u{(};f)’<1p_i.+l‘q_j*;s+ n;1>d§if+<f; —%—s)
+;u(‘,‘*, A | S s)u{&’}}(lp_,w_q_ﬁﬂ; s+n——2—1>¢;§‘<f; —%—s).
From these two formulas, it follows that
A3 &(f;9)= Z{ o) BE <f; —g—s>+u.-;(s)¢::‘<f; —%—s)},

where

) ; n—1
+ _ *—1, %) 1,0
uids) =l 1 (- 1.4 U0 <p 4 1,g-j% 5

n—1
% l ‘( ’0
((:J 1) (pq 1S )“ l))<1p r1,q-j% ST 5 ),
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- n—1
-— _ *’ *—1 .
uii*(s)—u((il—]l,j) )( —1,05 S)u(l 0) <Ip—i*,q—j*+ S+ )

(* j¥ — 1 .
+ug, jJ 1) )( pa— 1»3)“(0 1)(1p—i*.q—j*+1a

Choose the test function f so that its support is contained in V¥ J") * and compare
(A.3) with (A.1). Then we have the following recursion formula.

LEMMA A.3. We have

i* i*— n— 1
(A4) C((il,}‘?)(lp.q; S) = C((i— ll}?)( -1, S)C(l 0) < p—i*+1,9 ;S +T)

n—1
x—1,0 1,0) .
((:1 1))( pa—155) ((01)<Ip—i*+l,qas+ 5 >,

; n—1
0,j*—1 0,1
(A'S) ((101)1*)( pq° S) ((l Jl,j) )( -1, S)C(l O))< p.q—Jj*+ 15 s+ ) )

n—1
0,j*—1 01 .
C((l _]J 1) )( p.q-— 1S ) (0 l))<Ip,q—j*+1a s+ 2 )

If i*, j*#0, then

* % 1l n—1
(A6) C((: Jj] ( P S) C((l 111)1 )( -1 q, )C((ll"g))<1p-i*+1,q—i*; S+ 2 >

n—1
* 1 *
((IIJ 1)1)( p.a— I’S)C(01)<p i*+1,9— j‘,s+ D) >,

*, j* n—1
(A7) =Cii~ jlﬂl)( 1.6 9C ))<Il’—i',q—j*+1;5+ 2 >

n—1
*, j*—1 Cco.n .
((:11 1) )( pa—15C0; l)(Ip—i*,q—j*+l9S+ 7 >

If n=1, then it is known (cf. [GS]) that
A8 (c{%*&’ o) >( I 5= <cos (s +(g+1)2) sin(mp/2) ) .
ca: ch) sin(ng/2) cosm(s+(p+1)/2)
We note that
(A.9) C((]]*l)l*)( q,p° S) ((ll*ﬂl*)([p,q; S) *

Using Lemma A.3 and (A.8), we prove Theorem A.l. We begin by calculating
some special cases.
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LemMA A4. If p=n, then we have
CoOL, 1 5)= 1’1 cosn<s+ a 2”).

Proor. In the formula (A.4), substitute j by 0. Then the first factor of the second
term vanishes. Hence

n—1
( 0) 1,0 . 1,0 .
Cooylp.g 8)=CG~ 1o;(lp—l‘q’S)C((l.0>)<1p—n+1.q’ 3 )

n n—
l:[ <p n+lqas+ 2u>

By (A.8), this implies the required identity. |

LemMMmA A.S. If p>n, then we have

q+p . .
sin cosm|s+—— |, if nisodd
C(: Lpg )= { 2 uUZ ( 2 ) 4

0 if niseven.

ProoF. By repeated use of (A.4), we have

n—1 nq
,0) 1,0 1.0y 7 C
C(.'.' 1. P §)= ((: 2, 1))( — 1. S)Cu 0)< p—n+1 q,5+_2 ) ((,'.' 10)( q_l,s)sm —2

~Sm_‘ Z H <p n+1 q,s+—T>C((;' 1,:8)( k+1,q—1;s) .

k=1p=1
Hence, by Lemma A.4 and (A.8), we obtain
n n—2 +qg—
0 ya s)—smﬁ{ Y (—1)"""} I1 cosn<s+n—q——'u>.
2 (k=1 u=0 2
Since Y ;_, (— 1)""*=1 or 0 according as n is odd or even, this proves the lemma. &

The following lemma proves the first assertion of Theorem A.1.

LEMMA A.6.
CE, 5 9)=0 unless |i—i*|<1.

Proor. We prove the lemma by induction on n. The lemma is obvious for n=1.
Assume that n>2. First consider the case where i*,j*+0. Then, by the induction
hypothesis, if the right hand side of (A.6) (resp. (A.7)) does not vanish, then we have
[i—(@*—1)|<1 (resp. |i*—(z’— 1)|<1). Since (A.6) and (A.7) give the same value, this
implies that i=i*. If j*=0 and C{}/"(I,;s)#0, then, by (A.4) and the induction
hypothesis, we have j=0, 1 or 2. If j=2, then
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n—1
Cc0) 1,0 . 1,0 .
Co2 oI, 8)=CH=30, q—I’S)C((O.l))<Ip—i*+1.q, s+ 5 >

The identity (A.8) implies that the second factor of the right hand side vanishes if ¢ is
even. On the other hand, Lemma A.S implies that the first factor of the right hand side
vanishes if ¢ is odd. Hence we obtain C{:% , (7, ,; s)=0. The case i* =0 reduces to the
case j* =0 by the identity (A.9). |

By the lemma above, what remains to be done is the calculation of C{’;/” for the
cases i*=i+1 and i*=i. The case i*=i—1 reduces to the case i*=i+1 by (A.9).

LEmMma A.7.

sinn( g+l >Hcosn(s+u> n cosn<s+q ”)
STRGLUSTEP O 2 )i :

if i=0 (mod2),
0 if i=1 (mod2).
Proor. Since the calculation for the case j=1 has been done in Lemma A.S, we

assume here that j>1. In the present case the first factor of the first term of (A.7)
vanishes by Lemma A.6. Hence (A.7) yields the identity

n—1
+1,j-1 . +1,j-2 1) .
C(:j) = pa S)= ((:1 11) )( pa—1>9S )C )<Ip—i-l.q*j+2’s+ > )

n—p
(l+10) (01
C(ll) ( Pq— ]+1’S)l_[ (01)<p i—-1,q9- J+2’s+ 2 )-

The identity together with Lemma A.5 and (A.8) implies the lemma. |
Lemma A.8.

—1)”]—[cosn(s+q2“> ]_[ cosn(s+p2”>

n p=i+1

if g=j (mod2),

C(u)(pq’ s)= j
(=¥ 11 osn<s+ B%) n cosn<s+q2”>

u=1 p=jt1
if q#j (mod?2).

Proor. Since the calculation for the case j=0 has been done in Lemma A.4, we
assume that j>0. First consider the case where g—j is odd. Then, by Lemma A.7, the
first factor of the first term of (A.7) vanishes; hence we have
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ct n( ) (11—1
(. Ipg (11—1

n—1
-1 8 )C((g,ll))<1p—i,q—j+1§s+ > )

The identity together with Lemma A.4 and (A.8) implies the lemma in the case where
q—j is odd. Using the recursion formula (A.6), we can prove quite similarly the lemma

in the case where g—j is even. |
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