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Abstract. In this paper, we prove that L? boundedness for the maximal operators
associated with the commutators generated by BMO functions and some multiplier
operators. And we also study the L? boundedness for the maximal operator associated
with the commutators of spherical means and a function in BMO or Lipschitz space.

1. Introduction. Coifman and Meyer observed that the L” boundedness for the
commutator [b, 7] defined by

(b, T1f(x)=b(x)Tf(x)— T(bf )(x)

could be obtained from the weighted L? estimate for 7" with 4, weight when b BMO
and T is a standard Calderén-Zygmund singular integral operator (see [4]), where 4,
is the weight function class of Muckenhoupt (see [14, chapter V] for the definition and
properties of 4,). In 1993, Alvarez, Babgy, Kurtz and Pérez [1] developed the idea of
Coifman and Meyer, and established a general boundedness criterion for the com-
mutators of linear operators. Their result can be stated as follows.

THEOREM A. Let E be a Banach space, 1 <p, q < oo. Suppose that the linear operator
T: CS(R") — M(E) satisfies the weight estimates

[l Tf“Lfv(E)SC“f“p.w

for all we A, and C depends only on n, p and C‘q(w) (the A, constant of w), but not on the
weight w. Then for any positive integer k and b(x)e BMO(R"), the commutator

Ty aof (x)= T((b(x)—b(+ )\ )(x)
is bounded from LE(R") to LI(E) for all ue A, with norm C(p, n, k, Cq(u))||b||’§Mo.
This result is of great importance and is suitable for many classical operators in
harmonic analysis. But for some important operators, the criterion of Alvarez-Babgy-

Kurtz-Pérez breaks down. Let us consider the maximal operator of the spherical means
defined by
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(1.1) M, f(x)=sup| M, f(x)]| for fe&
t>0
with
(1.2) Mtf(x)=j Sx—=ty)dy’,
Sﬂ—l

where S"~! is the unit sphere in R" and dy’ is the rotationally invariant measure of
total mass 1 on the unit sphere. This operator M, which is studied by Stein in [12],
is of interest by itself and is very useful in the study of partial differential equations.
In [12], Stein showed that the operator M, is bounded on L? provided that n>3 and
p>n/(n—1). We do not know whether the operator M, enjoys weighted LF estimates
with general 4, weights for some ¢>1. Thus Theorem A seems not to be well adapted
to this operator.
Meanwhile, let me L*(R") be a multiplier. Define the operator {T"},., by

(1.3) (T Q) =m)f€), fe¥
and the associated maximal operator by
(1.4 r*f (X)=§Bgl Tf )],

where f denotes the Fourier transform of f. It is well-known that the operator T*
plays a fundamental role in the study of the pointwise convergence of the averages
along hypersurfaces (see [10] and [11]). A result of Rubio de Francia [10], Sogge and
Stein [11] states that if me C*(R") and

(1.5) Im(Q)|<CIEI™™, |Vm(&)|<C| ¢~

for some positive constants C and a,, a, with a, +a,> 1, then T* is bounded on L*(R").
If the multiplier m satisfies only the decay estimate (1.5), we do not know any weighted
L? estimate with general 4, (g> 1) weights for 7*. Thus in this case the boundedness
criterion for the commutators of linear operators does not apply to obtaining the L*
boundedness of the maximal operator associated with commutators of T°.

The purpose of this paper is to consider the L? boundedness for the maximal
operator associated to the commutator of the spherical means. Let & be a positive
integer. For a function b in BMO, the k-th order commutators of spherical means, M,
are defined to be

(1.6) My i f(x)= f (bx) = b(x—ty"))ef (x — ty")dy’

Sn—1

and the maximal operator associated with them is defined by M, ,,

(1.7) M1 f (x)= sup | M,y f(X)].
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We also consider the commutator generated by M, and b in /ip, the Lipschitz space.
Denote by 4 the k-th difference operator, that is

A f X)= A f (X)=F (x +h)—f (x)
AT )=Mf x+h) =4 f(x), k=1,

For >0, the Lipschitz space /i,, is the space of functions f such that

Ili,= sup SO

x,he R h#0 o |h |B

For b in /iﬁ, 0<p<k<n/2, as in [9], the k-th order commutator of spherical means,
denoted by M, ,, is defined by

(1.8) M0/ (x)= J Aty pb(x) fx =ty )y’
Sn.— 1

and M*;b,k is the maximal operator associated with ]l71,;,,',¢.

We will consider a general result for L? boundedness. Let me L™(R") and the
operators {T"'},>, be as in (1.3). For a positive integer k¥ and b€ BMO(R"). Define the
k-th order commutator of T* by

(1.9) T/ ()=T(bX)—b(- )V )Nx), fes.
The maximal operator associated with {7} ,},-, is defined by
(1.10) Tb"fkf(X)=§l>llgl Tyuf ().

Now we state our main results in this paper.

THEOREM 1. Let k, j (j=2) be positive integers and b€ BMO(R"). Suppose that the
multiplier me C*(R") enjoys the property (1.5) and
1 IZ 1D*m(&) < CA+[ENY,
al=j

for some positive constants C and N. Then T, is bounded on L*(R") with bound C ||b| §yo-

THEOREM 2. Let k be a positive integer and b in BMO(R"). If n>3 and
nf(n—1)<p<oo, then M., , is bounded on L? with norm C||b|¥yo.-

THEOREM 3. Let k be a positive integer. Suppose b in /i,, with 0< <k <(n—2)/2.
Then M., is bounded from LP into L% with 1/q=1/p—B/n provided that n>3 and
nf(n—1)<p<n/B—n*/(n—1)p(n—2p)).

The paper is arranged as follows. We give the proof of Theorem 1 and Theorem
2 in Section 2. In Section 3, we prove Theorem 3.
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2. Estimates for commutators generated by a BMO function. In this section, we
give the estimates for L? boundedness of the operator T3,. We begin with some
preliminary lemmas.

LemMMa 2.1 (see [5]). Let k be a positive integer and be BMO(R"). Denote by M,
the k-th order commutator of the Hardy-Littlewood maximal operator, that is,

M, ,.f (x)=sup r"’j [b(x)—b(y) 1 f(¥)dy .
|x—=yl<r

r>0
Then for all 1 <p< oo, M,, is bounded on LP(R") with bound C||b| o

LEMMA 2.2. Let ¢ € C§(R") be a radial function such that supp ¢ ={1/4<|x|<4}
and

Y e =1, [x|>0.

leZ
Denote by g, the multiplier operator
@NME)=0R7IEE).
Then for any positive integer k and be BMO(R"), the k-th order commutator of g, defined by

Gup.if (X)=g1(b(x) = b( )" )(x)

1/2
leZ

ProOF. Let 1<p<ooand we 4,. The weighted Littlewood-Paley theory (see [4])

shows that the estimate
“( Z lg.f |2>
leZ

holds for some constant C independent of w. Note that the mapping

f- {glf}lel

is linear, the boundedness criterion for the commutators of linear operators of
Alvarez-Babgy-Kurtz-Pérez (see [1, Theorem 2.13]) yields the desired estimate.

satisfies

<Clbligmoll £,

p

for all 1<p<oo.

<Clflpm

p.w

LemMma 2.3. Let1 <6< 0, be a positive integer, ¢ and N be real numbers. Suppose
that mge C(R") is a multiplier such that suppms<{5/2<|x|<25} and

lmsll < €3¢, 3 ID*myl,, < COY

lal=j
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for some positive constant C which is independent of 6. Let T; be the multiplier operator
defined by

(T35 (€)=mytE) [ () .

For a positive integer k and be BMO(R"), denote by Tj., , the k-th order commutator of
T3, which is defined as in (1.9). Then for any ¢>0, there exists a positive constant
C=C(n,k,c,& N) such that

2 dt
f f | Tspuf (x) 2dx - <CO*H b Fuoll 113 .
1 R"

Proor. Without loss of generality, we may assume that ||b|/gyo=1. Obviously, it
suffices to show that

1T f < CO*| £l -
Let ,, ¥ be radial functions such that
suppy = {1/4<|x|<4}

and
Vo4 S =1, if |x|>0.
=1

Set ¥, (x) =y(2 " 'x) for />1 and Kj(x)=my (x), the inverse Fourier transform of m;. Split
K; as

Kox) = Ko)+ 3 K= 3. K}

Recall that 1<d<oo and suppm;c{§/2<|x|<26}. A straightforward computation
shows that

I1K3 0 < ClIK ]| o0 < CO™ 7€
Let T} be the convolution operator whose kernel is K. Young’s inequality now says that
2.1 ITHHf I, < CO" €|l f I,
Write

(K3)"(¢)= J mo(&—2""nW(m)dn .
er
Since ¥ is null in a neighborhood of the origin and a Schwarz function, we have

J n*J(n)dn =0
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for any multi-index «, and
f InP1(n) dn < oo .
RVI

Expanding m; into a Tayloy series around ¢ gives

I(Ké)A(f)ISI > IID“malle_”f |n 1) |dn < C27 6™
Rn

al=j

Thus,

(2.2) 175" fll<C27 '8 £l -

On the other hand, another application of Young’s inequality gives that
1K) oo < 1K) Nl 11, < €3¢,

which in turn implies

(2.3) 1Tl <Cocllf ]l -
Therefore, for each fixed v, O0<v<1,
(2.4) 1T, < Co T N=27Y £, .

Interpolation between the inequalities (2.1) and (2.4) tells us that for each g with
2<g<o0,

(2.5 IT5fllg< €27 2agnrerb@=a=m2ia) £ .,

where ¢’ is the dual exponent of g, i.e., ¢'=q/(g—1).

Now we turn our attention to T ,, the k-th order commutator of the operator
T}'. We decompose R" into a grid of non-overlapping cubes with side length 2/, i.e.,
R"=], Q.. Denote by y,, the characteristic function of Q. Set f;= fo,. Then

f(x)=Zf,-(x), a.e. xeR".

Since supp K} = {| x|< C2'}, it is obvious that the support of T;!f; is contained in a
fixed multiple of Q,, and that the supports of various terms T} ,f; have bounded
overlaps. So we have the following almost orthogonality property:

I Tas s 13< CYNTomafill
i

Thus we may assume that supp f = Q for some cube Q with side length 2'. Choose
peCy(R"), 0<¢<1, ¢ is identically one on 50nQ and vanishes outside 100nQ.
Set 0=200nQ, and b =(b(x)—bg)¢(x), where by is the mean value of b on 0. Let
2<4q,, 4,<oo such that 1/q, +1/q,=1/2. By Holder’s inequality and (2.5), we deduce
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BT3B =), < 1B, I T3 B 1),
< C272Haagntet N = m2/az im)| | BEomE
e O i N il PO [
< 2~ 2Vlazgn+c+ VN =)~ nl2/q2) In(1 —2/qz)|lf||2 ,
where in the last inequality we have invoked the fact
18", < Cllbl Mol Q114

For each fixed ¢ >0, we choose g, larger than and sufficiently close to 2, v larger than
zero but sufficiently close to zero so that

2v/qg,>n(1-2/q,), n+[v(IN—c)—n]2/q,<c¢.
We then have that for some positive constant 7,
I1Bm T B ), < C27 75 2| £, .

Observing that
k
| Toauf @< Y CrBm)THE (X)),
m=0

we have
I T34 f 12 < C2773¢% £ 15 .
Summing over the last inequality for all />0 then completes the proof of Lemma 2.3.

PrOOF OF THEOREM 1. As in the proof of Lemma 2.3, we may assume that
1bllsmo=1. Let ¥y, ¥ be the same as in the proof of Lemma 2.3. Decompose the
multiplier m as

rn(é)=m(é)¢o(é)+§l mEWRE)= ,i m(é).

=0

Define the operator 7} by
(TiN)" () =m(t)f ().

Let T}, be the k-th order commutator of T} defined analogously to (1.9) and let 7}% ,
be the maximal operator associated with T}, as in (1.10). Then

Tlfkf(x)ﬁl;io TS (x).

Since mye CP(R"™), a trivial computation shows that

TEppf ()< CM, , f(x),

with M, the k-th order commutator of the Hardy-Littlewood maximal operator (see
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Lemma 2.1). Thus by Lemma 2.1 we need only to care about 7}%, for />1. Let
#,(€)=Vmy(€) - €. Define the operator T} by

(TN Q) =m(t) [ () -

We introduce the quadratic operators

o0 d 1/2
G,f<x)=< f | Ty f ()2 7’)

0

and
- o 1/2
G,f(x)=<j | Tt ()2 %) .

As in [10, page 308], it is easy to check that
| T3 f () > <2G,f(x)Gf (x) .
We now estimate ||G,f||,. We claim that for each fixed £¢>0,
(2.6) 1Gf < Cln, k&, a)27 "2 f],.

Indeed, by (1.5) we see that m, is supported in the spherical shell 2!~ ' <|¢|<2!*!
and |m,|,<C27', |Vm,| ,<C(Q2 "2427"@*D) Thus by Lemma 2.3, we see that
for each fixed e>0 and non-negative integer k, there exists a positive constant
C=0C(n, k, ¢, a,, a,) such that

2 dt
2.7) f J | T s f (X)1? o dx< C27 2@ =9 f)2.
R J1

Observe that if b€ BMO(R"), then for any >0, b(x)=b(tx) also belongs to BMO(R")
and |b,]lgmo = lIb|lsmo- By dilation-invariance, it follows from (2.7) that for any de Z,

S t 2 dt —2l(ay —¢) 2
(2.8) | Tippf (X)) " dx<C275 72| flI3 .
Rn
Let o e CP(R") as in Lemma 2.2. Set
Tiyef (x)= J (@277 - ymy(e )" (x = y)blx) = b)) (y)dy .
Rn

Then

Tipaf )= 2 | (@277 )mye )" (x —p)bx)—b(»)f (y)dy

deZ JRn

= Z T,‘fi,"kf ().

deZ
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With the aid of the formula
(blx)—b(y)) = Z Cilb(x)—b(2))(bz)—b(y)* ",  zeR",
we have
TS 0= 3 Gl G ana )

where g, is the multiplier operator associated with ¢(2~+) defined in Lemma 2.2.
Note that for each fixed ¢ and /, the number of d’s for which supp @2 ¢~"+)nsupp m(t *)
is non-empty is at most 100. Hence,

£ dt 2-d+1 dt
f |Tl';b,kf(x) |2 TS Cde lb S (X) 1 —< C Z f | Tt‘;iif,kf(x) 2 —[‘
0 ez Jo

deZ Jp-ad

2-d+1 dt

k
= C.Z ) | Tib,i(91+ azpic— i NX) 12 r
By the inequality (2.8) and Lemma 2.2, we finally obtain

G fl3<C27 2@~ E)Z > g1+ api-if 13<C272H 79| f113,

i=0deZ

which establishes our assertion.

The L? boundedness of T, follows immediately. Indeed, without loss of generality,
one may assume that a, >a,—1; otherwise, if a, <a,—1 and a; +a,>1, then a,>1
so that lim;_, , m(§) =« exists and

|m(&)—a|<ClEIm ="t

Thus we may replace m(¢) by m(¢)—a and a; by a,—1. As in the proof of (2.7), we
have that for each given u>0, there exists a positive constant C=C(n, k, u, a,, N)
such that

1G fl,<C27 @121 1.
So
1T S 1 < CIGL 152G fI3? < C27 Harraamtmu=al2) £y,

For each fixed pair a, and a, with a; +a,>1, we can choose positive numbers &, p so
small that e+p<a, +a,—1. Then for some positive constant 6 independent of /,

T Sl.<C27 % f1l, .

This leads to the conclusion of our Theorem 1.
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Now we turn our attention to the proof of Theorem 2. Let us introduce ad-
ditional operators M7, which is defined by

(MZN)NE)=m,(tE) [ (&),
for fe%, where

2.9) ma(€)=2"/““_‘1"<%+a>(2nlCI)_"’Z_““J.,/2+4_1(21TIél).

For a complex number o, put
My 1o f ()= M((B(x)—b( + ))f )(cx)
and

M3 (5) =50 | M5,/ (9)].

In view of the method of the proof in [12], the conclusion of Theorem 2 can be deduced
from the following results.

Lemma 2.4. IfRea>1—n/2, then
(3-2) 1M paf 1< Cre ™= bl gm0l £ 112 5

where C, is a bounded constant when Re o is in any compact subinterval of (1 —n/2, o).

By the asymptotic property of the Bessel function J,, Lemma 2.4 is a consequence
of Theorem 1 with a; =n/2+Rea—1/2 and a,=n/2+Rea—1/2. Now we turn to give
the estimates for M., , on LP.

THEOREM 2.5. Let f be in &. The inequality

Mg i fll,< Ca|'b||I§M0|lf||p

holds provided that
(a) 1<p<2, whena>1—n+n/p
(b) 2<p< o0, when a>(2—n)/p.
If a=0, this means n>3 and n/(n—1)<p < co.

Proor. If Rea>1, then MZf(x)<CHLf(x), where HLf is the Hardy-Little-

*
wood maximal function of f. By Lemma 2.1, we see that

1M504f 11, < Cllbllsmoll 1,

for all 1 <p<2. For the case of 2<p< o0, we claim that if Rea>0, then for p large
enough,

2.11) 1M 5paf 1, < Cllblmoll S, -

Indeed, since
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M f(x)=supz™"

t>0

f (1 _lx—yl>“‘ (b(x)—b(y»"f(y)dy}
|x—yl<t

t2

1/p
s(supt"‘f | b(x)—b(») [P f(¥) ldy)
|x—y|<t

t>0

. |x_y[2 (Rea—1)p’ 1/p’
X<Supt j <1_*2 | f()|dy
t>0 |x—yl<t t

s = I}/"Ié/"' ,

and I, which is the commutator of Hardy-Littelwood maximal operator is bounded
on L? with 1 <p< oo (see Lemma 2.1), it is sufficient to consider the operator

_,12\B8-1
J <l—|‘xt2y—|> S(ydy
[x—y|<t

for f>0 and feR. It is well-known by Stein in [12] that this operator is bounded
on L? when B>(2—n)/p with 2<p<oo. Choosing p so large that (Rea—1)p’'+1>
2—-n)p, ie., p>(—(n—3)+\/(n—3)2+4Re on—2))/2Rea, we conclude that I, is
bounded on L”. Since

, 1p 1p
f (I}/l’I;/P)deg( f Il;dx) ( f Igdx>
R" R™ R"

<Cl|bligol F12,

(2.11) holds and the conclusion of Theorem 2.5 follows from the complex interpolation
theorem (see [15]).

supt~ "
t>0

3. Estimates for commutators generated by a Lipschitz function. We first consider
a maximal operator N% defined by

NEf(x)=supt?

t>0

f Sx—2yda(y)|,
Iy1=1

with 0 < < (n—2)/2. The maximal operator is interesting by itself. With the notation
M, and M the same as in the previous section, we can rewrite N/ as

NLS () =sup 1| M,/ ()]

Let N3*f(x)=sup,- o t*| M} f(x)|. The estimates for N follows that of N2* at a=0.

THEOREM 3.1. Suppose 0<f<(n—2)/2 and Rea>1+p—n/2. Let f be in &.
The following inequality

3.1 ”N;'ﬁf”zScecumal”fﬂzn/(wzw
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holds with the constant C depending on n,  and Re o, which is bounded when Re o is in
a subinterval of (1+f—n/2, o).

To prove Theorem 3.1, write .#**f(x)=sup,. o {t " [ | s* M f(x)|*ds}'/*. Assum-
ing that Rea>Rea’'> —n/2 and C,,=2I'(n/2+o)/I(a—a')[(n/2+a’), by the formula
in [12, p. 2174],

3.2 M f(x)= ”J ()P M f(x)(1 —s2)* o~ 1gnt20 b1

Hence, if Rea>Rea’+1/2 and Rea’'>B/2—n/2+ 1/4, then an application of Schwarz
inequality shows that N%’f(x)<C,,.#**f(x), and (3.1) is a consequence of the
following result for .#*"*.

LemMA 3.2. Suppose that f is in & and 0<B<(n—2)/2. If Rea>1/2+f—n/2,
then

(3.3) It Pf 1, < Ce"™ N f | 2ajin+ 2y 5
where C is a constant depending on n, Re o, and p.

ProOOF. Since

M) E) =" m*(t| EN)f(£)
(3.4) =1 E)Pm () EI)Ipf) (&)
=Wl 1, (&),
where (W*#)*(&)=|¢ Pm*(| ¢]) and I, is the Riesz potential operator. By the bound-

edness of I, for the inequality (3.3), it is sufficient to show that if Rea>1/2+f—n/2,
then for fe &

/2
(3.5) (supj|W“”*f[2ds> <C|fl,.
2
Obviously, (3.5) follows from the estimate
© s dr \1/?
(3.6) ”(f | Wels f | T) <Clfl..
0 2

We claim that (3.6) holds with the assumptions in Lemma 3.2. Indeed, by Parseval’s
theorem, the proof of (3.6) comes down to the estimate

3.7) Fl(tlél)"m“(té)lz ?sc

0

for | €]=1. Since m*0)=1 and >0, the portion of the integral <1 in (3.7) is easily
seen to be bounded. To deal with the contribution for large ¢, we note
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(1Mt &))< Cp 727 Reat 2Tl

If Rea>1/2+ —n/2, then the integral (3.7) is bounded. This completes the proof of
Lemma 3.2.

Then estimate for N2# on L7 is the following statement.
THEOREM 3.3. Suppose 0<f<(n—2)/2 and f is in &. The inequality
IN*fl, < CIF],

holds with 1/q=1/p— B/n in the following circumstances:
(@) 1<p<2n/(n+2p), when Rea>1—n+n/p.
(b) 2n/(n+2B)<p<n/B, when

Reoa>Q2—n)/p+2n—1D)p/mp+mn—1)p/n—2mn—1)2/n?.
If =0, this means n>3, n/(n—1)<p<n/B—n?/(n—1)B(n—2p).

Proor. If Rea>1, by the definition of M} in Section 2, we have

N&f(x)=Csupt"*F
t>0

J (I=1y P/ f (x—y)dy
lyl<t

sCsupt‘"”’j | f(x—y)|dy
lyl<t

t>0

=CfF(x),

where f is the maximal fractional integral operator introduced by Muckenhoupt
and Wheeden in [8], in which it was proved that f} is of type (p,q) with 1/g=
1/p—B/n and of weak type (1, n/(n—pf)). Using (3.1) as an endpoint estimate, the first
result in Theorem 3.3 will follow from the analytic interpolation theorem.

Now we turn to the proof of the second result. Let 1 <r<oo and 1/r+1/r'=1.
Using the Holder inequality,

|y l2 (Rea—1)r' 1/r
N;'/’f(x)SSup<t'" <1— . > dy>
>0 Iyl<t t

1/r
X sup (t""“”f [ f(x—y) l'dy> :
t>0 lyl<t

When Rea > fi/n, letting r <n/f and r be close to n/f§ yields Reoa>(r'—1)/r. Thus

2 \(Rea—1)r' 1/r
<t‘"f <1—‘|y—|~> dy) < oo
lyl<t t?

and this implies
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1/r
NyPf(x)< Cfug <z‘"+'ﬂj | f(x=y) I'dY>
i Iyl<t

=Cff(x).
The result in [3, Lemma 2] shows that if r<p<n/p and 1/g=1/p— B/n then

[ fplla=CIlfl,-
Therefore, if Rea> f/n, p is less than n/f but is close to n/, and 1/g=1/p— p/n, then

INZ? 1, <ClA, -

The analytic interpolation yields the result (b).
To prove Theorem 3, we first assume feL?nL? and f>0. By the definition of
Lipschitz space, we have

IAﬁ‘y,/kb(x) |<Ct.
Thus,
M i ()< CNOH ().

Theorem 3 follows obviously from Theorem 3.3.
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